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Generalization of Hall planes
of odd order

P.B. Kirkpatrick

Some properties of projective planes having a certain type of

collineation group are proved, and a class of these planes

which properly contains the class of all Hall planes of odd

order is explicitly constructed.

1. Introduction

The Hall plane satisfies the condition:

(l) II is a translation plane, and it has a Baer subplane II fixed

pointwise by a collineation group which is simply transitive on those

points of the line at infinity which do not lie in II . The line at

infinity belongs to II .

We call planes satisfying (l) 'generalized Hall planes'. We will

show (among other things) that when such a plane has odd or zero

characteristic then the subplane II is desarguesian; and we will

construct a class of these planes which appears, to the author, to include

some new finite planes.

2. Properties of generalized Hall planes

Let II be a generalized Hall plane. Then II may be coordinatized

by a (right distributive) V.-W. system F which contains a subsystem

F corresponding to II . (n is a translation plane since it contains

Received 26 October 1970.
205

https://doi.org/10.1017/S0004972700046475 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700046475


206 P.8. Kirkpatrick

the line at infinity of II . We choose the coordinate quadrangle to lie

in nQ .)

We shall use Greek letters to denote elements of F
o

THEOREM 1. If II is a plane of odd or zero characteristic

satisfying (l), then F is a skew field and F is a right vector space

of dimension 2 over F .

COROLLARY. nQ is desarguesian.

Proof of Theorem 1. Choose an element z of F\F . Let w tie any

other element of F . Then, since II is a Baer subplane, the point

(z, u) lies on some line y = xa + 3 of II , that is w = za + 3 for

some a, g £ F .

The collineations fixing II pointwise correspond to automorphisms

of F which fix F elementwise. So (zp)o = za + 6 for some a and

3 which depend only on p and a . Also ((s+l)p)a = (s+l)a + 3 , so

a = pa and (zp)a = s(pa) + 3 • Furthermore [(2z)p)a = (2s)(pa) + 3

and 2 i KernF , so 3 = 0 . Thus (zp)a = s(pa) for all p, a € F .

Similarly z(p+o) = zp + za . [Start with sp + za = zX + u .]

For any p , a , x € F ,we have:

((sp)a)x = UP)(OT) = S(P((JT)) ,

and

((3p)o)T = (z(pa))T = S((PO)T) .

Thus P(OT) = (pa)x ; similarly p(a+x) = po + pT . This completes the

proof of the theorem.

From the multiplication operation in F we obtain two mappings /

and g of F x F onto F , defined by:

3/(a, 3) + g(a, 3) .

The V.-W. system F may be described as follows:
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(2) F is a right vector space of dimension 2 over a skew field F

embedded in it in the usual way, with a multiplication operation

x.a. = xa (multiplication by a scalar) '1x£F,a$F ,

Uot+6).3 = zf(a, 3) + g(a, 3) , V z i F\FQ ; a, 3 € FQ ,

where f and g are mappings of F x F onto F

The mappings / and g in (2) are of course not arbitrary.

THEOREM 2. A finite system (F, + , •) satisfying (2) is a V.-W.

system if and only if

(a) f and g are additive homomorphisms with f{0, 1) = 1 and

g(0, 1) = 0 ,

(h) for any given y and 6 , the equation

(/(a, 3). <?(a, 3)) = (y, 6) has exactly one solution (a, 3) ,

and

(a) the equation (/(a, 3), g(a, 3)) = (ay, 3Y+<5) has exactly one

solution (a, 3) j given y and 6 ; also, for this solution,

a = 0 if and only if 6 = 0 .

Proof. The necessity of (a) and (h) follows immediately from the

right distributivity of F and the requirement that • be a loop

operation on F* . This loop requirement also implies (a). For consider

the equation 3(201+3) = zy + 6 . Now, if a + 0 ,

= [Ua+B)(cr1)-Bcf1](za+3)

iaT1, -3a"1) + ^(cf1, -3a"1) .

If we replace a by a and -3a by 3 , the requirement that

zw = t has exactly one solution w yields condition (a).

The sufficiency of (a), (b), (c) is now evident, since, F being

finite, we merely need to show that these imply that F is right

distributive and that • is a loop operation on F* .

A more complicated necessary and sufficient condition that F be a

(planar) V.-W. system is easily calculated for the case where F is

allowed to be infinite.
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We note that a V.-W. system satisfying (2) necessarily possesses a

group of automorphisms which is transitive on F\F while fixing F

elementwise.

3. A construction

We start with an arbitrary finite field F of odd order. Let V

be any non-square in FQ and let 9 and cp be any two (possibly trivial,

and possibly equal) automorphisms of F . Ve now construct a V.-W.

system (F, +, • ) from F , v , 6 and ip .

Let F be a right vector space of dimension 2 over F . Suppose

F is embedded in F in the usual way. Addition is to be the same as

vector addition, and multiplication to be given by the rules stated in (2)

above, with the mappings / and g defined by:

(3) /(a, 6) = e9 g(a, 6) = a'v .

Conditions (a), (b) , (a) are easily verified, so that (F, +, • ) is a

V.-W. system. The plane II over F is a generalized Hall plane.

When 9 = <p = 1 , F is the Hall system determined by F and the

polynomial x2 - v . Since Hall systems of the same order coordinatize

isomorphic planes [5], the generalized Hall planes we have constructed

include all Hall planes of odd order.

As in the Hall system for F and V , we have for all F :

z2 = v , V z f F\F . But ct3 = 2a and (201)2 = cĉ v when z t F\FQ

and a $ FQ .

In the case where F = GF(9) , 8 = 1 and <p equals the non-trivial

automorphism of GF(9) , it is readily verified that KernF is the

subfield of order 3 in GF(9) . Since the Kern of any Hall system of

order 8l is GF(9) , the plane over F is not a Hall plane. By

comparing the collineation group of the plane over F with that of each

of the Foulser generalized Andre planes of order 8l , it is not difficult
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to shov that our class of planes is not a subclass of Foulser's: the

Foulser planes of order 8l with Kern of order 3 all have a group of

10 {X, 0Y)-homologies, whereas our plane has no such group (of order

10) » no matter how X and 1 be chosen on the line at infinity.
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