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OPERANDS AND INSTANCES
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Abstract. Can conjunctive propositions be identical without their conjuncts being identical?
Can universally quantified propositions be identical without their instances being identical?
On a common conception of propositions, on which they inherit the logical structure of the
sentences which express them, the answer is negative both times. Here, it will be shown that
such a negative answer to both questions is inconsistent, assuming a standard type-theoretic
formalization of theorizing about propositions. The result is not specific to conjunction and
universal quantification, but applies to any binary operator and propositional quantifier. It is
also shown that the result essentially arises out of giving a negative answer to both questions,
as each negative answer is consistent by itself.

§1. Introduction. Propositions are often assumed to reflect the logical structure
of the sentences used to express them. Consider by way of example the case of
conjunctions. It is natural to suppose that from the proposition expressed by a
conjunctive sentence ϕ ∧ �, one can recover the conjuncts, i.e., the propositions
expressed by ϕ and �. Similarly, it is natural to suppose that from the proposition
expressed by a universally quantified sentence ∀vϕ, one can recover the instances, i.e.,
the propositions expressed by ϕ on the various possible assignments of values to the
free variable v.

This paper investigates such views logically, by regimenting the relevant theses in
a formal language which allows quantification over propositions and pluralities of
propositions. In a standard classical proof system for this langauge, it will be shown that
the two recovery principles just outlined are inconsistent. In fact, the result generalizes
beyond conjunction and universal quantification: there cannot be any binary sentential
operator ◦ and propositional quantifier Q such that the operands of ◦ and the instances
of Q can always be recovered. Furthermore, it will be shown that this inconsistency is
essentially a result of the combination of two such principles, as the relevant principles
are individually consistent.

Section 2 introduces the background logic of propositional and plural propositional
quantification. Section 3 discusses a number of principles of logical structure, many of
which turn out to lead directly to inconsistency via a result by Russell [12, Appendix B]
and Myhill [11], and singles out some more promising candidates including the
recoverability of operands and instances. Section 4 shows that such recovery principles
are jointly inconsistent, and section 5 shows that they are individually consistent.
Section 6 considers a number of refinements of the inconsistency result, pertaining to
weakenings of the background logic and the recovery principles. Section 7 concludes.
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§2. Logic. The language to be used starts from the language of propositional
logic, the formulas of which are built up from propositional variables p, q ... using
the primitive Boolean connectives ¬, ∧, and ∨. To this, quantifiers ∀ and ∃ binding
propositional variables are added, as in, e.g., [6]. Finally, plural analogs to such
quantifiers are added. Building on ideas by Boolos [2], first-order logic can be enriched
by variables and quantifiers which capture English sentences such as “there are some
sets”. Similarly, one may introduce new plural propositional variables pp, qq, ... , which
can be bound by quantifiers ∀ and ∃ as well, and which may be used in statements
of the form ϕ ≺ pp, expressing that ϕ is one of pp. For a more detailed discussion of
plural propositional quantification, see [8].

Definition 1. Let L be a language based on countably infinitely many propositional
variables and countably infinitely many plural propositional variables, with formulas
defined by the following clauses:

(1) Every propositional variable is a formula.
(2) If ϕ and � are formulas, then ¬ϕ, ϕ ∧ �, and ϕ ∨ � are formulas.
(3) If ϕ is a formula and v is a variable (propositional or plural propositional),

then ∀vϕ and ∃vϕ are formulas.
(4) If ϕ is a formula and pp is a plural propositional variable, then ϕ ≺ pp is a

formula.

The following abbreviations will be used:

ϕ → � := ¬ϕ ∨ � ϕ ↔ � := (ϕ → �) ∧ (� → ϕ)
ϕ = � := ∀pp((ϕ ≺ pp) ↔ (� ≺ pp)) pp = qq := ∀r((r ≺ pp) ↔ (r ≺ qq)).

In the definition of ϕ = �, pp is the first plural propositional variable not free in ϕ
or �. 
= will be used to abbreviate a negated application of =, and similarly for 
≺.
Note that it will not be assumed that, e.g., = expresses identity, but only that ϕ = � is
materially equivalent to the claim that ϕ is �. ϕ[ε/v] will be written for the result of
replacing every free occurrence of v in ϕ by ε, assuming that ε is free for v in ϕ. ϕ(ε)
is used for ϕ[ε/v] given a contextually salient variable v. In order to limit the number
of parentheses required, it will be assumed that unary connectives (¬, ∀ and ∃) bind
stronger than binary connectives, and that among the latter, = and ≺ bind strongest,
after which come ∧ and ∨, and finally → and ↔.

The proof system to be used consists of standard classical axioms and rules for
Boolean connectives and quantifiers, plus two axioms governing plural propositional
quantification: first, a plural comprehension principle PC stating that for every
condition ϕ, there are the propositions satisfying ϕ, and second, an extensionality
principle Ext according to which these propositions are those propositions only if
what holds of the former holds of the latter. (The comprehension PC may appear
unduly strong; this concern will be addressed below.)

Definition 2. Let � be the proof system in L with the following axiom schemas and
rules:

(Taut) tautologies (MP) ϕ,ϕ → �/�
(UI) ∀vϕ → ϕ[ε/v] (UG) ϕ → �/ϕ → ∀v�(v not free in ϕ)
(QD) ∃vϕ ↔ ¬∀v¬ϕ (PC) ∃pp∀p(p≺pp↔ϕ)(pp not free in ϕ)
(Ext) pp = qq → (ϕ(pp) → ϕ(qq)).
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190 PETER FRITZ

For the statement of Ext, recall that ϕ(pp) and ϕ(qq) are ϕ[pp/rr] and ϕ[qq/rr],
respectively, for some suitable variable rr. The principle could thus also be stated more
explicitly as follows:

(Ext) pp = qq → (ϕ[pp/rr] → ϕ[qq/rr]).

All elementary principles of quantification and identity can be derived in �, and this
will be assumed in the following. Let ∀(ϕ) be the result of prefixing ϕ with universal
quantifiers binding the free variables in ϕ. Γ � ϕ will be used to state that there
are �0, ... , �n ∈ Γ such that � ∀(�0) ∧ ··· ∧ ∀(�n) → ∀(ϕ). Thus, when evaluating the
deductive relationships between various principles, any free variables are taken to be
implicitly universally quantified. This convention is adopted just to allow for a briefer
statement of the various principles to be considered. As a consequence, a formula such
as p is interchangeable, in the context of �, with ∀p(p). The latter is refutable, in the
sense that � ¬∀p(p). Thus Γ can be said to be consistent if Γ � p.

As an illustration of the use of �, the following lemma shows that any proposition
is distinct from its negation. (In subsequent proofs, deductions will be indicated less
formally.)

Lemma 3. � p 
= ¬p.

Proof. By the following deduction, which uses standard inferences easily seen to be
licensed by �:

(1) ∀q(q ≺ pp ↔ q) → ((p ≺ pp ↔ p) ∧ (¬p ≺ pp ↔ ¬p)) UI

(2) (p ≺ pp ↔ ¬p ≺ pp) → ¬∀q(q ≺ pp ↔ q) 1
(3) ∀pp(p ≺ pp ↔ ¬p ≺ pp) → ∀pp¬∀q(q ≺ pp ↔ q) 2, UI, UG

(4) ∃pp∀q(q ≺ pp ↔ q) → p 
= ¬p 3
(5) p 
= ¬p PC, 4

The conception of plural quantification used here allows for empty pluralities, which
is arguably at odds with English phrases such as “there are some propositions such
that ...” For, consider the following instance of PC:

∃pp∀p(p ≺ pp ↔ p ∧ ¬p).

From this, one obtains ∃pp∀p(p ⊀ pp). But it sounds odd to say that there are some
propositions such that no proposition is one of them. There are a number of ways in
which this concern may be addressed. First, following Burgess and Rosen [3, p. 155],
one may read ∃ppϕ as stating that there are zero or more propositions such that ϕ, and
∀pp analogously. Second, one may consider quantifiers binding variables like pp to be
only loosely modeled on English plural talk, with their meaning determined in part by
stipulative logical principles among which one may include PC, as suggested by Fritz
et al. [8, Section 5.2]. Third, one may restrict PC to conditions which are satisfied, and
add the principle that any propositions have some proposition among them:

(PC
′) ∃pϕ → ∃pp∀p(p ≺ pp ↔ ϕ) (pp not free in ϕ)

(PE) ∃p(p ≺ pp).

