An infinite integral formula

By C. G. Lambe.
(Received 3rd March, 1939. Read 3rd June, 1939.)

§ 1. The object of this note is to discuss the formula

$$
\begin{equation*}
f(x+z)=\frac{1}{2} \pi i \int_{-\infty i}^{\infty i} \Gamma(-s)(-z)^{s}\left\{D^{s} f(x)\right\} d s \tag{1}
\end{equation*}
$$

the integral being supposed convergent for certain ranges of values of x and z. The contour is such that the poles of $\Gamma(-s)$ lie to its right and the other poles of the integrand to its left. It will be seen that all the Pincherle-Mellin-Barnes integrals are particular cases of this formula.
$D^{8} f(x)$ denotes the s th differential coefficient with respect to x of $f(x)$, and this must be defined for all values of s. A summary and comparison of the various methods of generalising $D^{s} f(x)$ for all values of s has been given by Ferrar. ${ }^{1}$ For the purposes of this formula, any definition may be adopted which is consistent with the N th differential coefficient when $s=N$, an integer. Hence, it is usually sufficient to write down an expression for the N th differential coefficient, and merely remove the condition that N shall be an integer.

To establish the formula, we complete the contour with a large semi-circle to the right, and equate the integral to the sum of the residues of the integrand at the poles of $\Gamma(-s)$. The residue of $\Gamma(-s)$ at $s=N$ is

$$
\frac{\cos N \pi}{\Gamma(1+N)}
$$

Hence the integral is equal to

$$
\begin{equation*}
\sum_{N=0}^{\infty} \frac{\cos N \pi}{\Gamma(1+N)}(-z)^{N} D^{N} f(x)=f(x+z) \tag{2}
\end{equation*}
$$

It is supposed that the integral round the semi-circle tends to zero as the radius tends to infinity. This is in general equivalent to assuming

[^0]> C. G. Lambe
the convergence of the series (2), which may be assumed for certain values of z.

§2. As an illustration let

$$
f(x)=F(a, \beta ; \gamma ; x)
$$

If N is an integer we have

$$
D^{N} f(x)=\frac{\Gamma(\alpha+N) \Gamma(\beta+N) \Gamma(\gamma)}{\Gamma(\alpha) \Gamma(\beta) \Gamma(\gamma+N)} F(\alpha+N, \beta+N ; \gamma+N ; x)
$$

Retaining this definition when N is not an integer, we have
$F(a, \beta ; \gamma ; x+z)=$
$\frac{1}{2 \pi i} \frac{\Gamma(\gamma)}{\Gamma(a) \Gamma(\beta)} \int_{-\infty i}^{\infty i} \frac{\Gamma(\alpha+s) \Gamma(\beta+s) \Gamma(-s)}{\Gamma(\gamma+s)}(-z)^{s} F(a+s, \beta+s ; \gamma+s ; x) d s$.
This integral was given by Whittaker. ${ }^{1}$ The ordinary Pincherle-Mellin-Barnes formula ${ }^{2}$ is obtained by putting $x=0$, or, in slightly different form, by putting $x=1$ and writing

$$
F(a+s, \beta+s ; \gamma+s ; 1)=\frac{\Gamma(\gamma+s) \Gamma(\gamma-a-\beta-s)}{\Gamma(\gamma-a) \Gamma(\gamma-\beta)}
$$

\S 3. If $f(x)$ be taken as the Legendre function $P_{n}(x)$, we may obtain the N th differential coefficient from the formula-

$$
\frac{d^{N}}{d x^{N}} P_{n}(x)=\left(x^{2}-1\right)^{-N / 2} P_{n}^{N}(x)
$$

and hence (1) gives

$$
\begin{equation*}
P_{n}(x+z)=\frac{1}{2 \pi i} \int_{-\infty i}^{\infty i}\left(x^{2}-1\right)^{-s / 2} \Gamma(-s)(-z)^{s} P_{n}^{s}(x) d s \tag{4}
\end{equation*}
$$

