STRONG EXTENSIONS VS. WEAK EXTENSIONS OF C^{*}-ALGEBRAS

BY
S. J. CHO

Let \mathscr{H} be a separable complex infinite dimensional Hilbert space, $\mathscr{L}(\mathscr{H})$ the algebra of bounded operators in $\mathscr{H}, \mathscr{K}(\mathscr{H})$ the ideal of compact operators, $\mathscr{A}(\mathscr{H})=\mathscr{L}(\mathscr{H}) / \mathscr{K}(\mathscr{H})$, and $\pi:: \mathscr{L}(\mathscr{H}) \rightarrow \mathscr{A}(\mathscr{H})$ the quotient map. Throughout this paper A denotes a separable nuclear C^{*}-algebra with unit. An extension of A is a unital ${ }^{*}$-monomorphism of A into $\mathscr{A}(\mathscr{H})$. Two extensions τ_{1} and τ_{2} are strongly (weakly) equivalent if there exists a unitary (Fredholm partial isometry) U in $\mathscr{L}(\mathscr{H})$ such that

$$
\tau_{1}(a)=\pi\left(U^{*}\right) \tau_{2}(a) \pi(U)
$$

for all a in A. We denote the family of strong equivalence classes of extensions of A by Ext ${ }^{s} A$. Recent results of Voiculescu [7] and Choi-Effros [4] show that $\mathrm{Ext}^{s} A$ is always an abelian group. For more information about Ext^{s} of commutative C^{*}-algebras see $[1,2,3]$. We denote the strong equivalence class of an extension τ by [τ]. Since if τ has a lifting (i.e. there exists a ${ }^{*}$ monomorphism σ of A into $\mathscr{L}(\mathscr{H})$ such that $\pi \sigma=\tau)$ then every $\tau^{\prime} \in[\tau]$ has a lifting, we can say without ambiguity that $[\tau]$ has a lifting.

Let

$$
T^{+}=\left\{[\tau] \in \operatorname{Ext}^{s} A \mid[\tau] \text { has a lifting }\right\}
$$

Let T be the subgroup of $\operatorname{Ext}^{s} A$ generated by T^{+}. We denote the quotient group Ext ${ }^{s} A / T$ by Exy ${ }^{w} A$.

Remark 1. If A has a one-dimensional representation, then for each $[\tau] \in$ T^{+}by adding an appropriate multiple of that one-dimensional representation to the lifting of $[\tau]$ we can make the corresponding lifting a unital one. Hence $T=0$ and $\operatorname{Ext}^{w} A=\operatorname{Ext}^{s} A$. This will be the case if A has a non-zero commutative quotient, and in particular $\operatorname{Ext}^{s}(A \oplus \mathbb{C})=\operatorname{Ext}^{w}(A \oplus \mathbb{C})$ for any nuclear algebra A.

Remark 2. For any finite dimensional C^{*}-algebra $A, \operatorname{Ext}^{w} A=0$.
Remark 3. The subgroup T is a homomorphic image of \mathbb{Z}. To see this, for each $n>0$ we let $\alpha(n)$ be an element in T^{+}which has a lifting σ of
codimension n, i.e. $\operatorname{dim}\left(1_{H}-\sigma(1)\right)=n$. Suppose that two extensions τ_{1} and τ_{2} have liftings σ_{1} and σ_{2}, respectively, of the same codimension. Since σ_{i} is a faithful representation on $\sigma_{i}(1) \mathscr{H}$, by (Theorem 1.5, [7]), there is a unitary U in $\mathscr{L}\left(\sigma_{1}(1) \mathscr{H}, \sigma_{2}(1) \mathscr{H}\right)$ such that

$$
\sigma_{1}(x)=U^{*} \sigma_{2}(x) U \in \mathscr{K}\left(\sigma_{1}(1) \mathscr{H}\right)
$$

for all x in A. Since ind $U=0$ in $\mathscr{L}(\mathscr{H})$, we can make U a unitary in $\mathscr{L}(\mathscr{H})$. Hence $\left[\tau_{1}\right]=\left[\tau_{2}\right]$. Thus α is a well-defined monoid morphism of non-negative integers onto T^{+}. Hence we can extend α to a group homomorphism of \mathbb{Z} onto T.

The following proposition justifies the notation for Ext ${ }^{\omega}$.
Proposition 1. An extension τ belongs to the weak equivalence class of the trivial extension if and only if $[\tau] \in T$.

