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REPRESENTATION OF TYPE A MONOIDS

U. ASIBONG-IBE

A semigroup T consisting of one-one mapping between certain principal left ideals
in a type A semigroup S is constructed. T is shown to be a type A semigroup. A
representation of S by T is then obtained which is analogous to Vagner-Preston’s
results on inverse semigroups.

1. INTRODUCTION

Many results are now available in the literature on type A semigroups; some of
which are analogous to those on inverse semigroups; see for example Fountain [6, 5],
Asibong-Ibe [2, 3, 4], Amstrong [1] and Fountain and Lawson [7]. Because of the close
relationship which exists between a type A semigroup and an inverse semigroup, each
type A being basically a special type of subsemigroup of an inverse semigroup via an
embedding, it is natural to ask whether a representation exists for a type A semigroup
similar to Vagner-Preston’s for inverse semigroup. This paper answers this question.

Let us recall a few definitions. Let S be a semigroup and a, b € S. Then
(a, b) € L£* if and only if aLb 1s an oversemigroup of S. The relation £* which properly
contains the Green’s relation £ on S has the following equivalent characterisation, see
[10].

LEMMA 1.1. Let S be a semigroup and a, b € S. The following are equivalent:

(i) (ab) €L,
(i) for all z,y in S, az = ay if and only if bz = by,

(i) there exists an S-isomorphism \: aS* — bS* such that al =b.

LEMMA 1.2. Let S be a semigroup and ¢ an idempotent in S. Then for any a
in S, the following are equivalent:
(i) (e,a)e L,
(i) ae=a, andforall z,y in S, az = ay if and only if ez = ey.
R* is dual to £* and the above definition and properties of £* apply in a dual
manner to R*.
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Let S be a semigroup with a semilattice E(S) of idempotents. Then § is said to
be an adequate semigroup if each L*-class and each R*-class contains an idempotent.

An adequate semigroup S is said to be a type A semigroup if for each a in §
and e in E(S), ea = a(ea)” and ae = (ae)ta, where z* and zt are respectively
idempotents in the £* and R* classes L} and R};. A type A semigroup has been
characterised in the following way in [5).

THEOREM 1.3. Let S be an adequate semigroup. Then for a € S, e € E(S),
the following are equivalent:

(i) S is a type A semigroup,
(ii) eS'NaS! = eaS?! and S'eN S'a = S'ae, and
(iii) there exist embeddings A1: S — S1, and A3: § — S, into inverse semi-
groups Sy, S, such that a*); = (a)d1) " (aA1) and a* A; = (a)z)(adz) ™ .

2. TYPE A SEMIGROUP OF MAPPINGS

In this and subsequent sections, the term semigroup S will refer to a type A
semigroup S with E(S) as its set of idempotents. Other notation used here agrees
with that of [9] and [5].

Let a € S; then at, a* € E(S), and aa* = a*a = a. Consider the left principal
ideals Sat and Sa* and let z; € Sat. Then for some z € §, z; = zat € Sat
and z1a = za*ta = za = zaa* € Sa*. Evidently for every s in S, saa* = s(aa*) =
sa € Sa*. Let us define a mapping a,: Sa* — Sa* by putting for every z in §,
za, = za, where a € §. Since aa* = a, Sa = Saa®* C Sa*,sofor z € S, za =
zata = (za*)a, € (Sat)a, so evidently (Sat)as, = Sa C Sa*. Thus rana, = Sa.
However, if a is regular then Sa = Sa*, thus in this case rana, = Sa*. Let us show
that each a,, a € S is a one-to-one mapping.

LEMMA 2.1. For each a € S, a, is a one-one mapping from Sa* into Sa*.
Also a, is onto if and only if a is regular.

ProoF: Consider the mapping a,: Sa* — Sa*, and let za = ya for z,y in
S. Then (zat)a, = za = ya = (yat)as. But aR*at, so za = ya if and only if
zat = ya*t forall z, y in §. Consequently, a; is a one-one mapping.

Now if a, is onto then (Sat)a, = Se*. Thus (Sat)a, = Sate = Sa = Sa*;

consequently ala*, and a must be regular. Conversely, if a is regular, aa~'a = a,

1

a* = a"'a and clearly Sa* = Sa, so L, is onto. 1]

COROLLARY 2.2. For each a € §, a, has inverse a,-1 if and only if a is
regular.