Let �′ be the variant of � which replaces PC by PC
′ and PE. All of the results in

this paper can be carried out using �′ instead of �. For example, the instance of
PC appealed to in the proof of of Lemma 3 is easily obtained from PC

′ using ∃q q.
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Fourth and finally, one may rephrase the results obtained here in terms of higher-order
quantifiers binding variables in the position of sentential operators instead of plural
propositional quantifiers; such a setting will be discussed in Section 6.1.

§3. Logical structure. With the formal system in place, the idea that propositions
inherit the logical structure of the sentences which express them can be formalized.

3.1. Operator principles. In the case of sentential operators, formalization is
relatively straightforward. For example, in the case of conjunction, to say that the
conjuncts can be recovered from any conjunction is to say that two conjunctive
formulas ϕ ∧ ϕ′ and � ∧ �′ express the same proposition only if ϕ and � express
the same proposition, and likewise for ϕ′ and �′. In general, such a principle can be
stated for any n-ary sentential operator ◦:

(O◦) ◦(p1, ... , pn) = ◦(q1, ... , qn) → p1 = q1 ∧ ··· ∧ pn = qn.

Such principles are implicit in many discussions of structured propositions. Explicit
formulations can be found in formal developments of such views, such as [1, p. 65,
Axioms 10 and 11] and [10, p. 183, Principle 7].

The schematic principle O◦ cannot be instantiated for ≺, since this is not a sentential
operator. But a straightforward analog can be stated as follows:

(O≺) (p ≺ pp) = (q ≺ qq) → p = q ∧ pp = qq.

The only remaining logical operators of L are quantifiers. But before considering the
question how to formulate principles of logical structure for quantifiers, it is worth
noting straight away that O≺ is inconsistent. This is an immediate corollary of the
following (variant of a) result by Russell [12, Appendix B] and Myhill [1]:

Theorem 4 (Russell–Myhill). For any formula ϕ,

� ∃pp∃qq(ϕ(pp) = ϕ(qq) ∧ pp 
= qq).

Proof. By plural comprehension, there are qq such that:

∀q(q ≺ qq ↔ ∃pp(q ⊀ pp ∧ ϕ(pp) = q)).

Assume for contradiction that ϕ(qq) ⊀ qq. Then for all pp, ϕ(pp) = ϕ(qq) only
if ϕ(qq) ≺ pp. Thus ϕ(qq) = ϕ(qq) only if ϕ(qq) ≺ qq, whence ϕ(qq) ≺ qq. This
contradicts the assumption to the contrary, so ϕ(qq) ≺ qq. So there are pp such that
ϕ(qq) ⊀ pp and ϕ(pp) = ϕ(qq). Since ϕ(qq) ≺ qq, it follows that pp 
= qq.

Corollary 5. O≺ is inconsistent.

Proof. By Theorem 4, for any p, there are pp 
= qq such that (p ≺ pp) = (p ≺ qq),
which contradicts O≺.

In the proof of Theorem 4, it is not obviously ruled out that there is no q such that
∃pp(q ⊀ pp ∧ ϕ(pp) = q). To carry out the deduction in �′, an auxiliary argument has
to be added for this special case: If there is no q such that ∃pp(q ⊀ pp ∧ ϕ(pp) = q),
then ∀pp(ϕ(pp) ≺ pp). Let pp be all the propositions, and qq the propositions identical
to ϕ(pp); the existence of both follows from PC

′. Then ϕ(qq) ≺ qq, whence ϕ(pp) =
ϕ(qq). But since there are at least two propositions (one true and one false), pp 
= qq.

https://doi.org/10.1017/S175502032100040X Published online by Cambridge University Press

https://doi.org/10.1017/S175502032100040X


192 PETER FRITZ

3.2. Some inconsistent quantifier principles. Returning to the question of how to
formulate logical structure principles for quantifiers, the most straightforward attempt
treats a quantifier binding a particular variable as a unary sentential operator like
negation. For example, the instances of such a principle for universal propositional
quantifiers have the following form:

(A) ∀pϕ = ∀p� → ϕ = �.

A version of this principle is discussed by Church [4, p. 514], who formalizes Russell’s
theory of structured propositions in a simple type theory. (See axiom 11; axioms 8–10
are noteworthy as well in corresponding to O◦.) According to Church’s formulation,
quantified propositions are identical only if corresponding instances are identical:

(C) ∀pϕ = ∀p� → ∀p(ϕ = �).

These two principles are easily seen to be equivalent, in the sense that A � C and C � A,
via UG and UI.

However, as Church [4, p. 520] notes, these principles are also shown to be
inconsistent by the Russell–Myhill theorem. They entail:

∀p(p ≺ pp) = ∀p(p ≺ qq) → ∀p((p ≺ pp) = (p ≺ qq)).

Identical propositions are materially equivalent, so from this one obtains:

∀p(p ≺ pp) = ∀p(p ≺ qq) → pp = qq.

And this is inconsistent by Theorem 4.
As is easily seen, this observation applies as well to existential quantifiers. A similar

argument can also be given for plural propositional quantifiers. Consider the following
instance of the analog of C for plural propositional quantifiers:

∀rr(rr = pp) = ∀rr(rr = qq) → ∀rr((rr = pp) = (rr = qq))

Instantiating the quantification of the consequent using pp, one obtains with the
material equivalence of identicals and pp = pp:

∀rr(rr = pp) = ∀rr(rr = qq) → (pp = qq).

And this is again inconsistent by Theorem 4.
The problem with principles A and C may appear to be the treatment of quantifiers

as variable-binding operators. But the problem persists if one introduces a variable
binding �-operator, and treats quantifiers as higher-order predicates, as suggested,
e.g., by Stalnaker [13]. For, consider an extension of L in which for every propositional
variable p and formula ϕ, there is a unary sentential operator �p.ϕ. Then ∀pϕ can be
treated as an abbreviation for ∀�p.ϕ, which suggests a principle of logical structure for
the quantifiers with the following instances:

(∀�p.ϕ) = (∀�p.�) → (�p.ϕ) = (�p.�).

But this is again inconsistent, for much the same reasons as before. Consider the
following instance:

(∀�p.p ≺ pp) = (∀�p.p ≺ qq) → (�p.p ≺ pp) = (�p.p ≺ qq).

By UG, the consequent can be universally quantified, the result of which entails
∀p((�p.p ≺ pp)p ↔ (�p.p ≺ qq)p). With the elementary principle of extensional (or
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material)�-conversion, according to which (�p.ϕ)� is materially equivalent toϕ[�/p],
this in turn entails ∀p(p ≺ pp ↔ p ≺ qq). Thus, it follows:

(∀�p.p ≺ pp) = (∀�p.p ≺ qq) → pp = qq.

And this was noted to be inconsistent by Theorem 4.

3.3. Dispensing with order. Church’s formulation C of the logical structure principle
for universal quantifiers is interesting since it corresponds in a natural way to O∧.
Consider the view on which universal and existential quantifiers serve to express long
conjunctions and disjunctions, respectively. Roughly, this view holds that a universal
quantification ∀pϕ(p) serves to express a conjunction of the form:∧

ϕ(p0)ϕ(p1) ··· ,

where the propositions expressed by p0, p1, ... constitute a well-order of the
propositions, and

∧
is an infinitary sentential operator which takes as arguments

a sequence of formulas of the relevant order type. (Set aside worries about there being
more propositions than propositional variables. The relevant extension of L is only
appealed to loosely to motivate principles which will themselves be stated in L.)

Assume now that ∀pϕ(p) = ∀p�(p). On the view under consideration, this can
equivalently be stated as:∧

ϕ(p0)ϕ(p1) =
∧
�(p0)�(p1) ···

The relevant generalization of O∧ should allow us to obtain from this the following
sequence of claims:

ϕ(p0) = �(p0), ϕ(p1) = �(p1), ...

