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HOMOTOPY THEORY OF DIAGRAMS AND 
CW-COMPLEXES OVER A CATEGORY 

ROBERT J. PIACENZA 

Introduction. The purpose of this paper is to introduce the notion of a CW com­
plex over a topological category. The main theorem of this paper gives an equivalence 
between the homotopy theory of diagrams of spaces based on a topological category and 
the homotopy theory of CW complexes over the same base category. 

A brief description of the paper goes as follows: in Section 1 we introduce the homo­
topy category of diagrams of spaces based on a fixed topological category. In Section 2 
homotopy groups for diagrams are defined. These are used to define the concept of weak 
equivalence and J-n equivalence that generalize the classical definition. In Section 3 we 
adapt the classical theory of CW complexes to develop a cellular theory for diagrams. 
In Section 4 we use sheaf theory to define a reasonable cohomology theory of diagrams 
and compare it to previously defined theories. In Section 5 we define a closed model 
category structure for the homotopy theory of diagrams. We show this Quillen type ho­
motopy theory is equivalent to the homotopy theory of J-CW complexes. In Section 6 
we apply our constructions and results to prove a useful result in equivariant homotopy 
theory originally proved by Elmendorf by a different method. 

1. Homotopy theory of diagrams. Throughout this paper we let Top be the carte­
sian closed category of compactly generated spaces in the sense of Vogt [10]. Let J be 
a small topological category over Top with discrete object space and /-Top the category 
of continuous contravariant Top valued functors on / . Note that the category /-Top is 
naturally enriched in Top. See Dubuc [2] for the framework of enriched category theory. 
We assume the reader is familiar with the standard constructions in Top as in [10] and 
the standard functor calculus on /-Top as in [5, Section 1]. 

We let / be the unit interval in Top. If X and Y are diagrams then a homotopy from X 
to F is a morphism H: I x X —> Y of/-Top where / x X is the functor defined on objects 
j G | / | by (/ x X)(j) — I x X(j) and similarly for morphisms of / . In the usual way 
homotopy defines an equivalence relation on the morphisms of /-Top that gives rise to 
the quotient homotopy category hJ-Top. We denote the homotopy classes of morphisms 
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HOMOTOPY THEORY OF DIAGRAMS AND CW-COMPLEXES 815 

from X to F by hJ-Top(X, Y) abbreviated h(X, Y). An isomorphism in hJ-Top is called a 
/-homotopy equivalence. 

A morphism of /-Top is called a J-cofibration if it has the / homotopy extension 
property, abbreviated J-HEP. The basic facts about cofibrations in Top apply readily to 
J-cofibrations. See [5, Section 2]. 

The following results from [6] apply formally to the category /-Top. 

THEOREM 1.1 (INVARIANCE OF PUSHOUTS). Suppose that we have a commutative 
diagram: 

in which i and i' are J-cofibrations, f andf are arbitrary morphisms in J-Top. a, f3 and 
7 are homotopy equivalences and the front and back faces are pushouts. Then 6 is also 
a homotopy equivalence (0 being the induced map on pushouts). 

THEOREM 1.2 (INVARIANCE OF COLIMITS OVER COFIBRATIONS). Suppose given a ho­
motopy commutative diagram 

XO _!?_• x l -^-> • • • > Xk - ^ - > 

1/° I/1 [fk 

Y° ^ ) y l -7'1 ) . . . > yk Jk
 ) 

in J-Top where the ik andjk are J-cofibrations and the fk are homotopy equivalences. 
Then the map colim^/*: colim&X* —y colim^ Yk is a homotopy equivalence. 

2. Homotopy groups. Let F be the topological «-cube and dF its boundary. 

DEFINITION 2.1. By a /-Top pair (X, F), we mean an object X in /-Top together 
with a subobject Y Ç.X. Morphisms of pairs are defined in the obvious way. A similar 
definition will be used for triples, «-ads etc. Let (p:j —» F be a morphism in /-Top 
where j G | / | is viewed as the representable functor /-Top( J). By Yoneda's theorem 
(f is completely determined by the point <p(idj) = yo E Y(j). For each n > 0, define 
7TÏ(X,y,<p) = h((F,dF9{0}) x j , (X, F, Yj) whereto = . ¥>(id/) G F0) serves as a 
basepoint, and all homotopies are homotopies of triples relative to (p. The reader may 
formulate a similar definition for the absolute case 7nJ(X, ip). For n = 0 we adopt the 
convention that 7° = { 0,1} and dl° = { 0} and proceed as above. These constructions 
extend to covariant functors on /-Top. From now on we shall often drop (p from the 
notation 7ni(X, F, (p). 

