Canad. Math. Bull. Vol. 21 (2), 1978

STRONG EXTENSIONS VS. WEAK EXTENSIONS OF C*-ALGEBRAS

вү S. J. CHO

Let \mathcal{H} be a separable complex infinite dimensional Hilbert space, $\mathcal{L}(\mathcal{H})$ the algebra of bounded operators in \mathcal{H} , $\mathcal{H}(\mathcal{H})$ the ideal of compact operators, $\mathcal{A}(\mathcal{H}) = \mathcal{L}(\mathcal{H})/\mathcal{H}(\mathcal{H})$, and $\pi :: \mathcal{L}(\mathcal{H}) \to \mathcal{A}(\mathcal{H})$ the quotient map. Throughout this paper A denotes a separable nuclear C^* -algebra with unit. An extension of A is a unital *-monomorphism of A into $\mathcal{A}(\mathcal{H})$. Two extensions τ_1 and τ_2 are strongly (weakly) equivalent if there exists a unitary (Fredholm partial isometry) U in $\mathcal{L}(\mathcal{H})$ such that

$$\tau_1(a) = \pi(U^*)\tau_2(a)\pi(U)$$

for all *a* in *A*. We denote the family of strong equivalence classes of extensions of *A* by Ext^s *A*. Recent results of Voiculescu [7] and Choi-Effros [4] show that Ext^s *A* is always an abelian group. For more information about Ext^s of commutative C^* -algebras see [1, 2, 3]. We denote the strong equivalence class of an extension τ by [τ]. Since if τ has a lifting (i.e. there exists a *monomorphism σ of *A* into $\mathscr{L}(\mathscr{H})$ such that $\pi\sigma = \tau$) then every $\tau' \in [\tau]$ has a lifting, we can say without ambiguity that [τ] has a lifting.

Let

$$T^+ = \{ [\tau] \in \operatorname{Ext}^s A \mid [\tau] \text{ has a lifting} \}.$$

Let T be the subgroup of Ext^s A generated by T^+ . We denote the quotient group Ext^s A/T by Exy^w A.

REMARK 1. If A has a one-dimensional representation, then for each $[\tau] \in T^+$ by adding an appropriate multiple of that one-dimensional representation to the lifting of $[\tau]$ we can make the corresponding lifting a unital one. Hence T = 0 and $\operatorname{Ext}^w A = \operatorname{Ext}^s A$. This will be the case if A has a non-zero commutative quotient, and in particular $\operatorname{Ext}^s(A \oplus \mathbb{C}) = \operatorname{Ext}^w(A \oplus \mathbb{C})$ for any nuclear algebra A.

REMARK 2. For any finite dimensional C^* -algebra A, Ext^w A = 0.

REMARK 3. The subgroup T is a homomorphic image of \mathbb{Z} . To see this, for each n > 0 we let $\alpha(n)$ be an element in T^+ which has a lifting σ of

Received by the editors April 8, 1977.

codimension *n*, i.e. dim $(1_H - \sigma(1)) = n$. Suppose that two extensions τ_1 and τ_2 have liftings σ_1 and σ_2 , respectively, of the same codimension. Since σ_i is a faithful representation on $\sigma_i(1)\mathcal{H}$, by (Theorem 1.5, [7]), there is a unitary U in $\mathcal{L}(\sigma_1(1)\mathcal{H}, \sigma_2(1)\mathcal{H})$ such that

$$\sigma_1(x) = U^* \sigma_2(x) U \in \mathscr{K}(\sigma_1(1)\mathscr{H})$$

for all x in A. Since ind U=0 in $\mathcal{L}(\mathcal{H})$, we can make U a unitary in $\mathcal{L}(\mathcal{H})$. Hence $[\tau_1]=[\tau_2]$. Thus α is a well-defined monoid morphism of non-negative integers onto T^+ . Hence we can extend α to a group homomorphism of \mathbb{Z} onto T.

The following proposition justifies the notation for Ext^w.

PROPOSITION 1. An extension τ belongs to the weak equivalence class of the trivial extension if and only if $[\tau] \in T$.

