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ENLARGEMENT OF -̂ALGEBRAS 
AND COMPACTNESS OF TIME CHANGES 

J. R. BAXTER AND R. V. CHACON 

I n t r o d u c t i o n . Given a stochastic process adapted to an increasing family 
of right-continuous cr-algebras, it is often useful for many purposes to enlarge 
the a-algebras. In the present paper we shall consider enlargements which 
involve embedding the process in a larger probabil i ty space. The first question 
investigated is what kinds of enlargements it might be useful to consider. T o 
s tudy stopping times, the least requirement needed to have a complete theory 
is tha t convergent sequences of stopping times converge to a function which is 
also a stopping time, and for this it is necessary to make the enlargement right 
continuous. There are other constraints on the possible enlargements. For the 
enlargement to be useful the properties of the process should be retained. For 
example, if it is strong Markov with respect to the smaller cr-algebras it should 
remain so with respect to the larger ones. A property of the process which de
pends on the increasing a-algebras to which the process is adapted is said to be 
preserved under the enlargement if it holds with respect to the larger a-algebras. 
I t is quite possible tha t certain properties are preserved under some types of 
enlargements bu t not under some other types. The main result obtained with 
respect to these questions is tha t a certain class of enlargements, called distri
butional enlargements, preserves all the following properties (i) quasi-left-
continuity, (ii) the strong Markov property, (iii) independence of increments 
with respect to the past, and (iv) the martingale property. This result is dealt 
with in Section 1. 

Next, suppose tha t there is given a sequence of non-anticipating t ime 
changes. I t would be very useful to have the result tha t if the sequence of non-
anticipating time changes does not grow too rapidly, then it is possible to 
extract a subsequence which converges to a non-anticipating time change in 
the sense tha t the process time changed with respect to the subsequence con
verges in distribution to the process time changed a t the limit. In the re
mainder of the paper we deal with the question of to what extent this result 
holds. The main theorem obtained is tha t if the process is embedded in a larger 
probabil i ty space and if the increasing a-fields are given a distributional en
largement, then the conclusion almost holds, in a sense made precise later. In a 
very ingenious paper, Monroe [3] has shown tha t any right continuous mart in
gale can be embedded in Brownian motion, after enlargement of the cr-algebras. 
The proof is composed of several parts . In one par t , Monroe shows tha t a 
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part icular sequence of time changes of Brownian motion has a convergent sub
sequence. In the proof, essential use is made of two properties of Brownian 
motion: cont inui ty of sample pa ths and independence of increments, as well 
as the part icular na ture of the time changes. T h e results in the present paper 
show tha t the selection argument given by Monroe is a part icular case of a 
compactness principle, valid even for discontinuous processes which need not 
be Markov. For another application, to the embedding of potential processes 
in other Markov processes in addit ion to Brownian motion, see [2]. 

1. R e p r e s e n t a t i o n . Let E be a topological space with a countable base. Let 

X = (Sl,sé,*Jéu X t, P) be a stochastic process, where (12, J ^ , P) is a probabil i ty 

space, {tJtt) is a nondecreasing right continuous family of cr-algebras con

tained in a (7-algebra c^# C j / f and Xt is an ~ # r m e a s u r a b l e map from 12 into 

E for each t. We will often write X t as X(t) or X(t, co), and so on. 

Some terminology is helpful. A randomized ^ r stopping t ime T will mean 

an (<Jtt X J?f )+-stopping time T defined on 12 X L, where (L, ££, v) is a 

probabil i ty space, and 12 X L is given the product probabil i ty P X v. T is 

thus a weighted collection o f ^ # r s t o p p i n g times. 

We will use the phrase distributional stopping time to denote a slightly 
more complicated object. Let (H,3rf?) be a measurable space. Let A = 12 X H, 
^ = s/ X Jtf. Let Q be some probabil i ty on (A, J ^ ) such t ha t Q has projection 
P on (12, s/). Let F = <Jé X H = the collection of sets of the form A X H, 
A in *Jiï. Let J S = <Jt\ X H. Let { J^ t\ be a nondecreasing family of a-algebras 
contained in J ^ . For each bounded J^Vmeasurab le function Y, suppose tha t 

(1.1) E[Y\F] = E[Y\Ftl 

I t is easy to see tha t if (1.1) holds for { j f t) then it holds for {J^t+}. A right 
continuous family {J^ t) satisfying (1.1) will be referred to as a distributional 
enlargement of {~$t), and a J^Vstopping time will be referred to as a distribu
tional^ t-stop ping time. In this section we shall consider the extent to which 
the notions of randomized and distr ibutional stopping times coincide. 