The proof of the following proposition follows immediately from Yoneda's lemma. 
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PROPOSITION 2.2. There are natural equivalences KiX) ~ 7rn (X(jj) and ^(X, F) — 
7rn(X(j), Y(j)j which preserve the (evident) group structure when n>\ (for the absolute 
case; the relative case requires n > 2). 

As a direct consequence of 2.2 we obtain the long exact sequences: 

PROPOSITION 2.3. For (X, Y) andj as in 2.1, there exist natural boundary maps d 
and long exact sequences 

••• —+ nUX,Y) -?-> T T ^ O O — ^n_x{X) — ••• 

— 4(Y) — 4(X) 

of groups up toir[(Y) and pointed sets thereafter. 

DEFINITION 2.4. A map e:(X, Y) —» (Xf,Yf) of pairs in /-Top is called a 
J-n-equivalence if e(j): (X(j), Y(j)) —• (X'(/), y'(/)) is an n-equivalence in Top for each 
j G 1/|. A map e will be called a weaA: equivalence if £ is a /-«-equivalence for each n > 
0. Observe that e is a J-n-equivalence if for every j G | J\ and ip:j —>Y,e*: 7r̂ (X, y, (/?) —-> 
7Tp(X', y', e</>) is an isomorphism for 0 < p < n and an epimorphism for p — n. The 
reader may easily formulate a similar définition for morphisms e\ X —•» X' of /-Top (the 
absolute case). 

3. Cellular theory. In this section we adapt the general treatment of classical ho-
motopy theory and CW-complexes given in [9, Chapter 7] and [6] to develop a good 
theory of CW-complexes over the topological category / . 

Let Bn+l be the topological n +1 -ball and Sn the topological «-sphere. Of course, these 
spaces are homeomorphic to 7n+1 and dF+l respectively. We shall construct all complexes 
over / by the process of attaching cells of the form Bn+l xj by attaching morphisms with 
domain Sn x j . The formal definition goes as follows: 

DEFINITION 3.1. A /-complex is an object X of/-Top with a decomposition X = 

c o l i m ^ o ^ where X° = UaeA0B
na x j a , XP = X ^ 1 U/(lIaeA, Bn« x j a ) for some 

attaching morphism/: UaeAp S
na~l xja —• Xp~l and for each/? > 0, {ja \ oc G Ap} is 

a collection of objects (representable functors) of/. We call X a Z-CW-complex if X is a 

/-complex as above and for all/? > 0 and all a G Ap we have na = p. 

A /-subcomplex and a relative / complex are now defined in the obvious way. With­
out further comment we adopt for /-CW-complexes the standard terminology for CW-
complexes. See [9, Chapter 7] and [6]. 

The following technical lemma and its proof are due to May [6,35.1]. 

LEMMA 3.2. Suppose that e:Y —y Z is a J-n-equivalence. Then we can complete the 
following diagram in J-Top: 
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dFxj 

r xj 

dPxj 

THEOREM 3.3 (/-HELP). If(X, A) is a relative J-CW complex of dimension < n and 
e:Y —y Z is a J-n-equivalence then we can complete the following diagram in J-Top: 

Axl 

Xxl 

PROOF. This follows by induction on dim(X,A), applying 3.2 cell by cell at each 
stage. 

The proofs of the following Whitehead theorem and cellular approximation theorem 
are formal modifications of the proofs given in [6]. 

THEOREM 3.4 (WHITEHEAD), (i) Suppose X is a J-CW complex, and that e:Y —• Z 
is a J-n-equivalence. Then e*: h(X, Y) —• h(X, Z) is an isomorphism i/dimX < n and an 
epimorphism o/dimZ — n. (ii) Ife: Y —> Z is a weak equivalence, and ifX is any J-CW 
complex, then e* : h(X, Y) —> h(X, Z) is an isomorphism. 

THEOREM 3.5 (CELLULAR APPROXIMATION). Suppose that X is a J-CW complex, 
and that A is a sub-J-CW complex ofX. Then, iff'. X —> Y is a morphism of J-Top which 
is J-cellular when restricted to A, we can homotopef, rel/| A to a J-cellular morphism 
g.X^Y. 