§4. For Bessel functions we may use the formula

$$
\frac{d^{N}}{d\left(z^{2} / 2\right)^{N}}\left\{z^{-n} J_{n}(z)\right\}=(-)^{N} z^{-N-n} J_{N+n}(z)
$$

that is

$$
\frac{d^{N}}{d x^{N}}\left\{(2 x)^{-n / 2} J_{n}\left([2 x]^{\frac{1}{2}}\right)\right\}=(-)^{N}(2 x)^{-\sharp(N+n)} J_{N \div n}\left([2 x]^{\frac{1}{2}}\right),
$$

[^1]and hence we have
\[

$$
\begin{align*}
& 2^{-n / 2}(x+z)^{-n / 2} J_{n}\left([2 x+2 z]^{\frac{1}{2}}\right)= \\
& \tag{5}\\
& \quad \frac{1}{2 \pi i} \int_{-\infty i}^{\infty i} \Gamma(-s) z^{s}(2 x)^{-\frac{1}{2(n+s)} J_{n+s}\left([2 x]^{\frac{1}{2}}\right) d s} .
\end{align*}
$$
\]

Putting $x=0$, and writing $z=\frac{1}{2} u^{2}$, we have

$$
J_{n}(u)=\frac{1}{2 \pi i} \int_{-\infty i}^{\infty i} \frac{\Gamma(-s)(u / 2)^{n+2 s}}{\Gamma(n+s+1)} d s
$$

§5. From the integral representation of the Confluent Hypergeometric function

$$
W_{k, m}(z)=\frac{e^{-z / 2} z^{k}}{\Gamma\left(\frac{1}{2}-k+m\right)} \int_{0}^{\infty} t^{-k+m-\frac{1}{2}}(1+t / z)^{k+m-\frac{1}{2}} e^{-t} d t
$$

it can be deduced that
$D^{N}\left\{e^{x / 2} x^{m-\frac{1}{2}} W_{k . m}(x)\right\}=\frac{\Gamma\left(k+m+\frac{1}{2}\right)}{\Gamma\left(k+m+\frac{1}{2}-N\right)} e^{x / 2} x^{m-\frac{1}{2}-N / 2} W_{k-N / 2, m-N / 2}(x)$.
Hence (1) gives
$W_{k, m}(x+z)=$
$\frac{1}{2 \pi i} \int_{-\infty i}^{\infty i} \frac{\Gamma(-s) \Gamma\left(k+m+\frac{1}{2}\right)}{\Gamma\left(k+m+\frac{1}{2}-s\right)} e^{-z / 2}(-z)^{s} x^{m-\frac{1}{2}-\varepsilon / 2}(x+z)^{\frac{1}{2}-m} W_{k-z / 2, m-s / 2}(x) d s$.
§6. The formula (1) may be applied to various types of generalised Hypergeometric functions. As an example we have,
$3 F_{2}\left[\begin{array}{c}a, \beta, \gamma, \\ \delta, \epsilon,\end{array}, z+z\right]=$
$\frac{1}{2 \pi i} \frac{\Gamma(\delta) \Gamma(\epsilon)}{\Gamma(\alpha) \Gamma(\beta) \Gamma(\gamma)} \int_{-\infty i}^{\infty i} \frac{\Gamma(-s) \Gamma(\alpha+s) \Gamma(\beta+s) \Gamma(\gamma+s)}{\Gamma(\delta+s) \Gamma(\epsilon+s)}(-z)_{3}{ }_{3} F_{2}\left[\begin{array}{c}a+s, \beta+s, \gamma+s, \\ \delta+s, \epsilon+s,\end{array}\right] d s$. (7)
Royal Military Academy,
Woolwich, S.E. 18

[^0]: ${ }^{1}$ Proc. Roy. Soc., Edin, 48 (1927-28), 92.

[^1]: ${ }^{1}$ Proc. Edin. Math. Soc. (2), 3 (1931), 189.
 ${ }^{2}$ Cf. Whittaker and Watson, Modern Analysis (Cambridge, 1927), $\$ 14 \cdot 5$.

