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Abstract. In this note, we have obtained a Whitehead-like tower of a module
by considering a suitable set of morphisms and shown that the different stages of the
tower are the Adams cocompletions of the module with respect to the suitably chosen
set of morphisms.
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1. Introduction. The notion of Adams completion was suggested by Adams [1–3].
Initially, this was considered for admissible categories and generalized homology or
cohomology theories. Later on, Deleanu, Frei and Hilton [8] developed the concept
in a more general framework, where an arbitrary category and an arbitrary set of
morphisms of the category are considered. The dual notion, that is, the Adams
cocompletion was also suggested by them.

Let C be a category and S be a set of morphisms of C . Let C [S−1] denote the
category of fractions [13] of C with respect to S and F : C → C [S−1] be the canonical
functor. Let S denote the category of sets and functions. Then, for a given object Y of
C , C [S−1](Y,−) : C → S defines a covariant functor. If this functor is representable
by an object YS of C , i.e., C [S−1](Y,−) ∼= C (YS,−), then YS is called the generalized
Adams cocompletion of Y with respect to the set of morphisms S or simply the S-
cocompletion of Y . YS is also referred as the cocompletion of Y [4].

Given a set S of morphisms of C , its saturation S̄, is defined as the set of all
morphisms u in C such that F(u) is an isomorphism in C [S−1]. Further, S is said to be
saturated [4], if S = S̄.

The following theorem shows that under certain condition the Adams
cocompletion of an object in a category C always exists.

THEOREM 1.1 ([9], p. 32, dual of Theorem 1). Let C be a complete small U -
category, where U is a fixed Grothendieck universe and S be a set of morphisms of C
admitting a calculus of right fractions. Suppose that the following compatibility condition
with product is satisfied:

If each si : Xi → Yi, i ∈ I lies in S, where the index set I is an element of U , then
∧
i∈I

si : ∧
i∈I

Xi → ∧
i∈I

Yi lies in S.

Then, every object X of C has an Adams cocompletion XS with respect to the set of
morphisms S.
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The theorem given below characterizes Adams cocompletion in terms of a
couniversal property.

THEOREM 1.2 ([4], p. 224, Proposition 1.1). Let S be a set of morphisms of C
admitting a calculus of right fractions. Then, an object YS of C is the S-cocompletion
of the object Y with respect to S if and only if there exists a morphism e : YS → Y in
S̄ which is couniversal with respect to morphisms in S : given a morphism s : Z → Y in
S there exists a unique morphism t : YS → Z in S̄ such that st = e. In other words, the
following diagram is commutative:

YS
e ��

t

���
�
� Y

Z

s

����������

In order to show the morphism e : YS → Y , as constructed in the above theorem,
belongs to S, the following result will be used.

THEOREM 1.3 ([5], p. 533, dual of Theorem 1.3). Let S be a set of morphisms in
a category C admitting a calculus of right fractions. Let e : YS → Y be the canonical
morphism as defined in Theorem 1.2, where YS is the S-cocompletion of Y. Furthermore,
let S1 and S2 be sets of morphisms in the category C which have the following properties:

(a) S1 and S2 are closed under composition;
(b) fg ∈ S1 implies that g ∈ S1;
(c) fg ∈ S2 implies that f ∈ S2;
(d) S = S1 ∩ S2. Then, e ∈ S.

2. The category M̃ . Behera and Nanda [4] have obtained the Cartan–Whitehead
decomposition of a 0-connected-based CW -complex with the help of a suitable set of
morphisms. This note contains a Cartan–Whitehead-like decomposition of a module
over a ring with unity.

The relative homotopy theory of modules, including the (module) homotopy
exact sequence was introduced by Peter Hilton ([11], Chapter 13). Infact, he has
developed homotopy theory in module theory, parallel to the existing homotopy
theory in topology. Later, C. J. Su [15–17] has extensively studied homotopy theory of
modules. Unlike homotopy theory in topology, there are two types of homotopy
theory in module theory, namely, the injective theory and the projective theory. They
are dual but not isomorphic [17]. Using injective theory, we have obtained the Cartan–
Whitehead-like decomposition of a module. We do this in a general framework by
considering a Serre class C of modules [7,14]. The narrative may be recalled from ([11],
Chapter 13). We briefly describe some of the concepts towards notational view-points.