But since p0, p1, ... are assumed to comprise all propositions, this is equivalent to the
claim that ∀p(ϕ(p) = �(p)), as Church’s principle states.

This correspondence between the two principles is interesting, since it suggests a
natural weakening of Church’s principle C. Notice that O∧ is immediately inconsistent
with the commutativity of conjunction, i.e., the following principle:

(p ∧ q) = (q ∧ p).

The inconsistency follows from the fact that commutativity entails (p ∧ ¬p) = (¬p ∧
p), which, with O∧, leads to the absurd p = ¬p.

But even someone who is attracted to propositions having some amount of logical
structure might want to endorse the commutativity of conjunction (and analogously
disjunction). As Dorr [5, p. 124, en. 56] notes, one might adapt an idea of Williamson
[16, p. 259] and conceive of the formation of conjunctions as amounting to putting
conjuncts into a conjunctive bag, from which conjuncts can be recovered, but not
necessarily in order. This motivates the following weaker logical structure principle for
binary sentential operators:

(O–
◦) (p ◦ p′) = (q ◦ q′) → (p = q ∧ p′ = q′) ∨ (p = q′ ∧ p′ = q).

Returning to the case of quantifiers (illustrated using universal propositional
quantifiers), one might correspondingly conceive of ∀pϕ(p) as serving to express a
conjunction of the following form:∧

{ϕ(p0), ϕ(p1), ... },

https://doi.org/10.1017/S175502032100040X Published online by Cambridge University Press

https://doi.org/10.1017/S175502032100040X


194 PETER FRITZ

where
∧

is now understood as a unary operator taking a set of formulas as an argument.
The idea that conjuncts can be recovered from conjunctions, but not necessarily in
order, thus suggests that ∀pϕ(p) is only identical to ∀p�(p) if for every index i, ϕ(pi)
is �(pj), for some index j, and vice versa. In L, this can be stated more succinctly as
follows:

∀pϕ(p) = ∀p�(p) → ∀p∃q(ϕ(p) = �(q)) ∧ ∀p∃q(�(p) = ϕ(q)).

Here, q is the first variable free for p in � distinct from p. Note that since identity
is symmetric, only one of the conjuncts in the consequent need be included in the
formulation of this schematic principle. Thus, the following slightly simpler principle
suffices:

(I∀p) ∀pϕ(p) = ∀p�(p) → ∀p∃q(ϕ(p) = �(q)).

The analog of this principle for existential propositional quantifiers is the following:

(I∃p) ∃pϕ(p) = ∃p�(p) → ∀p∃q(ϕ(p) = �(q)).

And, letting Q be either ∀ or ∃, the analog of IQp for plural propositional quantifiers
reads as follows:

(IQpp) Qppϕ(pp) = Qpp�(pp) → ∀pp∃qq(ϕ(pp) = �(qq)).

Stepping back from the view of quantifiers as serving to express long conjunctions
and disjunctions, the weaker principles of O–

◦ and IQv (where v may be a propositional
or a plural propositional variable) encapsulate independently natural views of
operators and quantifiers: operands and instances can always be recovered, but not
necessarily in any particular order. And IQv does not appear to suffer from the same
problem which plagued the inconsistent principles of logical structure for quantifiers
considered in the previous section. For, consider the instance for the formulas which
there led to inconsistency:

∀p(p ≺ pp) = ∀p(p ≺ qq) → ∀p∃q((p ≺ pp) = (q ≺ qq)).

Assume for the sake of the argument that any formula of the form p ≺ pp expresses
one of two propositions t and f (the first being true and the second being false). With
this, ∀p∃q((p ≺ pp) = (q ≺ qq)) can be seen not to entail, in general, pp = qq: For
example, consider distinct pluralities of propositions pp and qq, which both have some
proposition among them, and both some proposition not among them. Such pluralities
must exist; for example, pp might be the truths and qq the falsities. Then the instances
of ∀p(p ≺ pp) will comprise t and f, and so will the instances of ∀p(p ≺ qq).

3.4. Summary. The previous sections singled out the following principles, one for
each logical connective, with the principles for binary sentential operators coming in
an ordered and an unordered variant:

O¬,O
(–)
∧ ,O

(–)
∨ , I∀p, I∃p, I∀pp, I∃pp,O≺,

O≺ was shown to be inconsistent since it allows one to recover a plural propositional
parameter, which the Russell–Myhill result shows to be impossible. But none of the
the other principles obviously shares this feature, which poses the question which of
them are individually and jointly consistent. Sections 4 and 5 answer this question.

Section 4 shows that if ◦ is a binary operator and Qp is a propositional quantifier,
then the corresponding instances of O–

◦ and IQp are jointly inconsistent; a fortiori,
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the corresponding instances of O◦ and IQp are jointly inconsistent as well. Section 5
shows that these inconsistency results delineate precisely the consistent combinations
of principles of logical structure. That is, it is there shown that following theories are
consistent, and maximally so among sets of the principles considered here:

To := {O¬,O∧,O∨, I∀pp, I∃pp}
Ti := {O¬, I∀p, I∃p, I∀pp, I∃pp}.

§4. Inconsistency. The argument to be given is a variant of an argument which
shows that natural principles of immediate grounding are inconsistent, and derived
from [7]. The first step is to show how from any operator ◦ satisfying O–

◦, an operator
◦̂ can be defined which satisfies O◦̂:

ϕ ◦̂ � := ((ϕ ◦ ¬ϕ) ◦ (ϕ ◦ ϕ)) ◦ (� ◦ �).

Lemma 6. O–
◦ � O◦̂.

Proof. Assume (p ◦̂ p′) = (q ◦̂ q′), i.e.:

(1) (((p ◦ ¬p) ◦ (p ◦ p)) ◦ (p′ ◦ p′)) = (((q ◦ ¬q) ◦ (q ◦ q)) ◦ (q′ ◦ q′)).

The following uses O–
◦. By Lemma 3, p 
= ¬p, whence (p ◦ ¬p) 
= (p ◦ p). So:

(2) ((p ◦ ¬p) ◦ (p ◦ p)) 
= (q′ ◦ q′)
From (1) and (2), the following two claims can be inferred:

(3) ((p ◦ ¬p) ◦ (p ◦ p)) = ((q ◦ ¬q) ◦ (q ◦ q))
(4) (p′ ◦ p′) = (q′ ◦ q′)

By (3), since (p ◦ ¬p) 
= (q ◦ q), (p ◦ p) = (q ◦ q), whence p = q. By (4), p′ = q′.

Using this lemma, O–
◦ and IQp can be seen to entail that from Qp(p ≺ rr ◦̂ p), the

rr can be recovered, and by the Russell–Myhill theorem, this is inconsistent:

Lemma 7. For Q being one of propositional quantifiers ∀ and ∃:

O–
◦, IQp � Qp(p ≺ pp ◦̂ p) = Qp(p ≺ qq ◦̂ p) → pp = qq

Proof. Assume Qp(p ≺ pp ◦̂ p) = Qp(p ≺ qq ◦̂ p). By IQp, it follows that:

∀p∃q((p ≺ pp ◦̂ p) = (q ≺ qq ◦̂ q)).

So by Lemma 6:

∀p∃q((p ≺ pp) = (q ≺ qq) ∧ p = q).

Thus ∀p((p ≺ pp) = (p ≺ qq)), whence pp = qq.

Theorem 8. If Qp is a propositional quantifier and ◦ is a binary operator, then O–
◦ and

IQp are jointly inconsistent.

Proof. Immediate by Lemma 7 and Theorem 4.

Note that while L only provides two binary operators (conjunction and disjunction)
and two propositional quantifiers (existential and universal), the argument for the
inconsistency of O◦ and IQp does not appeal to any of their particular features.
Thus, Theorem 8 generalizes straightforwardly to any language with additional binary
operators and propositional quantifiers.
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§5. Consistency. First, a class of models will be defined which is sufficiently general
to provide models to prove both To and Ti consistent, after which more specific classes
of models for each of the theories will be identified. These models are specifically
tailored to these consistency results, and are not meant to capture any notion of
validity which is of independent interest.