PROOF: If a;! = a,-1 then zat = (za)e;! = (za)a,-1 = zaa™'. So zata =
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1 1 1

a = za and bijectivity of a, forces a* = aa™! so aa~'a = a. Conversely if a is

1

zaa~

regular a, is bijective so a;! exists and obviously a! = a,-1. 1

Now let @ be a non-regular element in S. Let A: Sa — Sa* be an S-system
isomorphism with al = a*. Thus given a,: Sat — Sa* with rana, = Sa we can
define o ! | Sa — Sa*t by putting a;! = A so that (za)a;?! = (za)X = z(ad) = zat
for z € S. One checks that if z € Sat, zaga;! = (za)a;! = za’t = z and for each
y = za, we have yajla, = zata, = za = y. Observe that Sa # Sa* because an
equality implies regularity of a, which is a contradiction to our assumption.

Now let us consider the subset T' of Z(S), the symmetric inverse semigroup where
T ={aa|a=S5,a,:Sat — Sa*} and impose the condition that a;! € T if and only
if a;! = a,-1, that is if and only if a is regular. Thus the domain and codomain of
elements of T are respectively the principal left ideals ganerated by a* and a* for any
a€S.

An important fact is there is closure in T with respect to the product of its
elements. Let us show this as follows. Consider the mappings a4: Sat — Sa*,
ay: Sbt — Sb*. Now Sa* N Sbt* = Sa*b*, and a*b* = (abt)*. Consequently
ab* = aa®b* = a(ab*)"; hence a(ab*)’ = ab* = (ab*)*a. Since Sa C Sa* then
San Sb* = Sab* C Sa*b* so that Sab* = S(ab*)ta = S(ab)*a = S(ab)*a,. But
Sab* C Sb*, and hence (Sab*)ay C (5b%)as, and (Sabt)as = S(ab)ta.ap = Sab.
Indeed, since (Sa*b*)ay = Sa*b and a*b = b(a*b)" = b(ab)*, one checks that
Sa*b = Sb(ab)* C S(ab)*. With Sab C S(ab)*, it is clear that the codomain of
azap is §(ab)* and its domain is S(ab)t. Evidently, it follows from these facts that
agay = agp, showing closure property in T'. 1t is then clear that T is a semigroup.

Let a, b be regular elements in §. Then (ab) is regular with inverse (ab)™* € S.
Also a,, ap are regular in T and evidently a,; = aq.ap is regular in T' with inverse
1971

a1 €T, al) = (aeap)™! = ay = @p-1ag-1 = Qp-15-1 = @rgy-1 € T Let

us now show below that T is a type A monoid. 0

THEOREM 2.3. Foratype A semigroup S,theset T = {a, |a € S, a,: Sat —
Sa*} such that for each z in S, za, = za, is a type A monoid.

We will prove this fact through the following lemmas.
LEMMA 2.4.
(i) (aa, as) € £L*(T) if and only if (a, b) € L*(S), and
(i) (aq, ap) € R*(T) if and only if (a, b) € R*(S).

PROOF: Let (a,, ap) € L* for a,, ap in T. Then for all a., ag in T we have
that

aga. = agay if and only if apa, = apay.
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Let asa. = asag. Then (domagac)e, = rana, Ndoma, = (rana, Ndomag) =
(domasaq)a,. Also (rana, Ndomac)a, = (rana, Ndomag)ag. Now if za, €
ran a, N dom acv, then the equality rana, N doma, = rana, N domay implies that
for all z in §, zaa. = zaag. That is, zac = zad and in particular for z = a*,
ac = atage = atac = atad = atagy = ad. Thus if aqc = aqq then ac = ad for any
Qgcy Ogd € T'. But a,c = agq if and only if ap. = apg. It can be shown that whenever
this holds then ac = ad if and only if bc = bd. Hence (a, b) € L*(S). Conversely, let
ac = ad. Then a,. = agqg and so aga. = azay. But for all ¢, d € §, ac = ad implies
bc = bd and whenever ac = ad, then a,a, = asaqg. Hence for all ¢,d € S, we can
deduce that a,a, = a,aq4 implies aya. = apay. Since this is true for all ac, ag € T,
then (a,, ap) € L*(T), which completes the proof of (i). The proof of (ii) is similar, so
the lemma is proved.

From the above lemma we have the following.
COROLLARY 2.5. Let a4, ay € T. Then
(1) (aa, a») € H*(T) if and only if (a, b) € H*(S),
(ii) (@a, as) € D*(T) if and only if (a, b) € D*(S).

ProorF: (i) If (aa, as) € H*(T), then obviously (a., a) € L*(T) and (aa, ap) €
R*(T) and by Lemma 2.4 (a, d) € L* NR* = H*. Conversely, if (a,b) € H*, then
(aa, ap) € H*(T) holds from Lemma 2.4.

(ii) For (aa, ap) € D*(T'), there exist az, az,, ..., az, € T such that

a.Lraz, R*az, L ...az, R as.

But Lemma 2.4 implies that in §, eL*z;R*z,L*,...,2,Rb whence (a, b) € D*. The
converse can also be shown using Lemma 2.4.

