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//-CONVERGENCE OF A CERTAIN CLASS OF PRODUCT
MARTINGALES

by STAMATIS KOUMANDOS

(Received 23rd July 1992)

We establish the Kakutani dichotomy property for two generalized Rademacher-Riesz product measures fi, v;
that either n, v are equivalent measures or they are mutually singular according as a certain series converges
or diverges. We further give sufficient conditions so that in the equivalence case the Radon-Nikodym
derivative d/i/dv belongs to Lp{v) for all positive real numbers p, by proving that a certain product martingale
converges in Lp(v)

1991 Mathematics subject classification: Primary 60G30, 60G42; Secondary 42A55.

1. Introduction

Let us consider the sequence (e l Je2, . . .) of digits of the expansion of xe[0,1) in the
base r ( r^2) , as a formal stochastic process with finite state space S = {0, l , . . . , r - l }
defined on the usual probability space of the unit interval [0,1]. Let fi be the Borel
probability measure such that {en} is independent under n and

where {pi,0',?!,1', ••»?!,'"u} is a set of positive real numbers such that Xj=oPnl) = l for
all n.

In the case r = 2, G. Brown and W. Moran proved in [2], among other things, that
either \i is absolutely continuous, with respect to Lebesgue measure, and its Radon-
Nikodym derivative belongs to Lp[0,1] for all positive real numbers p or n is a singular
measure, according as a certain series converges or diverges. This result is a dichotomy
property for this kind of measure, and its proof relies on a convergence theorem for
products of random variables, which is essentially a generalization of Kakutani's famous
dichotomy criterion for infinite product measures [4]. As G. Brown and W. Moran [2]
pointed out, the measure \i is, in this case, a Riesz product-type measure of the form

R

dfx = lim Y[ (1 + a*r») dx,
n-*oo k= 1

where rk denotes the kth Rademacher function.
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In the present article we shall see that for each positive integer r (r ̂  2), the measure \i
above is also a Riesz product-type measure based on a certain sequence of independent
random variables each of mean zero. So, this gives reason to investigate analogous
dichotomy theorems in this general situation as both Kakutani's criterion [4] and
Brown and Moran's convergence theorem (see [2, Theorem 1]) seem to be effective.

In Section 2 of this paper we shall show that such a measure fi is a generalized
Rademacher-Riesz product as it has been introduced in [5]. Next, by the application of
its properties we are able to generalize Brown and Moran's result stated above.

In Section 3 we prove that two generalized Rademacher-Riesz products are either
equivalent or mutually singular in terms of the convergence of a certain series. To prove
this result we use a formally different dichotomy criterion from those in [2] and [4].
Namely, we apply Kakutani's dichotomy theorem on product martingales as it is stated
in [11]. An advantage of our martingale approach on the subject is that we can extract
additional information in the equivalence case. Indeed, by the application of the classical
Doob's Theorem [3] for the //-convergence of martingales we prove sufficient
conditions so that in the case where fi, v are equivalent generalized Rademacher-Riesz
products the Radon-Nikodym derivative dfi/dv e Lp(v) for all positive real numbers p.

Some central results concerning equivalence or mutual singularity for the classical
Riesz products have been derived by J. Peyriere [7], G. Brown and W. Moran [1] and
G. Ritter [8]. In addition, S. J. Kilmer and S. Saeki [6] have given further criteria for
mutual absolute continuity and singularity of Riesz products as well as sufficient
conditions so that in the case where a Riesz product // is absolutely continuous with
respect to another Riesz product v, dfi/dv e Lp(v) for appropriate p. It should be noted
that G. Ritter proved in [9] dichotomy results for more general infinite products of
functions than those in [1], [6], [7] and [8] and he also used martingales in the context
of Riesz products.

In our work here we deal with measures different from the classical trigonometric
Riesz products and our methods based upon the application of the basic martingale
theory.

In the next section we give some basic definitions and results on generalized
Rademacher-Riesz products.

2. Preliminaries

Let r be a positive integer (r^2) and let en be the nth digit of the expansion of
xe[0,l) in the base r, i.e. x = X"=1£n/r" a n d £Be{0, l,...,r—1}.

We define the sequences of functions (/?i)™= i> for i=0,1, . . . , r — 1 on [0,1] as follows:

Ri{x) = l-rdenti for n = l , 2 , . . . ,

where <5£n ,• is the usual Kronecker's delta. We also define R'n to be zero on each r-adic
rational. We call the sequence (i?J,)"=1 the system of r-adic Rademacher functions
associated with the digit i.
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Let (aJ,0)), (a*,1'),...,(a*,'"1') be sequences of positive real numbers satisfying Jj=oan) =

1, for all n.
We define the sequence of functions (XH)%L , on [0,1] as follows:

Vn for n = l,2,....
i = 0

Since the functions Xn are obviously Borel measurable, it is more convenient in the
sequel to employ the terminology of the probability theory. As it is easily seen (Xn)™= j
is a sequence of independent random variables, each of mean 0, on the probability space
([0,1],^, X), where 38 is the <r-algebra of the Borel subsets of [0,1] and A is the
Lebesgue measure on 38.