Next we discuss the local properties of 7-CW-complexes. First we develop some pre­
liminary concepts. Let X be in /-Top and for each y G | / | let ty.Xij) —• colimyX be 
the natural map of X(j) into the colimit. Observe that for each morphism s: i —> j of 7, 
tj = tiX(s). For each subspace A Ç colimyX we define A(j) = tJx(A) and for a given 
s: i —• j we define Â(s) = X(s)\Â(j), the restriction of the continuous map X(s) to the 
subspace A(j). We apply the AMfication functor to assure that all spaces defined above 
are compactly generated. One quickly checks that A G /-Top, colimy A — A, and there is 
a natural inclusion morphism A —• X. To simplify notation from now on we write Xj J 
for colim/ X. 

DEFINITION 3.6. By a special pair in /-Top we mean an ordered pair (X, A) where 
X G /-Top and A Ç Xj J. We call a special pair (X, A) a J-neighborhood retract pair 
(abbreviated /-NR) if there exist U an open subset of Xj J such that A Ç U and there 
exists a retraction morphism r:U —> A. (X, A) is called a J-neighborhood deformation 
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retract pair (abbreviate /-NDR) if (X, A) is a 7-NR and the morphism r is a J-deformation 
retract. 

Let Xbe a /-CW complex. The functor colimr sends cells W x j to cells Z^ and pre­
serves the cellular decomposition of X. For this reason Xj J has the natural structure of a 
CW-complex in Top with all its attaching maps being images under colimy of the corre­
sponding attaching morphisms in ./-Top. One may also check that if A is a subcomplex 
of Xj J then A has the natural structure of a subcomplex of X. In particular if Ap is the 
/^-skeleton of Xj J then Ap — Xp is the /^-skeleton of X. 

THEOREM 3.7 (LOCAL CONTRACTIBILITY). Let (X, A) be a special pair in J-Top with 
X a J-CW complex and A = { a}, a G X/ J. Then there exists a unique object j G J such 
that A ~ j (j viewed as a representable functor) and (X, A) is a /-NDR pair. 

PROOF. Suppose a e (Xj ff\ (Xj Tf~\ the /7-skeleton minus the p — 1 skeleton of 
Xj J. Then there is a unique attaching morphism/ in /-Top 

f:Sp~l xj->Xp~l 

I 
Bpxj 

with a in the interior of Bp. It follows that Â ~j for the unique choice of y given above. 
To construct the required neighborhood U first take an open ball U\ contained in the 
interior of BP and centered at a. Then U\ is a neighborhood in (Xj If contracting to A. 
One then extends U\ inductively cell by cell by a well known procedure to construct the 
required neighborhood U. 

THEOREM 3.8. Let (X, A) be a special pair in J-Top with X a J-CW complex and A 
an arbitrary subcomplex ofXj J. Then (X, A) is a 7-NDR pair. 

PROOF. It follows from 3.3 that A Ç X is a /-cofibration. The result then follows 
from a well known argument of Puppe. See [5, Lemma 4.3, p. 193]. 

4. Cohomology. In this section we use sheaf theory to construct a cohomology the­
ory on /-Top satisfying a suitably formulated set of Eilenberg-Steenrod axioms. We refer 
the reader to Bredon [1] for the basic definitions and terminology of sheaf theory. 

DEFINITION 4.1. By a contravariant coefficient system M on J we mean a continuous 
contravariant functor M: J —* Ab where Ab is the category of discrete abelian groups. 
Observe that every contravariant coefficient system M is a homotopy invariant functor in 
the following sense. If/, g:j —>f are homotopic (as morphisms of representable functors 
in /-Top) then M(f) = M(g). 

Let X G /-Top and let M be a coefficient system on / . We define a presheaf of abelian 
groups Mx over Xj J as follows: for A Ç Xj J define MX(A) — /-Top(A,M) equipped 
with its natural discrete abelian group structure. If B Ç A there is a natural restriction 
homomorphism MX(A) —y MX(B) and one easily checks that Mx is a sheaf of abelian 
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groups over Xj J. Let/:X —> Y be a morphism in /-Top with//7:Xj J —> Y / J the 
induced map in Top. There is a natural///-cohomomorphism of sheaves/: MY —•• Mx 

given by the obvious composition with/. 