Let {<yf t\ be any family satisfying (1.1) and let \T{n)\ be a nondecreasing 
sequence of J ^ r s t o p p i n g times. We will show tha t these stopping times can be 
simultaneously represented by weighted collections of o /# r s topping times, in 
the following sense. There exist probabil i ty spaces (W,W, y) and (L, J^7, v), 
a map <p: A X W —* 12 X L, and a nondecreasing sequence {S(n)\ of ( - # , X 
££)+-stopping times, such tha t 

(1.2) (<2 X y)<p~l = P X v, and 

(1.3) Tin) = S(n) o <p (mod Q X y) for each n. 

Conditions (1.2) and (1.3) show tha t the T(n) may (for most purposes) be 
identified with the S(n). We s ta te the result as 

(1.4) PROPOSITION. A nondecreasing sequence of stopping times for a family of 
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a-algebras satisfying (1.1) can be simultaneously represented in the above manner 
as randomized stopping times. 

In the proof of (1.4), L can be chosen to be [0, 1]^, w h e r e ^ = the natural 
numbers, with v = X , where X is Lebesgue measure on [0, 1]. L may be 
thought of as a space of labels for collections of^Vstopping times. {W,W, 7) 
can be chosen equal to (L,££, v). IF may be thought of as a way of fattening up 
A to ensure the existence of independent random variables. The proof of (1.4) 
is essentially given in the next two lemmas. 

(1.5) LEMMA. Let (A,jf, Q) be a probability space. LetJ^ be a a-algebra con
tained in Jf, and let {J^t} be a nondecreasing right continuous family of a-
algebras with ^ t C J r . Let T: A —> [0, 00] be a tf-measurable map such that 

(1.6) Q(T ^ t\^) is^t-measurable mod Q for all t. 

Then there exists a map £: A X [0, 1] —> [0, 1] and a map S: A X [0, 1] —> 
[0, 00] such that 

(1.7) ^ w J f X ^ measurable (where S3 is the collection of Borel subsets of 
[0, 1]), £ has distribution X (where X is Lebesgue measure on [0, 1]), and 
£ is independent of ̂  X [0, 1] (where^ X [0, 1] is the collection of sets 
A x [o,i],.4 e JO, 

(1.8) Sisan^t X S3-stopping time, 

(1.9) T(w) = 5(co, £(co, u)) for Q X \-almost every (co, w) m A X [0, 1]. 

Proof. For every rational t let Y(t) be an J^Vmeasurable function such that 
Y if) = Q(T ^ t\^) mod Q. We may choose Y(t) such that 0 g 7(0 ^ 1 
and FC0 ^ F(/) for all 5 g /. Let Z(0 = inf { F(s)|s rational, 5 > t) for all 
real t. Let Z(oo) = 1. For each /, Z(t) is JS-measurable and Z(t) = Q(T ^ 
t\J^) mod Ç. Z(t) is right continuous and nondecreasing as a function of /. 
Let Z_(0 = sup {Z(s)\s < t}. Define M X [0, 1] X [0, 1] by 

(1.10) £(w,w) = z_(r(w))(co) + tt(z(r(co))(w) - z_(r(w))(w)). 
It is easy to see that J is J ^ X ^-measurable. 

Fix a in [0, 1]. Let b = sup \t\Z(t) ^ a}, b is an J^-measurable function on 
A. {£ ^ a} = {(co, «)|T(co) < 6} U {(co, w)|T(w) = & and u(Z(T(œ)) -
Z _ ( 2 » ) ) g a - Z _ ( 7 » ) J . Hence Q X \(£ ^ a | # " X [0, 1]) = Z_(6) + 
(Z(6) - Z-(b))(a - Z_(b))/(Z(b) - Z_(6)) = a. Thus (1.7) holds. 