We shall call a cylinder of order n and r-adic interval of the form:

KM^X] for ;=l,2,...,r".

Let En(x) be the cylinder of order n which contains x, for n= l ,2 , . . . and let
W = [0,1).
We define

Let £».;=U'=i£n+i,c/-i)r+.-- Clearly, £ n + 1 ,y_1)r+,, i = 1,2,...,r are the cylinders of
order n+1 that EnJ is divided into. Then it is easily checked that the set function n
satisfies the following conditions:

(1) rtE«j)=Z'= i/*(£„+i,u-ur+() for every n and ; = l,2,...,r".

(2) ZT-iA*(£-.j)=l for all n.

Therefore, \i may be extended to a Borel probability measure on [0,1] in a unique
manner.

We denote by 3Bn the a-algebra generated by {£„__,: 1 ^j^r"}. It is plain that the
restriction of the measure n to SBn is the measure nn defined by

*=i

It is also clear that the measure \i is the limit of the sequence of measures (JO"= i in the
weak* topology of M([0,1]), where M([0,1]) is the Banach space of all regular Borel
measures on [0,1]. We call such a measure \i a generalized Rademacher-Riesz product
associated with the sequences (aj,0), and in what follows we shall employ the notation
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dti=f\(\-Xn)dX. (2.1)

Some basic properties of a measure \i defined above are given by the following
proposition.

Proposition. Let n be a generalized Rademacher-Riesz product as in (2.1). Then, we
have the following conclusions:

(i) The random variables (Kj,)"=i are independent on the probability space ([0, l],&,/i)
such that

for i = 0,l,...,r—l and n= 1,2

(ii) (£„)"= i is a sequence of independent random variables on the probability space
([0,1], ^ , / i ) , so that, if

then

H(UK.,) = ̂ , i = 0,l r - l .

(iii) Let

i = O

where (cn), (cj,1') are sequences of real numbers such that at least one ci,''#0 and one
cn' ̂  1 / o r every n. T/ien the random variables £„ arc independent on the probability
space ([0,1], SI, ii).

Proof. Let /ln i i = {xe[0, \)\Ri
n(x) = \-r). It can be easily checked that

From this it follows that J£ KJ, d\i = 1 — raj,0. It is not hard to see that

i n /lm,,-)

for every pair of positive integers n, m, which establishes (i). To prove assertion (ii) it is
sufficient to observe that

An,i=Un,i for all i = 0 , l , . . . , r - l and n = l ,2, . . . .
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The proof of (iii) directly follows from (i) and (ii). •

Remark. In the case r = 2 we have R^=rn and R°= —rn, where (rB)"=1 are the usual
Rademacher functions on [0,1], defined by rn{x) = 1 — 2en. Taking

a n d

where | a B | ^ l , the measure (2.1) has the form

n = l

In what follows, we shall maintain all the notation and the terminology of this
section.

3. The main results

The following theorem establishes the dichotomy property for two generalized
Rademacher-Riesz product measures.

Theorem 1. Let

where

and dv=Y\{l-YH)M,
F l = l 1 1 = 1

Ii and Y^'ZbVK.
i=0 i=0

Then /i, v are equivalent measures (i.e., / /«v and v«fi) if and only if

oo r— 1

n = l i = 0

Otherwise, the measures fi, v are mutually singular.

Before proving this theorem it is convenient to gather together some basic results and
notation, that we shall use throughout this section, in the following lemma.
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Lemma 1. We suppose that Xn, Yn are as in Theorem 1. We further define

Z"=TZV for n = 1>2>-

and for p>0

In(p) = ](Zn)"dv,
o

where the measure v is as in the theorem above. Then

(i) for all positive real numbers p

1 / W 1 / a V
r i = 0 \"n / r i = O \"n /

(ii) {(Zn)"} "=! is a sequence of independent random variables on the probability space
([0,1], @, v), /or any p: 0 < p < oo.

for any p.O<p<ao.
(iv) In particular, for the sequence of independent random variables (Zn) "= i we

JZndv=l.
o

Proof, (i) follows easily from the definition of Xn, Yn and Zn. Combining (i) and part
(iii) of the Proposition in Section 2 we have (ii). Clearly (i) and part (i) of the
Proposition mentioned above imply (iii). Finally, (iv) is an immediate consequence of
(ii) and (iii). •

Proof of Theorem 1. We define

Fn=f\Zk, for n=l,2 (3.2)
*=i

where Zk, k = l,2,...,n, are as in Lemma 1. It is clear that the stochastic sequence
(Fn,^n)n^1 is a martingale on the probability space ([0,1],&,v), and Doob's Theorem
(cf. [3, p. 319]) ensures that limn_c0Fn = F exists v-almost everywhere.
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Now, let nn, vn be the restrictions of the measures fi, v to &)„ respectively. It is easy to
see that /in«vn and d(in/dvn = Fn for n = 1,2,.... It is well-known that for every AeSS

(3.3)

where the measures a, v are mutually singular (see [10, p. 493]).
It follows from Lemma 1 that

whence

1 - / I - I - - V ( [eft- /h^)2

W £ i=o

We suppose that the series in (3.1) converges. Then by Kakutani's Theorem on
product martingales (cf. [11, p. 144]) we infer that the martingale {Fn,^Sn)n^l is
uniformly integrable, Fn converges to F in L'(v) and

I

\Fdv=\. (3.4)
o

By combining (3.3) and (3.4) we conclude that \i is absolutely continuous with respect
to v.