DEFINITION 4.2. Let X G /-Top, t/; a family of supports on Xj J and M a coefficient 
system on / . We define H^ (X; M) = H^ (X/ / ; Mx) where the right side is sheaf coho-
mology with supports I/J as defined in [1, Chapter II]. Given a morphism/: X —* Y in 
/-Top, we let/* be the homomorphism induced in cohomology by/. Given a special pair 
(X, A) we define the relative chomology #^ (X, A ; M) = //£ (X/ / , A ; M*) where the right 
side is relative sheaf cohomology. 

EXAMPLE 4.3. Let G be an abelian group and define the constant coefficient system 
M with value G by setting M(s) = idç for any morphism s of / . Then for any X G /-Top 
one quickly sees that //*(X; M) = H*(X/ / ; G) where the right side is sheaf cohomology 
with constant coefficients G. Note that absence of a specified support family always 
means supports in the family of all closed sets. 

DEFINITION 4.4. A special pair (X, A) in /-Top is called acceptable if for each coeffi­
cient system M on J the sheaf MA over A is the restriction of the sheaf Mx to the subspace 
A. Note that if (X, A) is a /-NR pair or if X is locally /-NR then (X, A) is acceptable. In 
particular any special pair (X, A) where X is a J-CW complex is acceptable by 3.7. 

All special pairs considered in the rest of this section will be assumed acceptable. We 
impose this condition to obtain a good theory of relative cohomology. 

Note that a supports preserving morphism/: (X,A) —•> (Y,B) naturally induces a ho­
momorphism /* in relative cohomology. Hence //* ( ; M) becomes a candidate for a 
reasonable cohomology theory on /-Top. The following theorem states and verifies a 
suitable set of Eilenberg-Steenrod axioms for the theory //*( ; M). 

THEOREM 4.5. 

(1) (Dimension) f^ij; M) = n ~ for each j G J viewed as a representable 

functor. 

(2) For each special pair (X, A) in J-Top there is induced a suitable long exact se­
quence in cohomology with arbitrary supports. 

(3) (Excision) If A and B are subsets ofXJ J with B Ç intA then the inclusion i: (X — 
B,A — B) —> (X, A) induces an isomorphism in cohomology for any support 
family. 

(4) (Homotopy) Iff and gare morphisms of special pairs in J- Top that are homotopic 
via a support preserving homotopy thenf* = g*. 

(5) If(X,A) = Ua(Xa,Aa) then there is a natural isomorphism induced by the in­
jections into the coproduct, 

//*(X,A;M) ~ U//*(Xa ,Aa;M). 
a 
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PROOF. (1) follows from Yoneda's lemma. (2) follows from [1, Chapter 2, Sec­
tion 12]. (3) follows from [1, Theorem 12.5, p. 61]. (4) follows from [1, Theorem 11.2, 
p. 55]. (5) is easy to check directly. 

If Xis a J-CWcomplex we define cellular cochains Cn(X; M) = Hn(Xn,(Xn-i /' J)\M). 
Observe that C"(X; M) = \[a M(ja) where Bn xja,a e An is the family of all «-cells of 
X. In the usual way one makes C*(X; M) into a cochain complex using the coboundary 
operator of a triple. This construction yields the cellular cohomology theory //*el( ; M) 
defined for J-CW pairs. 

We may adapt the classical proof to show: 

PROPOSITION 4.6. //*( ; M) is naturally isomorphic to //*el( ; M) on the category 
of J-CW pairs. 

REMARK 4.7. (i) The cellular chomology theory is useful for developing an obstruc­
tion theory in /-Top. (ii) Following a well known argument due to Milnor it is possible 
to prove a uniqueness theorem for cohomology theories defined on the category of J-
CW complexes, (iii) In [11] Vogt defines the singular cohomology on /-Top and shows 
it satisifies a suitable set of axioms. By the above mentioned uniqueness theorem Vogt's 
singular cohomology agrees with our sheaf cohomology on the category of J-CW com­
plexes. 

5. Closed model structure on /-Top. In [8] Quillen defines a closed model struc­
ture for homotopy theory in Top. In this section we emulate this construction to define a 
closed model category structure on /-Top. 