5.1. Models. Models will be based on a set X of propositions. Each of these
propositions will be associated with two items of information: first, its instances or
operands (no distinction needs to be made between the two concepts), and second, its
truth value, using 0 and 1 for falsity and truth, respectively. By Cantor’s theorem, there
are more sets of propositions than propositions, so only some sets of propositions will
serve as the set of instances of some proposition. These sets will be called well-behaved.
The set W of well-behaved sets of propositions will be assumed to contain all finite
sets. The correspondence between propositions and their instances and truth-values
will be given by a bijection c mapping every pair 〈I, t〉 consisting of a well-behaved set I
of instances and a truth-value t to a proposition. Finally, a model will contain a switch
s, which is o or i depending on whether the model is intended to validate To or Ti .

Since c is a bijection, the instances and truth-value of a proposition x can be recovered
as the first and second coordinate of c–1(x), which will be notated �1c

–1(x) and
�2c

–1(x). For stating various definitions, it will be useful to extend c to a function c̃
which applies to 〈I, t〉 for all I ⊆ X and t < 2. The particular choice of this extension is
unimportant, but the simplest option is to let c̃〈I, t〉 always be c〈∅, t〉 whenever c〈I, t〉
is undefined.

Definition 9. A model is a tuple 〈X,W, c, s〉 such that:

X is an infinite set.
W ⊆ P(X ) such that Y ∈W for all finite sets Y ⊆ X .
c :W × {0, 1} → X is a bijection.
s ∈ {o, i}.

For any model, define, for all x ∈ X :

	(x) = �1c
–1(x)


(x) = �2c
–1(x).

Extend c to a function c̃ : P(X ) × {0, 1} → X by letting:

c̃〈I, t〉 =

{
c〈I, t〉 if I ∈W,
c〈∅, t〉 otherwise.

Assignment functions map propositional variables to members of X, and plural
propositional variables to subsets of X. As usual, for any assignment function a, a[�/v]
is the function mapping v to � and every other variable v′ to a(v′), and correspondingly
for sequences of variables. Relative to an assignment function a, a model interprets any
formula ϕ using an element [[ϕ]]a . This can be specified by determining the instances
(operands) and truth value separately. Consider, by way of illustration, the case of
negation. To validate O¬, negation should preserve instances (operands), but flip
the truth value. Thus, the set of instances and the truth value of the proposition
expressed by ¬ϕ should be 	([[ϕ]]a) and 1 – 
([[ϕ]]a), respectively. Therefore, [[¬ϕ]]a

can be specified as c̃〈	([[ϕ]]a), 1 – 
([[ϕ]]a)〉. Note that for such a specification to have
the intended effect, it is important that the relevant set of instances be well-behaved. In
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the case of negation, this is easily seen to be guaranteed, but in other cases, verifying this
will be an important aspect in showing that the models validate the intended theories.

The other connectives are treated similarly, depending on the theory which is
to be validated. For example, if s = o, then conjuncts should be recoverable from
conjunctions, so the instances of the proposition expressed by a conjunction ϕ ∧ �
should be the propositions expressed byϕ and�. If s = i , then no particular constraint
is imposed on conjunctions, so it may simply be stipulated that the set of instances is
empty. Thus the set of instances of [[ϕ ∧ �]]a can be specified as {[[ϕ]]a, [[�]]a : s = o}.
Similarly, the set of instances of [[∀pϕ]]a can be specified as the set of propositions
[[ϕ]]a[x/p] for x ∈ X , assuming s = i . Plural propositional quantifiers are treated
similarly, independently of the choice of s. Finally, since neither To nor Ti impose
any particular constraints on ≺, the set of instances of a proposition expressed by
ϕ ≺ pp may always be assumed to be empty. The truth-value of this proposition is
determined by whether [[ϕ]]a is a member of a(pp). Taking 0 (falsity) to be ∅ and 1
(truth) to be {∅}, this may be specified as {∅ : [[ϕ]]a ∈ a(pp)}.

Truth of a formula ϕ relative to a model and assignment function a is determined
by 
([[ϕ]]a), and validity is defined as truth relative to every assignment function and
model.

Definition 10. An assignment function for a model is a function a such that
a(p) ∈ X for every propositional variable p, and a(pp) ⊆ X for every plural
propositional variable pp.

For any model, define a function [[·]]· which maps any formula ϕ and assignment
function a to some [[ϕ]]a ∈ X , as follows (where [[ϕ]]a	 and [[ϕ]]a
 abbreviate 	([[ϕ]]a) and

([[ϕ]]a), respectively):

[[p]]a = a(p)
[[¬ϕ]]a = c̃〈[[ϕ]]a	 , 1 – [[ϕ]]a
 〉
[[ϕ ∧ �]]a = c̃〈{[[ϕ]]a, [[�]]a : s = o},min{[[ϕ]]a
 , [[�]]a
 }〉
[[ϕ ∨ �]]a = c̃〈{[[ϕ]]a, [[�]]a : s = o},max{[[ϕ]]a
 , [[�]]a
 }〉
[[∀pϕ]]a = c̃〈{[[ϕ]]a[x/p] : x ∈ X, s = i},min{[[ϕ]]a[x/p]


 : x ∈ X}〉
[[∃pϕ]]a = c̃〈{[[ϕ]]a[x/p] : x ∈ X, s = i},max{[[ϕ]]a[x/p]


 : x ∈ X}〉
[[∀ppϕ]]a = c̃〈{[[ϕ]]a[Y/pp] : Y ⊆ X},min{[[ϕ]]a[Y/pp]


 : Y ⊆ X}〉
[[∃ppϕ]]a = c̃〈{[[ϕ]]a[Y/pp] : Y ⊆ X},max{[[ϕ]]a[Y/pp]


 : Y ⊆ X}〉
[[ϕ ≺ pp]]a = c̃〈∅, {∅ : [[ϕ]]a ∈ a(pp)}〉.

Define M, a � ϕ if [[ϕ]]a
 = 1. ϕ is valid in M, written M � ϕ, if M, a � ϕ for all
assignment functions a. Define � ϕ if M � ϕ for all models M.

The clauses for negation and quantifiers can usefully be re-stated using the following
definitions:

Definition 11. In any model, define for all x ∈ X , f : X → X and Y ⊆ X :

– x := c〈	(x), 1 – 
(x)〉
f[Y ] := {f(x) : x ∈ Y}
Instap(ϕ) := {[[ϕ]]a[x/p] : x ∈ X}
Instapp(ϕ) := {[[ϕ]]a[Y/pp] : Y ⊆ X}.

With this, the above interpretation clauses are equivalent to the following, assuming,
in the case of the second, that s = i (and similarly for existential quantifiers):
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[[¬ϕ]]a =– [[ϕ]]a

[[∀pϕ]]a = c̃〈Instap(ϕ),min
[Instap(ϕ)]〉
[[∀ppϕ]]a = c̃〈Instapp(ϕ),min
[Instapp(ϕ)]〉.

To be able to use models in consistency proofs, � first needs to be shown to be sound
with respect to validity. This relies on the following standard lemma:

Lemma 12. In any model: First, [[ϕ]]a = [[ϕ]]b whenever a and b agree on the free variables
in ϕ. Second, for every variable v (propositional or plural propositional ), [[ϕ[ε/v]]]a =
[[ϕ]]a[[[ε]]a/v].

Proof. By inductions on the complexity of ϕ.

Furthermore, soundness relies on connectives (primitive and defined) to obey the
standard truth-conditions:

Lemma 13. For any model M and assignment function a:

M, a � ¬ϕ iff M, a � ϕ
M, a � ϕ ∧ � iff M, a � ϕ and M, a � �
M, a � ϕ ∨ � iff M, a � ϕ or M, a � �
M, a � ∀pϕ iff M, a[x/p] � ϕ for all x ∈ X
M, a � ∃pϕ iff M, a[x/p] � ϕ for some x ∈ X
M, a � ∀ppϕ iff M, a[Y/pp] � ϕ for all Y ⊆ X
M, a � ∃ppϕ iff M, a[Y/pp] � ϕ for some Y ⊆ X
M, a � ϕ ≺ pp iff [[ϕ]]a ∈ a(pp)
M, a � ϕ → � iff M, a � ϕ only if M, a � �
M, a � ϕ ↔ � iff M, a � ϕ iff M, a � �
M, a � ϕ = � iff [[ϕ]]a = [[�]]a

M, a � pp = qq iff a(pp) = a(qq).