For co in A and v in [0, 1], let 

(1.11) 5(«,v) = sup {/|Z(/, co) <*;}. 

Then {S > c) = {(co, u)\Z(c, co) < ^} = union over all rational a of 
{co|Z(c, co) < a} X [a, 1], a set i n J ^ X ^ . Thus (1.8) holds. 

Let 4 = {(co, u)\S(u, £(<o, *0) > *}.Then.4 = {(co, w)|Z(/, co) < £(co, w)} = 
{(co, u)\Z(t, co) < Z_(r(co)) + « ( Z ( r ( « ) ) - Z _ ( 7 » ) ) } . Thus i Ç 5 = 
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{(co, u)\T(w) > t). On the other hand, Q X \(A) = E\Q X \[A\^ X [0, 1]]] 
= E[l - Z(/)] = Q(T > t) = (?(£). This proves (1.9) and completes the 
proof of the lemma. 

The map £ constructed in Lemma (1.5) has one additional property, that will 
be useful in the next lemma. Letffl t denote the cr-algebra generated b y ^ t and 
all sets of the form {T ^ s}, s ^ t. It follows easily from (1.10) that 

(1.12) £ restricted to {T g t) isJft X ^-measurable. 

(1.13) LEMMA. Let (A, X, Ç) &e a probability space. Let ^ be a a-algebra, 
^ Ç J^. Le/ { J^~\} &e a nondecreasing right continuous family of cr-algebras with 
&'t C J^. Le/ r(w): A —> [0, oo ] &e a non-decreasing family of J f -measurable 
maps such that 

(1.14) E[Y\^] = L[F|J^~t] for each bounded function Y which is measurable 
with respect to the a-algebra generated by all sets of the form {T(n) S s}, 
n = 1,2, . . . ,s S t. 

Then there exist maps £(n): A X [0, I f -> [0, 1] and S(n): A X [0, I f -> 
[0, co] such that the S(n) are nondecr easing (when regarded as junctions on 
A X [0, 1]^) and 

(1.15) £(n) is X X 3§n measurable, £(n) has distribution X, and (when re
garded as functions on A X [0, l]n) £(1), . . . , %(n) are independent of 
each other, and are together independent of^ X [0, l]n, 

(1.16) S(n) is an (J^t X &n)+-s top ping time, and 

(1.17) 7 » ( c o ) = S(n)(œ, {(l)(w> u1)1 . . . , £(n)(œ, uu . . . , un)) for Q X 
\n-almost every (co, U\, . . . , Un )inAX [0, l ] n . 

Proof. We may take £(1) = £ and 5(1) = 5, where £ and 5 are the maps 
constructed in Lemma (1.5). Now suppose that for some k the maps £(1), . . . , 
£(fe) and 5(1), . . . , S(k) have been constructed. We shall construct £(k + 1) 
and S(k + 1)- Before doing this, a further inductive assumption will be placed 
on the £(i), i = 1, . . . , k. Let J^* denote the cr-algebra generated by ^ t and 
all sets of the form {T(n) S s}, n = 1, 2, . . . , s S t. It will be assumed that 

(1.18) each £(i) restricted to \T(i) ^ t) is (X t X ^*)+-rneasurable, for 

i = 1, . . . ,k. 

By (1.12) this assumption holds for k = 1. 
Let H X [0, 1]* -> A X [0, l]k be defined by 0(co, Wi, . . . , uk) = (co, {(1) 

(co, W l ) , . . . , £(fe)(w, wi, . . . , wfc)). Let A' = A X [0, 1]*, X ' = X X &k. 
Define Q on j f ' by Q'(,4) = Q X \k(d-l(A)). Let ^ ' = & X @\ Let 
^ , = J S X ^ * on {5(&) g /}, S?, = J S X [0, 1]* on {S(fe) > /}. Let 

As usual, 5(1), . . . , S(k) and L(& + 1) may be considered to be defined on 
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A'. We wish to show tha t 

(1.19) Q'(T(k + 1) g t\^') is ^ / - m e a s u r a b l e mod Q' for all t. 