DEFINITION 5.1. A morphism/: X —• Y of /-Top is called a weak fibration, abbre­
viated w-fibration, if for each j G / , / ( / ) • X(j) —* Y(j) is a Serre fibration in Top. See [9, 
p. 374] for a discussion of Serre fibrations. Observe that/ is a w-fibration iff has the ho­
motopy lifting property for all objects of the form F x j . A morphism/ is called a weak 
equivalence iff is a weak equivalence as defined in Section 2. A morphism g: A —> B 
is called a weak cofibration, abbreviated w-cofibration if g has the left lifting property 
(LLP) for each trivial w-fibration/: X —•> Y (a w-fibration that is also a weak equivalence). 
This means one can always fill in the dotted arrow: 

A —y X 

4 X1/ 
B y Y 

REMARK 5.2. (i) The inclusion of a sub-/-complex into a /-complex is always both 
a /-cofibration and a w-cofibration. (ii) A w-fibration is trivial iff it has the right lifting 
property (RLP) for each w-cofibration of the form Sn xj —> Bn+l xj. [8, 3.2, Lemma 2]. 
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LEMMA5.3 (QUILLEN'S FACTORIZATION LEMMA). Any morphismf'.X —• YofJ-Top 

may be factored f — pg where g is a w-cofibration andp is a trivial w-fibration. 

PROOF. We construct a diagram 

x J^ z° - ^ z1 —+ ... 

/ \ [Pô S P\ 
Y 

as follows: let Z_1 = X and p-\ = / , and having obtained Z"_1 consider the set of all 
diagrams of the form 

where we have indexed this set of diagrams by An and a G An. Define grt: Z"_1 —• Z" by 
the pushout diagram 

Ua6AH&°+1XJa • ZT 

Throughout this construction we have included the use of the trivial sphere i.e., S~l — 
0, B° = {pt}. Define pn:ZT —* Y by pngn = pn-\,Pnini — IIs«, let Z = colimZ", 
p = colim/?„ and g — ç,oX\mgngn-\ • - -go- One may check that g has LLP with respect 
to each trivial w-fibration and by the small object argument [8, 3.4, Remark] p is a trivial 
w-fibration. 

THEOREM 5.4. With the structure defined above (Definition 5.1) J-Top is a closed 
model category. 

PROOF. One quickly checks the axioms for a closed model category [8, 3.1] using 
5.3 or its clone to verify the factorization axiom Ml. 

We let Hoi-Top be /-Top localized at the weak equivalences. We aim to show that 
Ho/-Top is equivalent to the homotopy theory of J-CW complexes. First we need the 
following. 

LEMMA 5.5. Let X = colimX„ taken over a system of J-cofibrations such that each 
Xn has the J-homotopy type of a J-CW-complex. Then X has the J-homotopy type of a 
J-CW complex. 

PROOF. Replace the colimit by the telescope [6, 1.26] and use the homotopy invari­
ance of the homotopy colimit (Theorem 1.2). 

The following proposition follows easily. 
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PROPOSITION 5.6. Each J-complex is of the J-homotopy type of a J-CW-complex. 

THEOREM 5.7 (APPROXIMATION THEOREM). There is a functor T:J-Top —• J-Top 
and natural transformation p: T —• id such that for each X G J-Top, YX is a J-complex, 
andpx is a trivial w-fibration. 

PROOF. Using 5.3 factor the map <f> Ç X into (/> Ç TX —» X where <j> is the empty 
subfunctor of X. Then by the construction in 5.3 we see that X is a /-complex, px is a 
trivial fibration, T is a functor, and p a natural transformation. 

The following corollary is immediate from 5.6 and 5.7. 

COROLLARY 5.8. The category Ho J-Top is equivalent to the catgory ofJ-CW com­
plexes modulo homotopy. 

REMARK 5.9. (i) In [9, Theorem 1, p. 412] Spanier makes use of Brown's repre-
sentability theorem [9, Theorem 11, p. 410] to construct CW approximations in the cat­
egory Top. In our construction we do not need Brown's theorem and furthermore we 
construct the useful approximating functor Y directly on 7-Top. We believe this is an 
improvement over Spanier's construction, (ii) In [5] Heller describes a somewhat differ­
ent homotopy structure on 7-Top. One may check that Heller's localization Ho^ Top7 of 
[5, Section 7] is equivalent to our Ho ./-Top. It follows that many of the results of [5] 
(homotopy Kan extensions, etc.) may be applied to Ho7-Top. 

6. Elmendorf's Theorem. The purpose of this section is to prove a useful result 
in equivariant homotopy theory originally proved by Elmendorf in [4] by a different 
method. 