Proof. By the constraints on models, in general 
c̃〈I, t〉 = t. Thus, if [[ϕ]]a =
c̃〈I, t〉, then [[ϕ]]a
 = t. With this, the claims for the primitive connectives follow
straightforwardly from the definition of [[·]]·. By way of example, consider the case
of negation:

M, a � ¬ϕ iff [[¬ϕ]]a
 = 1 iff 1 – [[ϕ]]a
 = 1 iff [[ϕ]]a
 
= 1 iff M, a � ϕ.

The cases of the defined connectives follow from their definitions and the cases of the
primitive connectives as usual.

Proposition 14 (Soundness). If � ϕ, then � ϕ.

Proof. By induction on the length of proofs, using the previous two lemmas.

It remains to identify models which validate To and Ti . O¬ can in fact be shown to
be valid in all models, as – is guaranteed to be an injection:

Lemma 15. In any model, – is injective.

Proof. If – x =– y, then

c〈�1c
–1(x), 1 – �2c

–1(x)〉 = c〈�1c
–1(y), 1 – �2c

–1(y)〉.

Since c is bijective, it follows that�1c
–1(x) = �1c

–1(y) and 1 – �2c
–1(x) = 1 – �2c

–1(y).
Thus c–1(x) = c–1(y), whence x = y.
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Proposition 16. � O¬.

Proof. Since [[¬ϕ]]a =– [[ϕ]]a , the claim follows from Lemma 15.

5.2. Operand models. This section showsTo to be consistent. First, it will be shown
that any model in which the switch s is o validates IQpp, for universal and existential
plural propositional quantifiers, and O–

◦ for conjunction and disjunction. Using a
syntactic mapping, this is then extended to O◦.

Definition 17. Let an operand model be a model 〈X,W, c, s〉 such that s = o.

Lemma 18. There exist operand models.

Proof. If X is an infinite set and W the set of finite subsets of X, then for cardinality
reasons, there exists a bijection c from W × {0, 1} to X, and so an operand model
〈X,W, c, o〉.

Starting with IQpp, the crucial step is to show that Instapp(ϕ) is always well-behaved.
This is best shown by proving that for every formula ϕ and assignment function a, the
set of propositions [[ϕ]]b is finite, where b may be any assignment function differing
from a in the interpretation of plural propositional variables.

Definition 19. In any model, define:

Insta�(ϕ) := {[[ϕ]]a[Ȳ/p̄p] : Ȳ ⊆ X},

where p̄p abbreviates pp1, ... , ppn (the sequence of free plural propositional variables
in ϕ), Ȳ abbreviates Y1, ... , Yn, and Ȳ ⊆ X abbreviates Y1 ⊆ X, ... , Yn ⊆ X .

Lemma 20. In any operand model, for every formula ϕ and every assignment function a,
Insta�(ϕ) is finite.

Proof. By induction on the complexity of ϕ. Exemplarily, consider two cases:
Assume ϕ is a conjunction � ∧ �. Insta�(� ∧ �) is a subset of:{

c̃
〈{

[[�]]a[Ȳ/p̄p], [[�]]a[Ȳ/p̄p]
}
, t

〉
: Ȳ ⊆ X, t < 2

}
.

This, in turn, is a subset of {c̃〈{x, y}, t〉 : x, y ∈ Insta�(�) ∪ Insta�(�), t < 2}, which by
IH is finite.

Assume ϕ is a universal plural propositional quantification ∀qq�. Insta�(∀qq�) is a
subset of: {

c̃
〈{

[[�]]a[Ȳ/p̄p][Z/qq] : Z ⊆ X
}
, t

〉
: Ȳ ⊆ X, t < 2

}
.

This, in turn, is a subset of {c̃〈I, t〉 : I ⊆ Insta�(�), t < 2}, which by IH is finite.

With this, the bijectivity of c ensures the validity of IQpp, for plural propositional
quantifiers:

Proposition 21. For each plural propositional quantifier Q, IQpp is valid in every operand
model.

Proof. Consider the universal case; the existential case is analogous.
If M, a � ∀ppϕ(pp) = ∀pp�(pp), then for some t1, t2 < 2:

c̃〈Instapp(ϕ(pp)), t1〉 = c̃〈Instapp(�(pp)), t2〉.
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By Lemma 20, Instapp(ϕ(pp)) and Instapp(�(pp)) are finite, and so members of W. Thus
by the injectivity of c, Instapp(ϕ(pp)) = Instapp(�(pp)). So for everyY ⊆ X there is aZ ⊆
X such that [[ϕ(pp)]]a[Y/pp] = [[�(pp)]]a[Z/pp]. By Lemma 12, the latter is [[�(qq)]]a[Z/qq].
Thus M, a � ∀pp∃qq(ϕ(pp) = �(qq)).

A similar argument shows the validity ofO–
∧ andO–

∨, as {[[ϕ]]a, [[�]]a} must be finite
and so well-behaved:

Proposition 22. O–
∧ and O–

∨ are valid in every operand model.

Proof. Consider the conjunctive case; the disjunctive case is analogous.
Assume M, a � p ∧ p′ = q ∧ q′. Then for some t1, t2 < 2:

c̃〈{a(p), a(p′)}, t1〉 = c̃〈{a(q), a(q′)}, t2〉.

As {a(p), a(p′)} and {a(q), a(q′)} are finite, they are members of W. It therefore
follows from the bijectivity of c that {a(p), a(p′)} = {a(q), a(q′)}. By elementary
set theory, it follows that either a(p) = a(q) and a(p′) = a(q′), or a(p) = a(q′) and
a(p′) = a(q). Thus M, a � (p = q ∧ p′ = q′) ∨ (p = q′ ∧ p′ = q).

By soundness, operand models therefore witness the consistency of {O¬,O–
∧,O

–
∨,

I∀pp, I∃pp} in �. In order to extend this consistency result to To, recall how any binary
connective ◦ satisfying O–

◦ can be used to define a binary connective ◦̂ satisfying O◦̂.
◦ and ◦̂ are not truth-functionally equivalent, but given both O–

∧ and O–
∨, a variant

definition ◦̄ is available which is truth-functionally equivalent to ◦, with O–
◦ still entailing

O◦̄. This can be used to define a function mapping any formula ϕ to a formula ϕ̄ which
replaces any occurrence of ∧ and ∨ by ∧̄ and ∨̄, respectively. It can be shown that if ϕ is
entailed by To, then ϕ̄ is valid in any operand model, and this suffices for consistency.

◦̄ can be defined as follows:

ϕ ◦̄ � := ((ϕ ∧ ¬ϕ) ∨ (ϕ ∧ ϕ)) ◦ (� ∧ �).

By Taut, for ◦ ∈ {∧,∨}, � ϕ ◦̄ � ↔ ϕ ◦ �. Define ϕ recursively, so that · maps every
atomic formulas to itself, commutes with all logical constants except ∧ and ∨, and
satisfies the following two clauses:

ϕ ∧ � := ϕ ∧̄ �
ϕ ∨ � := ϕ ∨̄ �.

To show that this has the intended effect, it suffices to show that if To � ϕ, then ϕ
is valid in any operand model. With the results above, this follows from the following
three lemmas:

Lemma 23. For any quantifier Qv, IQv � IQv , and O¬ � O¬.

Proof. Consider exemplarily the case of a quantifier Qv; the remaining case of
negation is analogous.

Let ϕ be an instance of IQv for complement clauses � and �. Then ϕ is provably
equivalent to

Qv�(v) = Qv�(v) → ∀v∃v′(�(v) = �(v′)),

which is an instance of IQv .

Lemma 24. O–
∧ ∧ O–

∨ � O∧ ∧ O∨.
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Proof. Analogous to Lemma 6, O–
∧ ∧ O–

∨ � O∧̄ ∧ O∨̄. With this, the claim follows
from the fact that O∧̄ ∧ O∨̄ � O∧ ∧ O∨.