Let � be a Dedekind domain. Let U be a fixed Grothendieck universe [13]. Let
M denote the category of right �-modules and �-module homomorphisms and let
M̃ be the corresponding i-homotopy category, that is, the objects of M̃ are all right
�-modules and the morphisms are i-homotopic classes of �-homomorphisms. We
assume that the underlying sets of elements of M are elements of U .

Let M and N be right �-modules and f : M → N be a �-homomorphism. Then,
f is i-nullhomotopic, denoted f �i 0, if f can be extended to some injective module
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M containing M. Also, if g : M → N, then f �i g, if f − g �i 0 [11]. We denote the
i-homotopy class of f by [f ]i.

We now choose a suitable set of morphisms Sn for the category M̃ . Let A be any
right �-module. A morphism α : X → Y in M̃ is in Sn if and only if α∗ : π̄m(A, X) →
π̄m(A, Y ) is a C-isomorphism for m > n and a C-monomorphism for m = n.

We show that this set of morphisms Sn of the category M̃ admits a calculus of
right fractions [10, 13].

PROPOSITION 2.1. Sn admits a calculus of right fractions.

Proof. Clearly, Sn is a closed family of morphisms of the category M̃ . We shall
verify conditions (i) and (ii) of Theorem 1.3∗ ([8], p.70).

Let α : X → Y and β : Y → Z be two morphisms in M̃ . We show if βα ∈ Sn and
β ∈ Sn, then α ∈ Sn. Since βα ∈ Sn and β ∈ Sn, (βα)∗ = β∗α∗ : π̄m(A, X) → π̄m(A, Z)
and β∗ : π̄m(A, Y ) → π̄m(A, Z) are C-isomorphisms for m > n and C-monomorphisms
for m = n. Therefore, α∗ is a C-monomorphism for m ≥ n. In order to show α∗ to be
a C-isomorphism for m > n, we need to show α∗ is a C-epimorphism for m > n. We
have β∗α∗(π̄m(A, X)) = π̄m(A, Z) for m > n, that is, β∗(α∗(π̄m(A, X))) = β∗(π̄m(A, Y ))
for m > n. From this, we conclude that α∗(π̄m(A, X)) = π̄m(A, Y ) for m > n, that is,
α∗ is a C-epimorphism for m > n. Therefore, α∗ is a C-isomorphism for m > n and a
C-monomorphism for m = n. Hence, condition (i) of Theorem 1.3∗ ([8], p.70) holds.

In order to prove the condition (ii) of Theorem 1.3∗ ([8], p.70), consider the diagram

X

α

��
Y γ

�� Z

with γ ∈ Sn in M̃ . We assert that the above diagram can be completed to a weak
pull-back diagram in M̃

W
δ �����

β

���
�
� X

α

��
Y γ

�� Z

with δ ∈ Sn. Let α = [f ]i and γ = [s]i. We replace f and s by fibrations [18], that is,
f = f ′r and s = s′t, where f ′ and s′ are fibrations and r, t are i-homotopy equivalences.
Let r̄ and t̄ be i-homotopy inverses of r and t, respectively. Let Pf = X ⊕ D and
Ps = Y ⊕ D, where D is the maximal divisible submodule of Z. Let W be the usual pull-
back of f ′ and s′; hence there exist p : W → Pf and q : W → Ps such that f ′p = s′q.
Let δ = [r̄p]i and β = [t̄q]i. Hence, αδ = [f ]i[r̄p]i = [f r̄p]i = [f ′rr̄p]i = [f ′p]i = [s′q]i =
[s′tt̄q]i = [st̄q]i = [s]i[t̄q]i = γβ. Thus, we have a commutative diagram

W
δ ��

β

��

X

α

��
Y γ

�� Z

in M̃ .
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Moreover, let ϕ : R → X and ψ : R → Y in M̃ be such that αϕ = γψ . Let ϕ =
[u]i, ψ = [v]i. Thus, we have f u �i sv. This implies f ′ru �i s′tv, that is, f ′ru − s′tv �i 0,
that is, f ′ru − s′tv can be extended to some injective module R containing R.