Let A = {T(k + 1) St}. Let Z be a bounded « ^ X [0, 1]* measurable 
function. Let / be a bounded Borel function on [0, 1]*. Define g on A' by 
g(œ, Mi, . . . , w*) = / ( ^ i , . . . , uk). I t must be shown tha t (expectation with 
respect to Q') 

(1.20) E[ZgXA] = £ [ Z g £ ( x , | # 7 ] ] . 

We first show (expectation with respect to Q') 

(1.21) E[gXA\^ X [0, 1]*] = E[gXA\^t X [0, 1]*]. 

(1.21) is equivalent to 

(1.22) E[WgXA] = E\VgXA\ for all bounded ^ - m e a s u r a b l e W, V (defined 
on A' in the obvious way) with V = E[W\^J. 

Bu t £[Wgx^] = ^ [ W ^ O ^ X A ] , where the first expectation is with respect to 
Qf and the second with respect to Q X Xfc. By (1.18) the function g o 6XA is 

Jl?t X ^ - m e a s u r a b l e . I t follows from (1.14) tha t E[WgodXA] = £ [ F £ O 6 > X A ] . 
T h u s (1.22) is proved, and hence (1.21). Returning to the proof of 
(1.20), E[ZgXA] = E[ZE[gXA\^ X [0, 1]*]] = E[ZE[gXA\^t X [0, 1]*]] = 
E[E[Z\^t X [0, l f ] m ] = E[E[Z\^/]gXA] = £ [ Z £ k x A | ^ * / ] ] = £ [ Z g £ [ x ^ | 
# 7 ] ] , so (1.20) is proved. 

By Lemma (1.5), there exist maps £': A X [0, 1]*+1 -» [0, 1] and S': A X 
[0, 1]*+1 - » [0, oo] such tha t £' i s J f X â?*+ 1 measurable, £' has distribution X, 
£' is independent of ^ X ^ X [0, 1] with respect to Q', S' is an ^ 7 X 
^ - s t o p p i n g time, hence an (#~* X ^?*+1)+-stopping time, and T(k + l ) (w) 
= 5 ' (co, wi, . . . , uk, £'(co, wi, . . . , %+i)) mod Q' X X. 

Define d': A X [0, l ] f c + 1 - » A X [0, l ]** 1 by 0'(co, uu . . . , «,+ 1) = (0(co, 
wi, . . . , w*), ^ + i ) . Let £(fc + 1) = £' o 6' and S(fc + 1) = S(k) V 5 ' . Clearly 
(1.15), (1.16) and (1.17) hold with n = k + 1. By Lemma (1.5), £' restricted 
to {T(fe + 1) g /} is (Jlft X ^ + 1 ) + - m e a s u r a b l e , so £(& + 1) restricted to 
{T(k+1) St} is (J^tX ^ + 1 ) + - m e a s u r a b l e . Thus (1.18) holds with k 
replaced by k + 1. This proves Lemma (1.13). 

Proof of Proposition (1.14). As noted earlier, we choose L = [0, 1 ]^ , where 
J/ = the natural numbers, v = X^, i f - ^ . We choose (W, ^ , 7) = 
(Z,, i^7, y). Given A = 12 X H,X = « ^ X ^ , { J f , } , <2 such tha t (1.1) holds, 
and a nondecreasing sequence {7X^)1 of J^Vstopping times, let £(n) and 5 ( n ) 
be the maps described in Lemma (1.13). I t is easy to see tha t we may take 
S(n) to be defined on 1] X [0, \Y for all n and H(n) to be defined on A X 
[0, 1 ] ^ for all n. The map <̂ : A X W -> tt X L is then defined by 

(1.23) <p(co, ft, y) = (w, £(l)(co, ft, 3/), £(2)(cu, ft, y), . . .) for all co in 12, 
ft in 77, ;y in [0, 1 ]^ . 
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Properties (1.2) and (1.3) follow from Lemma (1.13) so the proposition is 
proved. 

The effect of the map (1.23) may be visualized more clearly by considering 
a fibre {co} X H X [0, 1]^ in 12 X H X [0, 1]^, for some fixed co in 12. Ç in
duces a certain conditional probability Q(w) on this fibre. The map £ = (£(1), 
£(2), . . .) restricted to this fibre sets up a measure-preserving correspondence 
between the fibre and the standard probability space ([0, 1] , Se , X" ). 
<p thus maps 12 X H X [0, 1] fibre by fibre onto 12 X [0, 1] in a measure 
preserving way. 