To identify idempotent elements in T', observe that if a in § is an idempotent
then at = a* =a. If z € Se, ze = z so that za. = ze, a. = 1s..

LEMMA 2.6. An element a, € T is an idempotent if and only if a in S is an
idempotent. Moreover, E(T) is a semilattice.

2

ProoF: f a, is an idempotent then o2 = @, implies doma?

a
= (rana, Ndomag)a;! = domay,, that is, rana, Ndoma, = rana, so that rana, C

domag. Also ran az = (rana, Ndoma,)a, = rana, hence domag, C rana,. From

both inclusions, doma, = rana,. Thus Sa = Sa* and for z € doma,, za? = za,,

that is za? = za, so in particular, for z = at, a> = a*a? = ata = a. Therefore a is

an idempotent in S.
Conversely if a is an idempotent in § then a* = at so that Sat = Sa* and quite

2

clearly doma? = dom a, = rane, = rana? and for all z € Sa*, za? = za. Hence for

all z € Sat, za? = za,,s0 a2 = q,.
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Let a., ay € E(T), the set of idempotents of T. Now a.ay = a.y = age = a;a.
andif e < f, ef = fe =, so a.ay = aja. = a.. This completes the proof of the
lemma. 1

For ¢ € S,a* € L}, at € R} and a,0,+ = Qaa* = @4 and @ +Qq = 044 = Qg
Evidently (a4, @a+) € L*(T) by Lemma 2.4, so we have

LEMMA 2.7. Foreach a, €T

() (aa, ag+) € L*(T) and
(i) (aa, ag+) € R¥(T).

Let L}, and R, be the £*(T) and R*(T) classes containing a,. Let us denote
by a} and a} the unique idempotents in L, and R} respectively. Now for a € §,
e € E(S), ea = a(ea)®, ae = (ae)+a, and consequently a.as = @ea = Ag(ea) =
QAaQ(eq)y = Qalty, = ag(aea,)’ and similarly aza. = (a¢a¢)+a¢. Thus we have
proved that

LEMMA 2.8. For as,a. €T,

(i) a@cas = az(a.a,)” and
(i) aeae = (aqac)ta,.

These last observations together with Lemmas 2.4 to 2.7 complete the proof of
Theorem 2.3.

Let B,: a*S — atS, a € S where z8, = az for z € §; using methods similar to

the above, 8, is a one-to-one mapping satisfying Lemmas 2.4 to 2.8 and

COROLLARY 2.9. T*={fB,|a € S} is a type A semigroup.

3. REPRESENTATION OF TYPE A MONOID

We show here that there is a Vagner-Preston type representation from a type A4
semigroup S into a type A semigroup of mappingson aset X. Let X =5, a€ S,
and let ¢: S — T be a mapping such that ap = a,, where T = {a, | @ € S} is the
type A semigroup in Theorem 2.3 above.

THEOREM 3.1. The mapping ¢: S — T, where ap = a,, is an isomorphism
from S onto T'.

PROOF: If a,b € §, then (ab)p = aup = azay = ap.bp. Also ap = by implies
ag = ap, which in turn implies that Sat = Sb*, Sa = Sb, the domains and ranges of
a, and ay, respectively, and for all z € Sat, za, = zay. Now Sat = Sbt implies
a*Lb* and hence a* = b*. Similarly Sa* = S$b* implies a* = b*. But za, = zas
implies that za = zb for all z € Sat; hence for z = a¥, a = ate = a*b = b*b = b.
Thus if a, = ap then @ = b, showing that ¢ is a one-to-one homomorphism. By
definition of T', ¢ is onto, so the proof is complete. 0
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From Corollary 2.9, T' = {Ba. | ¢ € S} in type A semigroup and so

COROLLARY 3.2. Let 3: S — T' be a mapping given by ay) = B,,fora € S.
Then ) is an isomorphism.

PRrRoOOF: As in Theorem 3.1 above, (ab)y = Ba5 = Bafs = (a¥p)(b), so ¥ is a
one-to-one homomorphism from S onto T'. This completes the proof. 0

Let S be a left type A monoid and T = {a, | @ € Sya,: Sat — Sa*} where
a;' € T if and only if a;! = a,-1, that is, if and only if a is regular.

THEOREM 3.3. T is aleft adequate semigroup.

ProoOF: Consider a,: Sa* — Sa*, ap: Sbt — Sb* as defined earlier, where
a,b € S are non-regular. Now rana, = Se¢ # Sa* and rana, Ndoma = San
Sbt = Sabt = S(ab)Ta = (domays)a,. Also (rana, Ndomasz)ay = Sabth = Sab C
S(ab)*, so that (rana, Ndom a)ay = ran ags. Since (dom a,p)a,ap = ranags, by the
previous lemma, T is a semigroup.