Lemma 25. If � ϕ then � ϕ.

Proof. By induction on the length of proofs. For every instance ϕ of an axiom
schema of �, there is an instance ϕ′ which is equivalent to ϕ. For example,

� (∀v� → �[ε/v]) ↔ (∀v� → �[ε/v]).

Analogously for the two rules of �. For example, assume that � � using MP from � ϕ
and� ϕ → �. By IH,� ϕ and� ϕ → �. By the latter,� ϕ → �, so using MP,� �.

Theorem 26. To is consistent.

Proof. By Lemma 18, there exists an operand model M. As p is p̄, M � p̄. So it
suffices to show that To � ϕ only if M � ϕ. And this follows from previous results
(using soundness throughout): By Propositions 16 and 21 and Lemma 23, M � ϕ
whenever ϕ is O¬ or IQp. By Proposition 22 and Lemma 24, M � ϕ whenever ϕ
is O∧ or O∨. So ϕ ∈ To only if M � ϕ. That To � ϕ only if M � ϕ follows with
Lemma 25.

5.3. Instance models. To show thatTi is consistent, models will be used in which the
switch s is set to i. This ensures that the interpretational clauses of quantified formulas
behave as expected, with [[∀pϕ]]a being interpreted as a proposition determined by
Instap(ϕ) and the minimum of the truth-values of these instances. However, for IQv to
be valid, for all quantifiers, it must be shown that Instav (ϕ) is always well-behaved. And
this requires W to contain some infinite sets.

To illustrate this, consider the formula ∀p p. Instap(p) is simply X, the set of all
propositions, so X must be well-behaved. Similarly, consider ∀p∀q p. For every p,
the proposition expressed by ∀q p is a distinct proposition with a single instance p,
so Instap(∀q p) is the infinite set of these propositions, which must be well-behaved
as well. Similarly, Instap(¬∀q p), the set of instances of the proposition expressed by
∀p¬∀q p, is the set of negations of these propositions; this must also be well-behaved.
Since quantifiers and negations can be nested, W must more generally be required to be
closed under correspondingly iterated operations on sets of propositions, in addition
to containing X. The next definition formulates these constraints in suitable generality.
To state it, for any set A, A∗ is taken to be the set of finite strings of elements of A, i.e.,⋃
n< A

n, and e the string of elements of length 0.

Definition 27. Let an instance model be a model 〈X,W, c, s〉 such that s = i and
c� [X ] ∈W for all � ∈ {q, n}∗, where, for all x ∈ X :

ce(x) = x,
c�q(x) = c〈{c�(x)}, 
c�(x)〉,
c�n(x) =– c�(x).

Cardinality considerations again suggest that these constraints are satisfiable.
Starting from a countably infinite set X, the set of finite subsets of X is countable.
And as {q, n}∗ is countable, so is the set {c� [X ] : � ∈ {q, n}∗}, given any choice of
c. Thus, W can be chosen to be countable, so that there exists a bijection c from
W × {0, 1} to X. The only difficulty is that in this line of reasoning, the choice of W is
dependent on a choice of c, which itself depends on W. The difficulty can be overcome
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by dividing X into four countably infinite subsets: the set X 1
f of true propositions with

finitely many instances, the set X 1
∞ of true propositions with infinitely many instances,

and correspondingly sets X 0
f and X 0

∞ of false propositions. Fixing the interpretation
of negation by a suitable function ∼ on X, the choice of c and W can be determined in
three steps: First, the behavior of c can be fixed for pairs 〈I, t〉 with I finite, by choosing
a suitable bijection with codomainX 1

f ∪ X 0
f . Second, W is determined by this, since c�

is determined by the behavior of c on such pairs and the behavior of negation. Finally,
c can be completed by choosing a suitable bijection from pairs 〈I, t〉 with I an infinite
member of W to X 1

∞ ∪ X 0
∞. The following proof makes this line of argument precise.

Lemma 28. There exist instance models.

Proof. Let X be a countably infinite set. Partition X into four infinite subsets X 0
f ,

X 1
f , X 0

∞ and X 1
∞. By omitting one parameter of these terms, the union of the two

choices is indicated; e.g., X∞ = X 0
∞ ∪ X 1

∞. Let ∼ be an involution on X such that
∼|X 0

f is a bijection with codomain X 1
f , and ∼|X 0

∞ is a bijection with codomain X 1
∞.

Let Wf be the set of finite subsets of X, and let cf :Wf × {0, 1} → Xf such that
cf |Wf × {0} is a bijection with codomainX 0

f , and for all I ∈Wf , cf〈I, 1〉 = ∼cf〈I, 0〉.
For each � ∈ {q, n}∗, define g� : X → X such that:

ge(x) = x,
g�q(x) = cf〈{g�(x)}, {∅ : g�(x) ∈ X 1}〉,
g�n(x) = ∼g�(x).

DefineW∞ = {g� [X ] : � ∈ {q, n}∗}. It can be shown thatW∞ is countably infinite and
disjoint fromWf : To show thatW∞ is infinite, one shows by an induction on the length
of sequences that for each � ∈ {q}∗, g�q[X ] � g� [X ]. The inclusion is immediate. That
the inclusion is proper is straightforward in the base case. For the induction step, by
IH, there is some x ∈ g� [X ] such that x /∈ g�q[X ]. Then gq(x) ∈ g�q[X ], and as cf is
a bijection, gq(x) /∈ g�qq[X ].W∞ is countable by construction. To prove thatW∞ is
disjoint fromWf , it suffices to shown that for each � ∈ {q, n}∗, g� [X ] /∈Wf . This can
be done by another induction on the length of sequences appealing to the bijectivity
of cf .

Let c∞ :W∞ × {0, 1} → X∞ such that c∞|W∞ × {0} is a bijection with codomain
X 0

∞, and for all Y ∈W∞, c∞〈Y, 1〉 = ∼c∞〈Y, 0〉. Let W =Wf ∪W∞ and c = cf ∪
c∞. It remains to show that M = 〈X,W, c, i〉 is an instance model.

Since cf is a bijection from Wf × {0, 1} to Xf , and c∞ is a bijection from W∞ ×
{0, 1} to X∞, c is a bijection from W × {0, 1} to X. Thus, M is a model 〈X,W, c, s〉
with s = i , and so it suffices to show that c� [X ] ∈W , for all � ∈ {q, n}∗. This, in
turn, follows from the claim that g� = c� for all � ∈ {q, n}∗, which is established by
induction on the length of �:

(e) Immediate.
(�q) Consider any x ∈ X . By construction and IH, g�q(x) is

c〈{c�(x)}, {∅ : c�(x) ∈ X 1}〉.

For any y ∈ X , y ∈ X 1 iff 
(y) = 1. Thus {∅ : c�(x) ∈ X 1} = 
c�(x). It follows
that g�q(x) = c�q(x), as required.
(�n) It suffices to show, for any x ∈ X , that ∼x =– x. Recall that cf and c∞
were chosen so as to guarantee that c(I, 1) = ∼c(I, 0) for every I ∈W . Since
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∼ is an involution, it follows that also c(I, 0) = ∼c(I, 1). So, for any x ∈ X ,
∼x = ∼c〈	(x), 
(x)〉 = c〈	(x), 1 – 
(x)〉 =– x.

Having defined instance models and demonstrated their existence, the next step is
to show that they behave as intended, i.e., that Instav (ϕ) is always well-behaved. This
follows from the following lemma:

Lemma 29. For every formula ϕ, either

(i) there is a finite set F ⊆ X such that for all assignment functions a, [[ϕ]]a ∈ F , or
(ii) there is a string � ∈ {q, n}∗ and propositional variable p such that for all

assignment functions a, [[ϕ]]a = c�a(p).

Proof. By induction on the complexity of ϕ.

(p) If ϕ is a variable p, then [[p]]a = a(p) = cea(p), so e and p witness
case (ii).
(¬�) Assume ϕ is ¬�. By IH, one of cases (i) and (ii) obtains for �.

Case (i): There is a finite set F ⊆ X such that for all assignment functions
a, [[�]]a ∈ F . Then – [F ] is finite and contains [[¬�]]a , for all assignment
functions a.