A n ^ t - t i m e change T is a map T: 12 X [0, GO] —> [0, OO], such that for each 
fixed a in [0, oo], T( • , a) is an^Vstopping time on 12, and for each fixed co 
in 12, T(co, • ) is nondecreasing and right continuous on [0, oo]. The notions of 
a randomized time change and a distributional time change follow immediately 
from the definitions for stopping times. It would be interesting to know whether 
the two notions are essentially equivalent. 

By Proposition (1.4) we can say that there is no essential difference between 
a randomized and a distributional stopping time, nor between increasing se
quences of these objects. Nevertheless the question remains open, whether 
one can simultaneously represent all the stopping times making up a time 
change in the manner of Proposition (1.4). Indeed, it is not obvious that a 
decreasing sequence can be so represented. For practical purposes, however, 
the conceptual distinction between distributional and randomized time changes 
may not be important. It follows readily from Proposition (1.4) that (i) 
quasi-left-continuity, (ii) the strong Markov property, (iii) independence of 
increments with respect to the past, and (iv) the martingale property each 
carry over from the process (12,se ,*Jt t, X u P) to the process (A,J^,J#^, X u Q) 
whenever (1.1) holds. 

The following lemma will be useful in Section 3. 

(1.24) LEMMA. Any finite sequence of distributional stopping times can be 
represented in the manner of Proposition (1.4). 

Proof, This lemma is a corollary of Proposition (1.4). One simply embeds 
the given sequence in a larger nondecreasing sequence. Inductively, having 
embedded T( l ) , . . . , T(k) in [/(l), . . . , [/(/), let C7(0) = 0, U(l + 1) = oo 
and set V(i) = (T(k + 1) A U(i)) V U(i - 1) for i = 1, . . . , / + 1. Embed 
T( l ) , . . . , T(k + 1) in the sequence 7(1), U(l), . . . , V(l), U(l), V(l + 1). 
We can recover T(k + 1) from the nondecreasing sequence by noting that 
T(k + 1) = V(j), where j is the first i such that V{i) < U(i) or i = I + 1. 
It is easy to see that this embedding carries over to the representation given 
by Proposition (1.4), so the lemma follows. 

2. Compactness. Let X = (Sl,s/,<J?t, X t, P) be as in Section 1. Let H 
denote the set of nondecreasing right continuous maps h from [0, oo] into 
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[0, oo ]. H is a compact metric space with the usual topology (pointwise con
vergence on a dense set including oo). L e t ^ be the set of Borel sets on H. 
Let J ^ be the c-algebra generated by \h\h(a) S s}, for all a in [0, oo), all 
s ^ t. By right continuity, the coordinate maps h —> h (a) are Jf ' -measurable ; 
hence J4?t QJ^. {^ft} is clearly nondecreasing and right continuous. 

Let A, J ^ , J^~, { 3?'t] be as in Section 1. Any function on £2 will be extended 
to A in the obvious way. Let tf t = (^\ X<&?t)+. Let Q be a probabili ty on 
(A, Jtif) such tha t Q has projection P on (12, s/) and (1.1) holds. Define the 
time change T on A X [0, oo] by 

(2.1) T(u,h,a) = h(a). 

Then T is a distributional^'rtime change, by definition. I t should be noted 
tha t any ordinary ^ t-time change 5 on 12 X [0, oo] can be represented in this 
way by defining the map i/': 12 —> A by 

(2.2) * ( w ) = (co,S(co,.)) 

and letting 

(2.3) (2 = PiT1. 

We would like to prove compactness of distributional time changes. 
(Theorems (2.9) and (2.11)). As defined here, the time change is specified 
completely by the probabili ty measure Q on (A, J ^ ) . We shall thus identify 
the t ime change with Q and define an appropriate topology on the set of 
such Q's. 