When the series in (3.1) diverges by applying again Kakutani's Theorem mentioned
above we deduce that

F=0 v-almost everywhere,

which in combination with (3.3) implies that /i, v are mutually singular measures. This
completes the proof of the theorem. •

Theorem 2. Let the measures n, v be as in Theorem 1. We define

Mn= max -£r, n=l ,2, . . . .

0§igr-l "n

We assume that the series in (3.1) converges and

supMn<oo. (3.5)
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Then dfi/dv belongs to Lp(v) for all positive real numbers p.

For the proof of this theorem we need the following elementary lemma.

Lemma 2. Let

a,>0, b(>0 for i=l,2,...,n.

We set

M= max -1.

Then the inequality

t ^ ^ 4 m a x ( l , M ) £ (v^

holds.

Proof. For each pair of positive real numbers x, y we have

(3.6)

This inequality can be easily proved by the mean value theorem and the observation
that

max
/ x\ ma\(x,y)

V 37 y

From (3.6) we have

(3.7)
for i=l,2, . . . ,n

(since a<b implies max(c,a)^max(c,b)). From (3.7) the inequality of the lemma
follows. •

Proof of Theorem 2. We consider the martingale (Fn,3Sn)n^1, where Fn is defined by
(3.2). According to Theorem 1, Fn converges v-almost everywhere and in L'(v) towards a

https://doi.org/10.1017/S0013091500006052 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500006052


{/-CONVERGENCE OF MARTINGALES 251

function F, where F = dn/dv. So, it suffices to examine the convergence of Fn in Lp(v), for
p>\.

It follows from Lemma l(ii) that for any p

*=i o *=i

Taking into consideration part (iii) of Lemma 1 one can easily see that

,=o

By Lemma 2 we evidently have

> X 7 ^ ^ 2 (3.9)
i = 0 °t i = 0

From this and the assumptions of the theorem we infer that

Z Z
n = l i = 0

From (3.8), for p = 2, and the above we have

I

sup \Fldv< oo.
n 0

By applying Doob's Theorem (see [3, p. 319]) we deduce that FeL2(v) and Fn

converges to F in L2(v).
We observe that

For each positive real number p the following inequality holds true:

(1 +t)p^ l+pt+cp(\t\
p + t2) for any t ^ — 1,

where
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(cf. [6, Lemma 1.1]). By applying the above inequality we obtain

for i = 0, l , . . . , r — 1 . Hence

[
r~ l la*0-/)!0!" r~1 (a{i)-h^l

,?.[^+,?.T} (310)

For p > 2 we have

A combination of this with (3.9) gives

From (3.10) and the above we obtain

r - l

Ik(p) ̂  1 + cp • Nk(p) • £

i = O

where

Nt(p) = 4[l + (1 +Mk)p~2] max(l, Mk).

Clearly (3.8) and (3.11) imply that

1 ( 1 + cp-D4(p)), (3.12)
o * = i

where
r - l

i = 0

It follows from our assumptions that
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I Dn(p)<ao. (3.13)

Finally, from (3.12) and (3.13) we have

^ fl (l+cpZ)n(p))<oo,
n 0 n = 1

and by the application of Doob's Theorem (see [3, p. 319]) we conclude that Fn

converges to F in Lp(v). Consequently, F = dfi/dv belongs to Lp(v) for every positive real
number p. Furthermore,

||F||pgexp(cp-D(p)) for all p,

where £>(p)=X"=i A.(p) ana" || ||p denotes the norm of Lp(v). The proof is complete. •

As a consequence of Theorem 2 we have the following remarkable fact:

Corollary 1. Let the measures fi,v be as in Theorem 1 and let Bn = minOg(gr_1b^l). We
suppose that

liminfBn>0 (3.14)
n-»oo

and

t ' l (4?-W)2<ao. (3.15)
n=l i=0

Then n,v are equivalent measures and dp/dv belongs to L"(v) for all positive real
numbers p.

Proof. Plainly (3.14) and (3.15) imply the convergence of the series in (3.1). On the
other hand, (3.14) shows that condition (3.5) is also satisfied.

In the case where b(
n°=l/r for each i = 0, l,...,r— 1, the measure v above coincides

with the Lebesgue measure A; so by applying Corollary 1, the following corollary can
easily be shown.

Corollary 2. Let n be a generalized Rademacher-Riesz product as in Theorem 1.
We set

i = 0
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V Z " = i d » < 0 ° t h e n ^<<A and dt*/dA belongs to L"([0,1]) for any p: 0<p<oo. If
X"= i dn = °o t/jen // is a singular measure.
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