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Let / (z ) be an entire function, M(r) the maximum of / ( z ) on \z\ = r, and
X> 1. Let Ex = EX(J) = {z: log | / ( z ) | ^ (1 - 2 ) log M( | z |)}, and denote the
density of Ex by

DR{EX) = m{z e Ex: \z\ £ R)/nR2

where m is planar measure.
Developing an idea of Lindelof, Boas, Buck and Erdos (3) prove:

Theorem (A). For any X> 1, there is a positive number K = K{X), the same
for all entire functions, such that

D(EX) = IIE DR{EX) ^K< I/A;
R->co

Theorem (B). lim XD(EX) = lim A lim DR(EX) = 0;

and conjecture that perhaps
lim ID{EX) = 0 (*)

A->oo

also holds.
The authors of (3) do not seem to have noticed that their method gives some-

thing more, namely inequality (4) below, when the class of entire functions is
restricted to those of finite positive order and type, and in fact can be used to
show (in support of the conjecture (*)) that, in certain senses, no matter how
large X may be, XD(EX(J)) may be arbitrarily small for proper choice of/(z),
where /(z) has finite positive order p. (If/ is a polynomial D(EX) = 0.)

Precisely, we have:
Proposition I. Given E > 0 , X>\, there exists a p = p(e)>0 and an entire

function /(z) of finite positive order p such that

XD(Ex(f))<e.
As

Proposition II. Given e>0, p>0, there exists an entire function f(z) of finite
positive order p and a X = X(e) such that

XD(Ex(f))<e
As £->0, A-+00.
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Both propositions follow from the same proof which is simply (3) with
Jensen's Inequality replaced by Jensen's Theorem; combined with an easy
and well-known estimate, and an example of Boas (1).

Proof. Let Hr<x = {0: log|/(rei9)| g (1 -X) log M(r)}. Let f(z) be an
entire function of finite positive order p and finite positive type T, with/(0) = 1*
and, as usual, let n(i) = the number of zeros of f(z) in | z | ^ t, and

N(r) = n{t)ltdt.
Jo

Then as shown in (3),

- log M(f) f" m(Hr x)dk = logM(r)- 1 P" log \f(rei9\ dO
2TI JO 2TIJ0

= log M(r)-JV(r), (1)
by Jensen's Theorem.

Let / = lim n(r)/rp. Since T and p are finite, so is / (e.g. (2), p. 16). Given
r-»co

t] > 0, choose i?0 such that for r ^. Ro = R0(ri),

(a) M(r)>l.
(6) log M(r) ^
(c)

Then (cf. (2), p. 16, or (1), p. 28), for r>R0,

l-r,

P
as r-K».

Hence, for r>R0,

N(r)

log M(r)

for every r\ > 0, as r-» oo.

Also, as in (3), m(z e Ex: Ro^\ z\ g, R) = m{Hr>x)rdr.
JRo

N(r)= \°n(t)/tdt+ \ n(t)/tdt ^
Jo JRO

I"
J

Integrating this equation with respect to X and using (1) and (2) gives

DR(E*)dl = l-R2
0IR

2-(2/R>)
o

as R-KX>, for every rj>0, where E* = Ex\{z : \ z \ ̂  i?0}.

But, as observed in (3), ADR(E*X) ^ DR(E*)dL Hence letting i?^oo, and
Jo

r]-*0, (3) becomes

1 - — ^ Dm XDR(E*X) = Dm ADjj(£J = XD{EX). (4>
pT
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The inequality (4) holds for all entire functions of finite positive order and
finite positive type.

Consider now the special function

0A,P(Z)= ft { l + Z ^ M " }
n = 1

where [A] is the greatest integer ^ X, and it is understood that if either p > 0
or A> 1 is given the other is to be chosen so that 0<p<[A].

As shown in (1), ^ F P ( Z ) is an entire function of order p, and type

(n/lX])cscnp/[X],
with / = 1.

Hence we have

A 5 ( £ ^ , p ) ) ^ l - S i l ^ (5)

and so the two propositions.
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