Proof. Suppose τ belongs to the weak equivalence class of the trivial extension. Then there exists a Fredholm partial isometry W such that $\pi(W^*)\tau(\cdot)\pi(W)$ has a unital lifting σ . We may assume that $W^*W=1$ or $WW^*=1$. If $W^*W=1_H$ then $W\sigma(\cdot)W^*$ is a lifting of τ . And if $WW^*=1_{\mathcal{H}}$, then $W^*\sigma(\cdot)W$ is a *-homomorphism of A into $\mathcal{L}(\mathcal{H})$. Let $\tau_1 = \pi(W^*\sigma(\cdot)W)$. Consider $\tau + \tau_1$.

$$\begin{aligned} (\tau + \tau_1)(a) &= \tau(a) \oplus \tau_1(a) = \pi(W)\sigma(a)\pi(W^*) \oplus \pi(W^*)\sigma(a)\pi(W) \\ &= \pi(W \oplus W^*)(\sigma(a) \oplus \sigma(a))\pi(W^* \oplus W) \end{aligned}$$

for all a in A. Since $\operatorname{ind}(W \oplus W^*) = 0$ in $\mathscr{L}(\mathscr{H} \oplus \mathscr{H})$, the above relations show that $[\tau_1] = [\tau]^{-1}$. Hence $[\tau] \in T$.

For the other half of the proof, it is easy to see that if an extension τ is weakly equivalent to a trivial extension, then so is $[\tau]^{-1}$ (here we mean that $\tau' \in [\tau]^{-1}$ is weakly equivalent to a trivial one). And also it is obvious that the sum of two weakly trivial extensions is weakly equivalent to a trivial one. Thus any $[\tau]$ in T is weakly equivalent to a trivial extension.

COROLLARY. Two extensions τ_1 and τ_2 are weakly equivalent iff τ_1 and τ_2 determine the element in Ext^w A.

Proof. τ_1 and τ_2 determine the same element in Ext^w A iff $[\tau_1] + [\tau_2]^{-1} \in T$ iff $[\tau_1] + [\tau_2]^{-1}$ is weakly trivial iff τ_1 and τ_2 are weakly equivalent.

REMARK 4. Since $\text{Ext}^{w}(A \oplus B) = \text{Ext}^{w}A \oplus \text{Ext}^{w}B$ (see Proposition 3.21, [3]), $\text{Ext}^{w}A = \text{Ext}^{s}(A \oplus \mathbb{C})$. This way of looking at $\text{Ext}^{w}A$ arose in conversation with M. D. Choi.

For certain classes of C^* -algebras one can compute Ext. We begin with matrix algebras.

LEMMA 1. (Proposition 1, [6]). Let τ_i be two extensions of a matrix algebra M_n of rank n and let σ_i be lifting of τ_i for i = 1, 2. Then τ_1 and τ_2 are strongly equivalent iff

codimension
$$\sigma_1(1) \equiv$$
 codimension $\sigma_2(1) \pmod{n}$

This result was also obtained independently by Brown-Duglas-Fillmore, Bunce-Deddens, and Pearcy-Salinas.

Now suppose $A = \overline{\bigcup_{n=1}^{\infty} A_n}$, where the $A'_n s$ have the same unit and A_n is contained in A_{n+1} , and suppose that all $A'_n s$ and A are nuclear. Then Ext^s A_n with connecting homomorphisms $i_n^*: \operatorname{Ext}^s A_{n+1} \to \operatorname{Ext}^s A_n$, where i_n are inclusions, form an inverse system of groups. It is easy to see that

$$\Phi$$
: Ext^s $A \rightarrow \underline{\lim}$ Ext^s A_n

by $\Phi([\tau]) = \{[\tau \mid A_n]\}$ is always surjective. (See Theorem 2.5, [3]) We will show that Φ is an isomorphism for UHF algebras.

DEFINITION. A C*-algebra A with unit is approximately finite (AF) if there is an increasing sequence of finite dimensional algebras A_n with the same unit such that $A = \overline{\bigcup_{n=1}^{\infty}} A_n$. If there is an increasing sequence of full matrix algebras with the same unit, the algebra is said to be uniformly hyperfinite (UHF). Suppose that M_{n_1} is contained in M_{n_2} . Then n_1 divides n_2 and the homomorphism induced by the inclusion is the obvious map of $\mathbb{Z}/n_2\mathbb{Z}$ onto $\mathbb{Z}/n_1\mathbb{Z}$. If $A = \overline{\bigcup_{k=1}^{\infty}} M_{n_k}$ is UHF, then for $[\tau] \in \text{Ext}^s A$, $\Phi([\tau])$ can be regarded as a sequence $\{a_k\}$, where a_n is the minimum of dimension $(1 - \sigma_k(1))$ where $\pi \sigma_k = \tau \mid M_{n_k}$.