Let II denote the set of probabilities Q on (A, JT) such tha t Q has projection 
P on (12, JK) and (1.1) holds. (Thus II depends on {Jtt\.) Let ^ be a fixed 
(7-algebra contained i n s / . For each F in J^i(12, ^ , P ) and e a c h / in ^{H) 
(where të (H) denotes the bounded continuous functions on H), define the 
map <p(Y,f): U -> R by 

(2.4) *(F,/)(Ç) = J F / J Q . 

(As noted earlier, we define F on A in the obvious way.) 
Let $ be the set of all such <p. Let J?7" be the topology on II generated by all <p 

in <£>. I t is easy to see t h a t ^ " is also generated by those maps <P(XG,I) obtained 
as G runs over an ££i-dense subset of & and / runs over a sup-norm dense 
subset of ^(H). In particular if & is countably generated mod P then $~ 
has a countable base. If Qw —» Ç ( ^ ~ ) then we write Qw. => Q(&). This form 
of convergence is clearly similar to weak convergence on A, bu t the fact tha t 
P is fixed allows one to dispense with a topology on 12+and a t the same time 
to s trengthen the definition of convergence. 

Let a be in (0, oo ). For a n y / in ^ ( [ 0 , oo]), define g on H by g (h) = f(h(a)). 
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For sufficiently small ô > 0 define <p(5) and 8(5) on H by 

(2.5) <p(6)(h) = j f(h(s))ds (I/o), 0(5)(A) = f f(h(s))ds(l/ô). 
J a J a—S 

Then <̂ (<5) and 0(5) are in &(H) but £ is not. Clearly <p(5) —> g everywhere on 
H as Ô -> 0. 

(2.6) LEMMA. Pfeere exis/s a set A (depending on Q) such that A Ç1 [0, GO], 

[0, oo]-^4 /̂ as Lebesgue measure 0, awd fe(s) —> h (a) pointwise mod Q as 5 —> a, 
/or a// a in A. In particular, 6(5) —> g mod Ç as ô —> 0, for all f in r^T0, 00]), 
a in A. 

Proof. Each function h has at most countably many points of discontinuity. 
Thus the lemma follows from Fubini's Theorem. 

(2.7) LEMMA. There exists a set A (depending on Q) such that A Ç [0, 00], 
[0, co]-A has Lebesgue measure 0, with the property that if Qn =>Q(&), if 
a,u • • • , akarein A,f is in ^ ( [ 0 , co]k), and Y is in J??i(tt, &, P ) , then 

J Yf(h(a1),...Jh(ak))dQn^ j (2.8) J Yf(h(a1),...Jh(ak))dQn^ J Yf(h(a1),...,h(ak))dQash->co. 

A can be chosen to contain the point co . 

Proof. Let A be chosen as in Lemma (2.6), adding co if necessary. By the 
Stone-Weierstrass Theorem it is enough to prove (2.8) when f = f\. . . fn, 
where/j in ^ ( [ 0 , 00]) is nondecreasing. Let gu < (̂<5), and 6t(ô) be defined as 
above. If a* = 00 let <pt = 0y = gt = f(h(co )). Assume Y ^ 0. Then 

J IW«) . . . ̂ (ô)dQ è ïta J Fgi . . . g^Qn 

and 

lim J Fgx . . . gkdQn ^ J Fôi(ô) . . . 0*(ô)dQ-

Letting 5 —» 0 proves the lemma. 

Let IT be the set of all probabilities Q on (A, jf) such that Q has projection 
P on (Sl,s/). (That is, II' = IT w i t h ^ = Je.) 

(2.9) THEOREM. If Je C ^ mod P, then II is a c/05^ subset of IT'. 

Proo/. Let F be a fixed element of i f ^ f l , ^ , P ) . Let Z = £[F|-^#,]. We 
must show that if Q is a limit point of II in IT then 

(2.10) J YUdQ = J ZUdQ for all bounded Jf,-measurable U. 

For each e > 0 let Ze = E[Y\Jift+e]. Let ^ ' be the o--algebra generated by 
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F and the Ze. Since (3' is countably generated mod P we may choose a 
sequence Qn such that Qn => Q( &'). 