R
k

���
��

��
����

h

R
f ′ru−s′tv

�� Z

Thus, kh = f ′ru − s′tv. Consider the following diagram:

R
l �����

k ���
��

��
��

���

h

Pf

f ′

��
R

f ′ru−s′tv
�� Z

Since f ′ is a fibration, there exists l : R → Pf such that f ′l = k. Thus, f ′lh = kh and
f ′ru − s′tv = kh = f ′lh, that is, f ′(ru − lh) = s′(tv). In the following diagram:

R ru−lh

��

j

���
�

�
�

tv

��

W
p ��

q

��

Pf

f ′

��
Ps s′

�� Z

since W is the pull-back of f ′ and s′ in M , there exists j : R → W such that pj = ru − lh
and qj = tv. Let θ = [j]i. In the following diagram, in M̃ ,

R ϕ

��

θ

		�
�

�
�

ψ





W
δ ��

β

��

X

α

��
Y γ

�� Z

we have δθ = [r̄p]i[j]i = [r̄pj]i = [r̄(ru − lh)]i = [r̄ru − r̄lh]i = [u − r̄lh]i. We claim that
[u − r̄lh]i = [u]i, that is, u − r̄lh �i u; hence we need to show that r̄lh �i 0, which is
evident from the following commutative diagram.

R
r̄l

���
��

��
��

���

h

R
r̄lh

�� X
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Also, βθ = [t̄q]i[j]i = [t̄qj]i = [t̄tv]i = [v]i = ψ . Thus, we have the required pull-back
diagram in M̃ .

It remains to show that δ ∈ Sn. Let F = ker β and from the commutative diagram

F

��

F

��
W

δ ��

β

��

X

α

��
Y γ

�� Z

in M̃ , we have the following commutative diagram:
· · · �� π̄m+1(A, Y ) ��

γ∗
��

π̄m(A, F) �� π̄m(A, W )

δ∗
��

��

· · · �� π̄m+1(A, Z) �� π̄m(A, F) �� π̄m(A, X) ��

π̄m(A, Y ) ��

γ∗
��

π̄m−1(A, F) �� · · ·

π̄m(A, Z) �� π̄m−1(A, F) �� · · ·

By five Lemma [6], δ∗ is a C-isomorphism for m > n and a C-monomorphism for m = n,
that is, δ ∈ Sn. This completes the proof. �

We show the following result always holds in the category M̃ together with the
chosen set of morphisms Sn.

PROPOSITION 2.2. Let sj : Xj → Yj lie in Sn for each j ∈ J, where the index set J is
an element of U . Then, ∧

j∈J
sj : ∧

j∈J
Xj → ∧

j∈J
Yj lies in Sn.

Proof. Let s = ∏

j∈J
sj, X = ∏

j∈J
Xj and Y = ∏

j∈J
Yj . Define a map s : X → Y by the rule

s(x) = (sj(xj))j∈J , where x = (xj)j∈J . Clearly, s is well defined and is also a morphism in
M̃ . Consider the commutative diagram

X
s ��

pj

��

Y

qj

��
Xj sj

�� Yj
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where pj and qj are the projections. Let F = ker pj and from the commutative diagram

F

��

F

��
X

s ��

pj

��

Y

qj

��
Xj sj

�� Yj

we have the following commutative diagram:
· · · �� π̄m+1(A, Xj) ��

sj∗
��

π̄m(A, F) �� π̄m(A, X)

s∗
��

��

· · · �� π̄m+1(A, Yj) �� π̄m(A, F) �� π̄m(A, Y ) ��

π̄m(A, Xj) ��

sj∗
��

π̄m−1(A, F) �� · · ·

π̄m(A, Yj) �� π̄m−1(A, F) �� · · ·

By five Lemma [6], s∗ is a C-isomorphism for m > n and a C-monomorphism for m = n,
that is, s ∈ Sn. This completes the proof. �

The following result is well known.