LEMMA 2. (Lemma 2, [6]). Suppose $M_{n_1} \subset M_{n_2}$. If $[\tau_0]$ is the identity element of Ext^s M_{n_2} i.e. τ_0 has a unital lifting, then every unital lifting σ of $\tau_0 | M_{n_1}$ can be extended to a unital lifting of τ_0 .

PROPOSITION 2. For any UHF algebra $A = \overline{\bigcup_{k=1}^{\infty}} M_{n_k}$, $\Phi : \operatorname{Ext}^{s} A \to \varprojlim \mathbb{Z}/n_k\mathbb{Z}$ is an isomorphism.

Proof. Since any UHF algebra is nuclear, $\operatorname{Ext}^{s} A$ is a group. It suffices to prove that Φ is one-to-one. For this purpose, suppose $\Phi([\tau]) = 0$. By applying Lemma 2 to each $\tau \mid M_{n_1}$, we get a unital *-monomorphism σ of $\bigcup_{k=1}^{\infty} M_{n_k}$ into $\mathscr{L}(\mathscr{H})$ such that $\tau \mid \bigcup_{k=1}^{\infty} M_{n_m} = \pi \sigma$. By continuity we get a unital lifting of $[\tau]$.

This result was obtained independently by Primsner and Popa [5].

PROPOSITION 3. If $A = \overline{\bigcup_{k=1}^{\infty} M_{n_k}}$ is UHF, then $\operatorname{Ext}^{w} A \cong (\lim_{k \to \infty} \mathbb{Z}/n_k \mathbb{Z})/\mathbb{Z}'$, where \mathbb{Z}' is the subgroup generated by $(1, 1, \ldots, 1, \ldots)$.

Proof. It is obvious that if τ has a lifting then the corresponding sequence described prior to Lemma 2 is constant eventually. Conversely, if the corresponding sequence is constant eventually, then by Lemma 2 τ has a lifting. Hence the subgroup T is isomorphic to the subgroup generated by (1, 1, ...).

2

1978]

S. J. CHO

For AF algebras, Φ is not always an isomorphism. For if A is UHF, then $A \oplus \mathbb{C}$ is AF, and by Remark 1 Ext^s $(A \oplus \mathbb{C}) = \text{Ext}^w (A \oplus \mathbb{C}) = \text{Ext}^w A$, and the latter is nonzero by Proposition 3. But $\text{Ext}^s(M_{n_k} \oplus \mathbb{C}) = \text{Ext}^w(M_{n_k} \oplus \mathbb{C}) = 0$ by Remark 2. In a private communication, L. G. Brown has indicated that $\lim^{(1)}$ sequence of [3] holds for AF algebras (this gives an expression for ker Φ).

We have used the fact that β : Ext^w $A \oplus$ Ext^w $B \rightarrow$ Ext^w $(A \oplus B)$, defined by

$$\beta(\tau_1, \tau_2)(a \oplus b) = \tau_1(a) \oplus \tau_2(b)$$

for a in A and b in B, is an isomorphism. The same map defines a homomorphism β^s of $\operatorname{Ext}^s A \oplus \operatorname{Ext}^s B$ onto $\operatorname{Ext}^s(A \oplus B)$. For two UHF algebras β^s is never one-to-one. The following generalization of the original statement for UHF algebras was pointed out by J. Phillips and the referee.

PROPOSITION 4. For two nuclear C^* -algebras A and B, $\beta^s([\tau_1], [\tau_2]) = 0$ if and only if either $[\tau_1]$ and $[\tau_2]^{-1}$ have lifting of the same codimension or $[\tau_1]^{-1}$ and $[\tau_2]$ have lifting of the same codimension.