Let ah . . . , ak in [0, oo] and sh . . . , sk ^ t be given. For any 8 > 0, choose 
/ i , . . . ,/fc bounded, continuous and nonincreasing on [0, oo] such t ha t / i = 1 
on [0, s* - <5) and/* = 0 on [sh oo]. Let &i, . . . , bk be in the set A described 
in Lemma (2.7). Let g = / i(ft(M), . . . , h(h(bk)). Then g G Jf,. Since Qw is 
in n, / FgdÇ„ = J ZgdQn. Letting n -> oo , / FgdÇ = / ZgdÇ. Letting e -> 0, 
J YxdQ = J ZxdQ, where x is the characteristic function of \h(bi) < Si} C\ 
. . . r\ \h(bk) < sk}. Approximating a± . . . ak from above by bi, . . . , bk we 
have that J Fx^Q = J ZxdQ, where x is the characteristic function of 
{A(ai) < 5i} Pi . . . P\ {A(^) < **}. Hence / YUdQ = J ZeUdQ for any 
bounded immeasurable U and any e > 0. But then J YUdQ = J Z^JJdQ for 
any bounded ^ j + e X JEZ"*+e-measurable £/. Letting e —> 0 proves the theorem. 

(2.11) THEOREM. IT is compact. 

Proof. Clearly we may take & = J?/. It is easy to check that a probability 
Çon (A, JT) with projection P on (12,s/) is equivalent to a map 0: J?f i( i2, j / , P) 
X të(H) —>R which is bilinear, positive and satisfies 0(1, 1) = 1, |/3(F,/)| ^ 
II Fll Hfll, where the first factor is an i-norm and the second is a sup-norm. 
The space of such /3 is compact, by the same argument that shows that the 
unit ball of the dual of a normed linear space is compact in the weak* topology. 
This proves the theorem. 

3. Convergence. Let & be a c-algebra contained i n j ^ such that each X t is 
^-measurable mod P. Let Qn and Q be probabilities in II such that Qn => 
Q(&). Define the distributionalc^ rtime change T on A by T (co, h, a) = h (a). 
For a given a in [0, oo], it is unfortunately not true that the (^-distribution of 
X(T( • , a)) converges to the Q-distribution of X(T( • , a)). Indeed, the distri
bution of T( - , a) itself does not converge. However, with some assumptions 
on X, a slightly weaker convergence can be proved to hold. From now on in 
this section, let X be right continuous and quasi-left-continuous for all times 
less than oo. Let at < bi be in [0, oo ), i = 1, . . . , k. Let ft be in ^(E), 
i — 1, . . . , k. Define <pt by 

(3.1) Vi(h) = )MX(h(s)))ds. 

(3.2) THEOREM. Suppose that 

(3.3) lim Qn (max A(6,) > c) = 0 
c-400 \ i ' 

uniformly over all n. Then the joint Qn-distribution of the (pt converges to the joint 
Q-distribution. 

Variants of Theorem (3.2) could be proved for more general assumptions on 
X, but for simplicity we shall confine ourselves to the case just given. 
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In the proof, the following result is needed. 

(3.4) T H E O R E M . Let Y = (12, s / , ^ t , Yt, P) be right continuous and quasi-
left-continuous for all times less than oo , taking values in a compact metric space. 
Let 5 ( 1 , n), . . . , S(k, n), n = 1 ,2 , . . . , and 5 ( 1 ) , . . . , S(k) be randomized 
^ ' r s t o p p i n g times on some 12 X L such that 

(3.5) lim P X v (max S(i, n) > c) = 0 

uniformly over all n. Suppose that for every set G in ^ , the joint distribution of 

the S(i, n) restricted to G X L converges to the joint distribution of S(i), i = 1, 
. . . , k, restricted to G X L. Then for every set G in & the joint distribution of 

the Y(S(i, n)), i = 1, . . . , k, restricted to G X L converges to the joint distribu

tion of the Y(S(i)) restricted to G X L. 

Theorem (3.4) is proved under more general conditions for the case k = 1 

in [1] (Theorems (1.9) and (1.11) of t ha t paper ) . T h e proof for a rb i t rary k is 

almost identical to t ha t for k = 1 and will be omit ted. 

Proof of Theorem (3.2). I t will be shown first t ha t 

(3.6) l im I ci . . . <pk dQn = \ <pi . . . <pk dQ. 