Let G be a topological group and let G-Top be the category of right G-spaces in Top. 
Let OG be the topological category of canonical right orbits. An object of OQ is a closed 
subgroup H Ç G and OG(H, K) — G-Top(G/ H,Gj K) is given the compact open topol­
ogy. Observe that there is a natural bijection G-Top(G/ //, G/ /T) — [G/ K]H. Where the 
right side is the H fixed point set of the right orbit Gj K. This bijection is a homeomor-
phism if we impose (as we always do) the compactly generated topology on all spaces 
in sight. There is a full and faithful functor O: G-Top —-» 6>G-Top which views each 
X G G-Top as a continuous diagram O(X) of fixed point sets. O(X) is defined by setting 
<D(X)(//) = G-Top(G/ //, X). That is <D(X) is the continuous functor G-Top( , X) on 0G. 
Compare [4, Section 1]. We call/: X —• Y a G-weak equivalence (G-fibration) if Q)(f) is 
a weak equivalence (w-fibration in Oc-Top). 

In G-Top there is a well-known theory of G-complexes (G-CW-complexes) that uses 
cells of the form Bn x Gj H. See [12, Section 3] for a discussion of equivariant cellular 
theory. Observe that under the functor O, Bn xGj H goes to Bn x 0G{ , Gj / / ) , i.e., Bn 

cross a representable functor. 

We need the following lemma for the argument below. 
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LEMMA 6.1. If 

B - U C 

1 i 
Y —> X 

is a pushout in G-Top with i a closed inclusion then 

o* ^ oc 
i i 

OK > OX 

is a pushout in Oc-Top. 

PROOF. Stripping away the topology we see this holds on the set level since every 
G-set is a coproduct of orbits. One may then check that the topologies agree. 

THEOREM 6.2. Each Oc-complex (OG-CW-complex) Y G Oc-Top is isomorphic to 
OX where X is a G-complex (G-CW-complex) in G-Top. It follows that O is an isomor­
phism between the categories of G-complexes (G-CW-complexes) and Oc-complexes 
(Oc-CW-complexes). 

PROOF. The assertion follows from 6.1 and the fact that O is full, faithful and pre­
serves ascending unions. 

THEOREM 6.3. There is a functor A: Oc-Top —• G-Top and natural transformation 
t: OA —> id such that OAX is an Oc-complex and tx is a trivial fibration for each X G 
Oc-Top. It follows that there is an equivalence of categories Ho Oc-Top ~ Ho G-Top 
where Ho G-Top is G-Top localized at the weak equivalences in G-Top. 

PROOF. We construct A and t using the functor F and transformation p given in 5.7. 
The result follows from 5.8 and 6.2. 

COROLLARY 6.4. Let Y G G-Top be G homotopically equivalent to a G-CW complex. 
Then for any Xe 0G-Top, hG-Top(YyAX) - hOG-Top(<S>Y,X) - WoOG-Top(<&Y,X). 

PROOF. This follows from 6.3 and generalities about closed model categories. 

REMARK 6.5. (i) In [4] Elmendorf assumes G is a compact Lie group and uses a 
generalized bar construction to obtain his version of 6.3 and 6.4. Let C: O^-Top —> G-Top 
be the functor defined by Elmendorf [4, Theorem 1]. For X G Oc-Top there is a natural 
G weak equivalence AX —» CX which is a G homotopy equivalence if X is regular in the 
sense of Elmendorf. Clearly the functors A and C are closely related. 

(ii) The importance of having the approximation functor A given above is demon­
strated by several applications given by Elmendorf in [4, Section 2]. For example con­
sider the following. Let J be an orbit family in G and define T G Oc-Top by: 

T(H) = 1 ° n e P ° i n t if H e ^ 
\ empty otherwise. 
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Then AT = Ef is a universal ^F-space and Bf = Hocolim T — colimTr = EJ'/ G is 
a classifying space for the orbit family f - If 7 consists of the single trivial subgroup of 
G then B? = BG is a classifying space for principal G bundles. 

(iii) Let M : OQ —• Ab be a coefficient system on OQ. One defines equivariant coho-
mology with coefficients M denotes H*G{X\M) by setting HG(X,M) = //*(OX;M) for 
X G G-Top. The results of Section 4 show this definition gives a reasonable cohomology 
theory on G-Top. Observe that under suitable conditions this theory agrees with Illman's 
equivariant singular cohomology. See [7, Theorem 3.11]. 
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