Proof. (\Leftarrow) Without loss of generality we assume τ_1 and τ_2^{-1} have lifting of codimension k_0 , say $\tau_1 = \pi \sigma_1$ and $\tau_2^{-1} = \pi \sigma_2$, where codimension of $\sigma_i(1)$ is k_0 . Let $\sigma_1 = \sigma \mid_{A \oplus 0}, \sigma_2 = \sigma \mid_{0 \oplus B}, \sigma(1)(H_1 \oplus H_2) = K_1$ and $\sigma_2(1)(H_1 \oplus H_2) = K_2$. Since where U is a unitary of H_2 onto $\sigma_2(1)H_2$. Then $[\tau_B] = [\tau_2]$ and $\tau_1 + \tau_B$ has a unital lifting. (\Rightarrow)

Suppose $\beta^{s}([\tau_{1}], [\tau_{2}]) = 0$. Then there exists a unital lifting σ of $\beta^{s}([\tau_{1}], [\tau_{2}])$. Let $\sigma_{1} = \sigma \mid_{A \oplus 0}, \sigma_{2} = \sigma \mid_{0 \oplus B}, \sigma(1)(H_{1} \oplus H_{2}) = K_{1}$ and $\sigma_{2}(1)(H_{1} \oplus H_{2}) = K_{2}$. Since $\pi \sigma_{i}(1) = \tau_{i}(1)$, there exists partial isometries W_{i} such that $\pi(W_{i}) = \tau_{i}(1)$, $W_{i}W_{i}^{*} \leq \sigma_{i}(1)$ and $W_{i}^{*}W_{i} \leq P_{i}$, where P_{i} are projections onto H_{i} for i = 1, 2. Since $\pi(W_{1} \oplus W_{2}) = 1$, $\operatorname{ind}(W_{1} \oplus W_{2}) = 0$, which implies that $\operatorname{ind} W_{1}(\operatorname{in} L(H_{1}, K_{1}) = -\operatorname{ind} W_{2}(\operatorname{in} L(H_{2}, K_{2}))$. Therefore we get a unitary extension $U_{1} \oplus U_{2}$ of $W_{1} \oplus W_{2}$ such that either

or

 $U_1: H_1 \oplus \mathbb{C}^{k_0} \to K_1 \text{ and } U_2: H_2 \ominus \mathbb{C}^{k_0} \to K_2$

 $U_1: H_1 \ominus \mathbb{C}^{k_0} \rightarrow K_1 \text{ and } U_2: H_2 \oplus \mathbb{C}^{k_0} \rightarrow K_2$

where $K_0 = |\text{ind } W_1|$. Again we may assume the latter occurs. Since $\pi(U_1 \bigoplus U_2) = 1$, $\pi(U_i) = \tau_i(1)$, and since

 $(U_1 \oplus U_2)^* (\sigma_{1(.)} \oplus \sigma_{2(.)}) (U_1 \oplus U_2) = U_1^* \sigma_{1(.)} U_1 \oplus U_2^* \sigma_{2(.)} U_2,$

we can assume that $K_1 = H_1 \ominus \mathbb{C}$ and $K_2 = H_2 \oplus \mathbb{C}$. Therefore τ_1 has a lifting $U_1^* \sigma_{1(\cdot)} U_1$ of codimension K_0 and τ_2^{-1} has a lifting of codimension K_0 .

The author is pleased to record his gratitude to Professor P. A. Fillmore for many helpful suggestions and for patient supervision of research in this paper.

References

1. L. G. Brown, R. G. Douglas and P. A. Fillmore, *Extensions of C*-algebras, operators with compact self-commutators, and K-homology*, Bull. Amer. Math. Soc. **79** (1973), 973–978.

https://doi.org/10.4153/CMB-1978-025-4 Published online by Cambridge University Press

2. ---, ---, Unitary equivalence modulo the compact operators and extensions of C^* -algebras, in Proceedings of a Conference on Operator Theory, Lecture Notes in Mathematics, **345**, Springer-Verlag, 1973. 58-128.

3. —, —, Extensions of C*-algebras and K-theory, Annals of Mathematics, Vol. 105 (1977), 265-324.

4. M. D. Choi and E. G. Effros, The completely positive lifting problem Annals of Math., Vol. **104** (1976) 585-609.

5. M. Pimsner and S. Popa, On the Ext-group of U.H.F.-algebras and a Theorem of Glimm, preprint.

6. F. J. Thayer, Obstructions to lifting *-morphisms into the Calkin algebra, 111, J. of Math., Vol. **20** (1976) no. 2, 322-328.

7. D. Voiculescu, A non commutative Weyl-von Newmann theorem, Rev. Roum. Math. Pures et Appl., Tome XXI, No. 1 (1976), 97-113.

DALHOUSIE UNIVERSITY HALIFAX, NOVA SCOTIA B3H 3J5