Let A' = A X [au bi] X . . . X [ak, bk],jff = j f X ^ i X . . . X ^ * , where 
3ii is the collection of Borel sets on [aif bt]. Let J^V be (Jf t X 3ë\ X . . . 
X 3?k)+, Qn

f = Qn X Xi X . . . X \kl Qf = Q X Xi X . . . X X, where X, is 
normalized Lebesgue measure on [at, bi\. L e t ^ ' = <Jt X H X [au bi] X . . . 
X [ak, bk],^/ =JttXHX [au &i] X . . . X [ak, bk}. I t is easy to see t ha t 
the primed version of (1.1) holds for Qn and Q. Define T(i) on A' by T(i) 
(co, h, Si, . . . , sk) = &($*). Then for each Qn and Q, T(i) is a J ^ / - s t o p p i n g time, 
for i = 1, . . . , k. 

Since Qn => Q( &) it follows tha t for each set G in &, the joint ( ^ -d i s t r ibu 
tion of the T(i) restricted to G X H X [ai, bi] X . . . X [ak, bk] converges to 
the corresponding Q'-distribution asw —> co . 

By Lemma (1.24), if L = [0, Yf, <£ = ^ , v = X^, we can find (J?t X 
J?f )+-stopping times 5 ( 1 , n), . . . , S(k, n), 5 ( 1 ) , . . . , S(k) on 12 X L such tha t 
for each set G in &, and each n, the P X ^-distribution of the S(i, n) restricted 
to G X L is equal to the joint (^ ' -dis tr ibut ion of the T(i) restricted to G X 
H X [ai, bi] X . . . X [ak, bk]. A similar s t a tement holds for S(i) and Q'. Let 
Y = (fi(X)j . . . , fk(X)), a process taking its values in a compact subset of 
RA By Theorem (3.4), the joint distr ibution of the ft( Y(T(i))) restricted to 
G X H X [ai, bi] X . . . X [ak, bk] converges to the corresponding Q-distribu-
tion as n —> oo. This a t once implies (3.6). Bu t since the pairs au bt and the 
functions ft were not assumed to be distinct, (3.6) implies the seemingly 
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stronger equation 

(3.7) lim f Vl
iW . . . <pk

mdQH = f Vl
iW . . . <pk

mdQ, 

for all nonnegative integral powers j ( l ) , . . . ,j(k). This proves Theorem (3.2). 

4. C o n t i n u o u s t i m e c h a n g e s . When studying continuous time changes 
the appropriate choice for the space H of Section 1 is the collection of all non-
decreasing continuous maps from [0, co ) into [0, co ) with the usual complete 
metric. In this case the maps h —> h (a) are continuous on H, so t ha t the 
proofs become simpler. The analogue of theorem (3.2) holds with <pt of the 
form <Pi(h) = f(h(at)), a stronger result. Let IT be the set of all probabil i ty 
measures on (A, J#0 with projection P on (Q,,s/). Let II denote the subset of 
IT for which (1.1) holds. The analogue of Theorem (2.9) is easily seen to hold. 
Only in the proof of compactness is a little more care needed. Since H is not 
compact , some tightness condition must be assumed. 

(4.1) T H E O R E M . Let Hn be a sequence of compact subsets of H. Let an be a 
sequence of numbers, an /* 1. Let I V be the set of measures Q in II' such that 
Q(tt X Hn) ^ anfor all n. Then I V is compact. 

Proof. Let 0 be a map from J£i(Q,,s/, P) X &(H) which is bilinear, posi
tive, and satisfies 0 (1 , 1) = 1, |/3(7, / ) | ^ | | F | | | | / | | . Suppose 0 (1 , / ) ^ an 

for each / in të(H) with / ^ 0 on H, / ^ 1 on Hn. I t is a straightforward 
task to show tha t there exists a probability Q in I V such tha t j YfdQ = 
0 ( F , / ) for all Y, f. Thus , to prove compactness of I V it is enough to prove 
compactness for the set of all /3. Jus t as in Theorem (2.11), this set is compact 
by the same argument t ha t proves the unit ball in the dual of a normed linear 
space is compact in the weak* topology. This proves Theorem (4.1). 
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