PROPOSITION 2.3. The category M̃ is complete.

3. Existence of Adams cocompletion in M̃ . Using Propositions 2.1–2.3, from
Theorem 1.1, we draw the following result.

THEOREM 3.1. Every object X in the category M̃ has an Adams cocompletion XSn

with respect to the set of morphisms Sn.

Since every object in the category M̃ has Adams cocompletion with respect to the
set of morphisms Sn, from Theorem 1.2, we will have the following result.

THEOREM 3.2. Every object X of the category M̃ has an Sn cocompletion with respect
to the set of morphisms Sn if and only if there exists a morphism en : XSn → X in S̄n

which is couniversal with respect to the morphisms in Sn : given a morphism s : Y → X in
Sn there exists a unique morphism tn : XSn → Y in S̄n such that stn = en. In other words,
the following diagram is commutative:

XSn

en ��

tn

���
�
� X

Y

s

����������

The morphism en : XSn → X as constructed in Theorem 3.2 is in Sn.
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THEOREM 3.3. en ∈ Sn.

Proof. Let S1
n = {α : X → Y in M̃ | α∗ : π̄m(A, X) → π̄m(A, Y ) is a C-

monomorphism for m ≥ n} and S2
n = {α : X → Y in M̃ | α∗ : π̄m(A, X) → π̄m(A, Y )

is a C-epimorphism for m > n}. Clearly, Sn = S1
n ∩ S2

n and S1
n and S2

n satisfy
all the conditions of Theorem 1.3. Hence, en ∈ Sn. This completes the
proof. �

Now, we will obtain a Whitehead-like tower for a module with the help of chosen
set of morphisms Sn whose different stages are the Adams cocompletion with respect
to the set of morphisms Sn.

THEOREM 3.4. Let X be a right �-module. Then, for n ≥ 0, there exist right �-
modules XSn , maps en : XSn → X and maps θn+1 : XSn+1 → XSn such that

(i) en∗ : π̄m(A, XSn ) → π̄m(A, X) is a C-isomorphism for m > n and π̄m(A, XSn ) = 0
for m ≤ n.

(ii) en+1 = en ◦ θn+1.

Proof. For every n ≥ 0, let XSn be the Sn-cocompletion of X and en : XSn →
X be the canonical map. We have already shown en ∈ Sn. So en∗ : π̄m(A, XSn ) →
π̄m(A, X) is a C-isomorphism for m > n. Every module has an injective resolution
[6]. Consider an injective resolution of A as A → A → SA → · · · → SmA →
· · · with successive cokernels SA, S2A, . . . , Sm+1A, . . .. We claim that SmA is
injective. We can decompose the above sequence by the following short exact
sequences.

0 → A → A → SA → 0
0 → SA → SA → S2A → 0

...
...

...
0 → Sm−1A → Sm−1A → SmA → 0

...
...

...
Applying Extj

�(A,−) for every integer j ≥ 1 to the short exact sequence 0 → Sm−1A →
Sm−1A → SmA → 0, we get the following short exact sequence [6].

0 → Extj
�(A, Sm−1A) → Extj

�(A, Sm−1A) → Extj
�(A, SmA) → 0

Since Sm−1A is injective, Extj
�(A, Sm−1A) = 0 for every integer j ≥ 1 [6]. So,

Extj
�(A, SmA) = 0 for every integer j ≥ 1. This concludes SmA is injective [6]. Therefore,

π̄m(A, XSn ) = 0 for m ≤ n [11]. Next, we have en ∈ Sn ⊂ Sn+1. By the couniversal
property of en+1, there exists a unique morphism θn+1 : XSn+1 → XSn such that the
following diagram commutes, that is, en+1 = en ◦ θn+1.

XSn+1

en+1 ��

θn+1

���
�
� X

XSn

en

��								

Thus, we get a Whitehead-like tower of a module in M̃ . This completes the
proof. �
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