The proof of the theorem is complete by noting that the relevant aspects of Lemmas
2.4 — 2.7 above hold for T as well. 0

In fact T is a left type A semigroup since for a,, a. € T', aga, = (a,a¢)+aa,
which is true by Lemma 2.8 since as § is a left type A monoid, for a in S, e € E(S),
ae = (ae)ta.

Since ea # a(ea)” does not hold in general for a left type A semigroup S with
a € S, and e an idempotent, in general the equality a.as = as(acas)” does not hold.
However, we show below an example in which S is left type A and T a type A monoid.

EXAMPLE: Consider the semigroup § with the following multiplication table:

NN NN NN

8 A N N N

O 8ol
NN NN OO
N NN N OR
NN On

The L* classes of S are {f, a, c}, {z}, {e} and the R* classes are {e, a, c}, {f}, {z}.
It is easy to check that for each idempotent u € E(S) and each z € §, zu = (zu)*z,
and that ¢ = ea # a(ea)’ = af = a, hence S is left type A but not a right type A
monoid.

Now define ag: Sat — Sa* as usual. So T = {a., ay, a;, as, ac}, with L*-
classes {ag, ac, as}, {ac}, {a:} and R*-classes: {aq, ac, a.}, {as} and {a;}. Itis
straightforward to verify that a., a; are the only elements with a;? = a,-1 = a.,
a}'l = a1 = ay 80 a,1, ay-1 € T. Now for all w € {e, f}, z € S,
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Azl = (oz,oz,,)"haz= but while ea # a(ea)”, we have a.as = @.a = ac, and
QaQ(eq)s = ac(aeac)' = a,af = agay = aq and for all z € §, za, = za,, hence
Q. = a,, since Sct = Sat, and Sc¢ = Sa. One also finds that a.a. = a.(a.a.)’,
and in general a,a; = az(asa;)” so T is a type A, with E = {a.,ar,a.} asa
semilattice.

From all the forgoing we have for the left type A semigroup in the table:

THEOREM 3.4. S is isomorphic to a left type A semigroup of one-to-one map-
pingson S.

Let us consider an arbitrary left type A semigroup § and T, the semigroup of

one-to-one mappings a5, a € §. The following result holds.

THEOREM 3.5. Let S be a left type A semigroup; then T is a left type A
semigroup. Moreover S is isomorphic to T'.

To see this clearly, consider an arbitrary left type A monoid § and T = {a, |a €
S, ag: Sat — Sa*} where a,: Sa* — Sa* is defined by putting

za, = za, for every z in S,

and a;' € T, a € § if and only if ;! = a,—1. Then San Sb* = Sab*, for a € S,
bt € E(S), and if a,: Sat — Sa*, ap: Sb* — Sb* and a, b € S have no inverses in
S, rana, = Sa # Sa*, ranay = Sb # Sb*. Also domagap = S(a.b)+ = dom a4} and
ranagap = Sab =rana,; and T is a semigroup.

Sa = Sa* if and only if S is regular and in such cases a, is bijective and a ! =
ag-1.

That T is a left type A semigroup is shown in Theorem 3.3 together with Lemmas
2.4 - 2.6 and the following lemmas.

LEMMA 3.6. (ag, a.,+) € R*(T) forall a € S, at € E(S).

LEMMA 3.7. aga. =(aqa)ta, forall a€ S, e € E(S).

PROOF: @a@e = Qae = Q(aeyta = X(ge)tAa = ata, = (asa.)ta,, since ae =
(ae)ta. 1]

The proof of Theorem 3.5 is complete by noting that if 4: § — T is a mapping
where 9 is defined by ay = a, for a € S, then forall a, b in §

(ab)y = (a)(b)

and v is one-to-one and onto.
If S is an adequate semigroup which is not type A, the above result may not hold.
Now for a, b € S suppose that z € San Sb*. Then z = sa = tb* for some s,t € S
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and since z = zb* = sab* € Sabt then SanNSbt C Sab?. To understand the situation
clearly, let § =CUDU {1} where C = (a) is the free semigroup on a and D = (b)
the free monoid generated by b, with multiplication in S defined by a™b™ = p™+t™,
bma™ = a™*t" for m >0, n > 0, b° = ¢, and 1 is the identity in §. The £*- and

R*

-classes of § are respectively CU {1}, D and {1}, CUD. For a,b€ S, a* =1,

at =e¢,b* =b" =e, SanSb*t =0, Sab* = D\ {e}, so San Sb+ # Sab*. Moreover,

Qgq

(1]
(2]

(3]
(4]
(5]
(6]
(7]
(8]
(9]

(10]

: Sa* — Sa* is not one-to-one since for z = a*, y = b, za, = ya, but z #y. 0
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