Case (ii): There is a string � ∈ {q, n}∗ and variable p such that for all
assignment functions a, [[�]]a = c�a(p). So for all assignment functions a,
[[¬�]]a =– c�a(p) = c�na(p). So �n and p witness case (ii).
(∧, ∨, ≺) If ϕ is of the form � ∧ �, � ∨ � or � ≺ pp, then for any assignment
function a, [[ϕ]]a ∈ {c〈∅, 0〉, c〈∅, 1〉}, which is finite.
(∀v�) For any assignment function a, [[∀v�]]a = c〈Instav (�),min
[Instav (�)]〉.
By induction hypothesis, one of cases (i) and (ii) obtains for �.

Case (i): There is a finite set F ⊆ X such that for all assignment functions
a, [[�]]a ∈ F . So Instav (�) ⊆ F ; it follows that for every assignment function a,
[[∀v�]]a is a member of the finite set F ′ = {c〈I, t〉 : I ⊆ F, t < 2}.

Case (ii): There is a string � ∈ {q, n}∗ and variable p such that for all
assignment functions a, [[�]]a = c�a(p). Distinguish two sub-cases: If v =
p, then Instav (�) = c� [X ], whence [[∀v�]]a = c̃〈c� [X ],min
[c� [X ]]〉. So the
singleton of this element witnesses case (i). If v 
= p, then Instav (�) = {c�a(p)},
whence [[∀v�]]a = c̃〈{c�a(p)}, 
c�a(p)〉 = c�qa(p). So �q and p witness
case (ii).
(∃v�) Analogous to the universal case.

Lemma 30. In any instance model, for every assignment function a, variable v
(propositional or plural propositional ) and formula ϕ, Instav (ϕ) ∈W .

Proof. Consider any formula ϕ. Using Lemma 29, distinguish two cases:
Case (i): There is a finite set F ⊆ X such that for all assignment functions a, [[ϕ]]a ∈

F . So Instav (ϕ) is a subset of F, and so finite, and therefore a member of W.
Case (ii): There is a string � ∈ {q, n}∗ and propositional variable p such that for all

assignment functions a, [[ϕ]]a = c�a(p). Distinguish two sub-cases: If v = p, then it
follows from [[ϕ]]a = c�a(p) that Instav (ϕ) = c� [X ], which is a member of W. If v 
= p,
then Instav (ϕ) = {c�a(p)}, which is finite, and so a member of W as well.

Proposition 31. For each quantifier Qv, IQv is valid in every instance model.

Proof. Analogous to the proof of Proposition 21, using Lemma 30.
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Theorem 32. Ti is consistent.

Proof. By Lemma 28, there is an instance model M. By Propositions 16 and 31, all
members of Ti are valid in M. The claim follows by soundness (Proposition 14).

§6. Refinements. The results established here show that the consistency of logical
structure is a somewhat subtle matter: while partial theories like To and Ti are
consistent, already the inclusion of O–

◦ and IQp for a binary operator ◦ and a
propositional quantifier Qp leads to inconsistency. The consistency of To and Ti is of
some technical interest, but philosophically, the more important finding is presumably
the (much simpler) inconsistency of O–

◦ and IQp for a binary operator ◦ and a
propositional quantifierQp: those who think that propositions exhibit logical structure
will presumably hold that this applies to sentential operators and quantifiers alike.
Thus, it is natural to consider ways of avoiding inconsistency while at the same time
upholding some form of logical structure for both sentential operators and quantifiers.
This section considers two avenues in this direction; the first considers weakening the
background logic, and the second weakening the logical structure principles.

6.1. Weakening logic. The axiomatic principles of � comprise, apart from elemen-
tary principles governing Boolean connectives and quantifiers, two principles which
are specific to plural quantification: PC and Ext. Weakening the elementary principles
governing Boolean connectives and quantifiers won’t be considered here; many will
consider them far more plausible than any principle of logical structure. The following
therefore considers dropping or weakening one of Ext and PC.

Inspecting the deduction of an inconsistency sketched in Section 4, it is easy to see
that Ext is nowhere appealed to. There is thus nothing to be gained by questioning
Ext. Furthermore, this shows that this proof could as well have been carried out in a
more standard higher-order language in which plural propositional quantification is
replaced with quantifiers binding variables taking the syntactic position of sentential
operators. However, the models constructed in Section 5 do little to assure us of
the viability of To and Ti in such a context: They may show that these theories are
consistent in a proof system corresponding to �, and so a fortiori consistent in a proof
system omitting the axiom corresponding to Ext. But these models essentially validate
Ext, which is at least controversial in the case of quantification into operator position:
roughly, such quantifiers can be read as ranging over properties of propositions, which
are plausibly individuated non-extensionally. This raises the general question of which
sets of logical structure principles are consistent in higher-order systems with non-
extensional higher-order quantification, including more comprehensive type theories
in which any finite sequence of types gives rise to a type of relational terms.

Consider now the option of restricting PC. The option of restricting PC to PC
′

was already noted not to restore consistency. Another option is to restrict PC to
predicative instances, in which ϕ may not contain any plural propositional quantifiers
or parameters. Walsh [15] shows, in a similar type-theoretic setting, that the Russell–
Myhill theorem essentially relies on impredicative instances of comprehension. This
suggests that such a weakening of PC may be enough to render consistent all of the
principles of logical structure discussed in Section 3. Assessing this is beyond the scope
of this paper, but it is worth noting that even on such a restriction of PC, there are
natural variants of O–

◦ and IQp in an expanded language which are inconsistent.
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To motivate this expansion of the language, note that principles O–
◦ and IQv allow

one to recover operands and instances, in the sense that propositions expressed by
applications of ◦ are only identical if the operands are the same, and propositions
expressed by applications of Qv are only identical if the instances are the same. Those
who find such principles attractive may naturally also want to be able to talk of the
operands and the instances of any given proposition. Formally, they may thus want
to add to the language binary sentential operators O and I satisfying the following
principles:

(OO◦ ) O(r, p ◦ q) ↔ r = p ∨ r = q
(IIQv) I (q,Qvϕ(v)) ↔ ∃v(q = ϕ(v)).

In the case of binary operations ◦, there is little difference between O–
◦ and OO◦ . After all,

OO◦ entails O–
◦, as is easily seen. And conversely, given O–

◦, one can define an operation
O′ satisfying OO

′
◦ , as follows:

O′(p, q) := ∃r((p ∧ r) = q ∨ (r ∧ p) = q).

The case of IIQv is different. While IIQv is still easily seen to entail IQv , it is not clear how
one would even define, on the assumption of IQv , what it takes for p to be an instance
of q.

This additional strength of IIQv can be harnessed to show an inconsistency result
which requires only predicative instances of PC. Instead of the Russell–Myhill theorem,
the relevant derivation makes use of the following result, adapted from [14]:

Proposition 33. �(p, ϕ(pp)) ↔ p ≺ pp can be shown to be inconsistent using one
instance of plural comprehension, namely the one for condition ¬�(q, q).

Proof. Assume for contradiction that �(p, ϕ(pp)) ↔ p ≺ pp. By plural com-
prehension, there are some rr such that q ≺ rr iff ¬�(q, q). Then in particular
ϕ(rr) ≺ rr iff ¬�(ϕ(rr), ϕ(rr)). But by assumption, ϕ(rr) ≺ rr iff �(ϕ(rr), ϕ(rr)).
Contradiction.

Like the Russell–Myhill theorem, this relies on a version of plural comprehension
which entails the existence of an empty plurality. But again, this is not essential: if there
is no q such that ¬�(q, q), then it follows with �(p, ϕ(pp)) ↔ p ≺ pp that ϕ(pp) ⊀ pp
for all pp. But this is inconsistent with the existence of the (non-empty) plurality of all
propositions, which follows by an instance of predicative comprehension.

Let �– be �, with PC restricted to predicative instances. In this system, an instance
of the schema just shown to be inconsistent can be derived from O–

◦ and IIQp:

Lemma 34. O–
◦, I
I
Qp �– ∃q(q ∧ I (q ◦̂ p,∀r(r ≺ pp ◦̂ r))) ↔ p ≺ pp.

Proof. Assume O–
◦, I
I
Qp. Then ∃q(q ∧ I (q ◦̂ p,∀r(r ≺ pp ◦̂ r))) is equivalent to:

∃q(q ∧ ∃s((q ◦̂ p) = (s ≺ pp ◦̂ s))).

Since the proof of Lemma 6 does not appeal to plural comprehension, this is
equivalent to:

∃q(q ∧ ∃s(q = (s ≺ pp) ∧ p = s)).

This in turn is equivalent to ∃q(q ∧ q = (p ≺ pp)), which, finally, is equivalent to
p ≺ pp.
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Proposition 35. O–
◦ and IIQp are jointly predicatively inconsistent.

Proof. By Lemma 34, O–
◦ and IIQp predicatively entail:

∃q(q ∧ I (q ◦̂ p,∀r(r ≺ pp ◦̂ r))) ↔ p ≺ pp.

This is of the form �(p, ϕ(pp)) ↔ p ≺ pp, for �(p, p′) being ∃q(q ∧ I (q ◦̂ p, p′)) and
ϕ(pp) being ∀r(r ≺ pp ◦̂ r). Since ∃q(q ∧ I (q ◦̂ p, p′)) involves no plural propositional
quantifiers or plural propositional parameters, it follows with Proposition 33 that O–

◦
and IIQp are jointly inconsistent in �–.

While IIQp may be stronger than IQp, it isn’t inconsistent on its own, even in �, as
can be shown by adapting the above model constructions. Interpreting O and I as
follows, it is easily seen that operator models and instance models validate OO◦ and IIQp
respectively, for binary Boolean connectives ◦ and propositional quantifiers Qp:

[[O(ϕ,�)]]a = [[I (ϕ,�)]]a = c̃〈∅, {∅ : [[ϕ]]a ∈ [[�]]a	 }〉.

6.2. Weakening logical structure. Consider now the option of weakening the logical
structure principles, in order to obtain a consistent theory which nevertheless imposes
a natural form of logical structure on propositions. In the case of ≺, it is hard to see
how any principle weaker than O≺ would encode the idea that propositions inherit the
logical structure of sentences of the form ϕ ≺ pp. It seems therefore that the idea of
logical structure has to be restricted to cases other than those arising from sentences of
the formϕ ≺ pp. The matter is different in the case of the jointly inconsistent principles
O–

◦ and IQp, for a binary operator ◦ and a propositional quantifier Qp. In both cases,
there are some independent reasons one might have for thinking that these principles
are too strong.

In the case of IQp, one might note that even if propositions reflect some of the logical
structure of quantified sentences expressing them, it is plausible this does not include
the order of quantifiers in any string of the same quantifiers, and it is plausible that
the identity of propositions expressed is invariant under relabeling bound variables.
Illustrating this using universal quantifiers, the following identifications are plausible:

(Perm) ∀p∀qϕ = ∀q∀pϕ
(Var) ∀q∀pϕ = ∀p∀q(ϕ[p/q, q/p]).

Consider the instances of these principles for ϕ being p. Together, they entail that
∀p∀q p = ∀p∀q q. But with I∀p, it follows that ∀p∃q(∀q p = ∀q q). And any instance
of this universal claim for a truth p is false. Thus Perm and Var are inconsistent with
I∀p.

These considerations may motivate restricting IQp to cases in which the complement
clause ϕ is a complex formula which does not itself start with a quantifier. But only
such a restricted instance is appealed to in the results of Section 4, so even this restricted
version of IQp, for a propositional quantifierQp, is inconsistent with O–

◦, for any binary
sentential operator ◦.

In the case of binary sentential operators, recall how O◦ was noted to be inconsistent
with the commutativity of ◦, which motivated considering the weaker principle O–

◦. As
one might hold on to some version of the idea that propositions exhibit conjunctive and
disjunctive structure while arguing that conjunction and disjunction are commutative,
one might similarly hold on to this idea while arguing that conjunction and disjunction
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are associative. On this view, the following principle of associativity holds for both ∧
and ∨:

(p ◦ (q ◦ r)) = ((p ◦ q) ◦ r).

Someone might want to endorse this even if they think that conjuncts may be recovered
from conjunctions; on their view, there may simply be one conjunctive proposition with
three conjuncts p, q and r. As a commutative view of conjunction and disjunction can
be illustrated by thinking of conjoining and disjoining propositions as akin to putting
the conjuncts or disjuncts in a (conjunctive or disjunctive) bag, one can illustrate
an associative view of conjunction and disjunction by thinking of conjoining and
disjoining propositions as akin to gluing the conjuncts or disjuncts together (using a
conjunctive or disjunctive glue).

The associativity of conjunction is inconsistent with O–
∧: If (p ∧ (¬p ∧ ¬p)) = ((p ∧

¬p) ∧ ¬p), then by O–
∧, p must be p ∧ ¬p or ¬p, which cannot be the case if p is true.

A similar argument shows that the associativity of disjunction is inconsistent with
O–

∨. Thus, one might argue that there are independent reasons for thinking that O–
◦ is

too strong. On this view, the recovery of conjuncts and disjuncts has to be restricted
to conjuncts and disjuncts which are not themselves conjunctions or disjunctions,
respectively. That is, the relevant weakening of O–

◦ would be:

(O– –
◦ ) ∀r(r = p ∨ r = p′ ∨ r = q ∨ r = q′ → ∀p∀q(r 
= p ◦ q)) →

((p ◦ p′) = (q ◦ q′) → (p = q ∧ p′ = q′) ∨ (p = q′ ∧ p′ = q)).

But as it turns out, even such a weakened principle is inconsistent with any principle
IQp, assuming a couple of natural auxiliary assumptions governing negation. The first
is O¬; the second is the following principle, stating that no negation is an application
of ◦:

(¬ 
= ◦) ¬p 
= (q ◦ r).

Proposition 36. IfQp is a propositional quantifier and ◦ is a binary operator, then O– –
◦ ,

IQp, O¬ and ¬ 
= ◦ are jointly inconsistent.

Proof. Define:

ϕ ◦̌ � := ¬(¬(¬ϕ ◦ ¬¬ϕ) ◦ ¬(¬ϕ ◦ ¬ϕ)) ◦ ¬(¬� ◦ ¬�).

Similar to the proof of Lemma 6, it can be shown that O– –
◦ ,O¬,¬ 
= ◦ � O◦̌. The claim

follows along the lines of the proof of Lemma 7, with ◦̂ replaced by ◦̌.

There are various further weakenings which one might explore. For example,
it might be argued that conjunction and disjunction are idempotent, so that
p ◦ p = p, for ◦ being ∧ or ∨, without this trivializing the idea of conjunctive and
disjunctive propositional structure. Such idempotence is again inconsistent with O–

◦:
by idempotence, ((p ◦ ¬p) ◦ (p ◦ ¬p)) = (p ◦ ¬p), but by O–

◦, it follows from this that
both p and ¬p are (p ◦ ¬p). The weaker principle O– –

◦ can therefore also be motivated
by idempotence. Interestingly, in this case, one has independent reason to reject the
auxiliary principle ¬ 
= ◦ just appealed to, as the idempotence of ◦ immediately entails
¬p = (¬p ◦ ¬p).

§7. Conclusion. Do propositions exhibit logical structure? Corollary 5 and The-
orem 8 show, using the Russell–Myhill theorem, that there are significant logical
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limitations to any such logical structure: it cannot be that p and pp may always be
recovered from p ≺ pp, nor can it be, for any given binary sentential operator ◦ and
propositional quantifier Qp, that p and q may always be recovered from p ◦ q and the
instances may always be recovered from Qpϕ.

If propositions exhibit logical structure, then they must do so in a more limited form.
For example, it might be that the operands of sentential operators ◦ may be recoverable
but not the instances of propositional quantifiers, or vice versa. Alternatively, it may be
that both sentential operators and propositional quantifiers impart logical structure
on the propositions expressed using them, but they do so in more restrictive ways.
Section 6.2 provides some preliminary considerations in this direction, which indicate
the existence of a large number of (combinations) of weaker principles of logical
structure which might be explored.
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