Proof. Suppose τ belongs to the weak equivalence class of the trivial extension. Then there exists a Fredholm partial isometry W such that $\pi\left(W^{*}\right) \tau(\cdot) \pi(W)$ has a unital lifting σ. We may assume that $W^{*} W=1$ or $W W^{*}=1$. If $W^{*} W=1_{H}$ then $W \sigma(\cdot) W^{*}$ is a lifting of τ. And if $W W^{*}=1_{\mathscr{H}}$, then $W^{*} \sigma(\cdot) W$ is a *-homomorphism of A into $\mathscr{L}(\mathscr{H})$. Let $\tau_{1}=\pi\left(W^{*} \sigma(\cdot) W\right)$. Consider $\tau+\tau_{1}$.

$$
\begin{aligned}
\left(\tau+\tau_{1}\right)(a) & =\tau(a) \oplus \tau_{1}(a)=\pi(W) \sigma(a) \pi\left(W^{*}\right) \oplus \pi\left(W^{*}\right) \sigma(a) \pi(W) \\
& =\pi\left(W \oplus W^{*}\right)(\sigma(a) \oplus \sigma(a)) \pi\left(W^{*} \oplus W\right)
\end{aligned}
$$

for all a in A. Since $\operatorname{ind}\left(W \oplus W^{*}\right)=0$ in $\mathscr{L}(\mathscr{H} \oplus \mathscr{H})$, the above relations show that $\left[\tau_{1}\right]=[\tau]^{-1}$. Hence $[\tau] \in T$.

For the other half of the proof, it is easy to see that if an extension τ is weakly equivalent to a trivial extension, then so is $[\tau]^{-1}$ (here we mean that $\tau^{\prime} \in[\tau]^{-1}$ is weakly equivalent to a trivial one). And also it is obvious that the sum of two weakly trivial extensions is weakly equivalent to a trivial one. Thus any $[\tau]$ in T is weakly equivalent to a trivial extension.

Corollary. Two extensions τ_{1} and τ_{2} are weakly equivalent iff τ_{1} and τ_{2} determine the element in Ext^{w} A.

Proof. τ_{1} and τ_{2} determine the same element in $\operatorname{Ext}^{\omega} A$ iff $\left[\tau_{1}\right]+\left[\tau_{2}\right]^{-1} \in T$ iff $\left[\tau_{1}\right]+\left[\tau_{2}\right]^{-1}$ is weakly trivial iff τ_{1} and τ_{2} are weakly equivalent.

Remark 4. Since $\operatorname{Ext}^{w}(A \oplus B)=\operatorname{Ext}^{w} A \oplus \operatorname{Ext}^{w} B$ (see Proposition 3.21, [3]), $\operatorname{Ext}^{w} A=\operatorname{Ext}^{s}(A \oplus \mathbb{C})$. This way of looking at $\operatorname{Ext}^{w} A$ arose in conversation with M. D. Choi.

For certain classes of C^{*}-algebras one can compute Ext. We begin with matrix algebras.

Lemma 1. (Proposition 1, [6]). Let τ_{i} be two extensions of a matrix algebra M_{n} of rank n and let σ_{i} be lifting of τ_{i} for $i=1,2$. Then τ_{1} and τ_{2} are strongly equivalent iff

$$
\text { codimension } \sigma_{1}(1) \equiv \text { codimension } \sigma_{2}(1)(\bmod n)
$$

This result was also obtained independently by Brown-Duglas-Fillmore, Bunce-Deddens, and Pearcy-Salinas.

Now suppose $A=\overline{\bigcup_{n=1}^{\infty}} A_{n}$, where the $A_{n}^{\prime} s$ have the same unit and A_{n} is contained in A_{n+1}, and suppose that all $A_{n}^{\prime} s$ and A are nuclear. Then Ext ${ }^{s} A_{n}$ with connecting homomorphisms $i_{n}^{*}:$ Ext $^{s} A_{n+1} \rightarrow$ Ext $^{s} A_{n}$, where i_{n} are inclusions, form an inverse system of groups. It is easy to see that

$$
\Phi: \mathrm{Ext}^{s} A \rightarrow \lim _{\leftrightarrows} \mathrm{Ext}^{s} A_{n}
$$

by $\Phi([\tau])=\left\{\left[\tau \mid A_{n}\right]\right\}$ is always surjective. (See Theorem 2.5, [3]) We will show that Φ is an isomorphism for UHF algebras.

Definition. $A C^{*}$-algebra A with unit is approximately finite $(A F)$ if there is an increasing sequence of finite dimensional algebras A_{n} with the same unit such that $A=\overline{\bigcup_{n=1}^{\infty}} A_{n}$. If there is an increasing sequence of full matrix algebras with the same unit, the algebra is said to be uniformly hyperfinite (UHF). Suppose that $M_{n_{1}}$ is contained in $M_{n_{2}}$. Then n_{1} divides n_{2} and the homomorphism induced by the inclusion is the obvious map of $\mathbb{Z} / n_{2} \mathbb{Z}$ onto $\mathbb{Z} / n_{1} \mathbb{Z}$. If $A=\overline{\bigcup_{k=1}^{\infty}} M_{n_{k}}$ is UHF, then for $[\tau] \in \operatorname{Ext}^{s} A, \Phi([\tau])$ can be regarded as a sequence $\left\{a_{k}\right\}$, where a_{n} is the minimum of dimension ($1-\sigma_{k}(1)$) where $\pi \sigma_{k}=\tau \mid M_{n_{k}}$.

Lemma 2. (Lemma 2, [6]). Suppose $M_{n_{1}} \subset M_{n_{2}}$. If [τ_{0}] is the identity element of $\operatorname{Ext}^{s} M_{n_{2}}$ i.e. τ_{0} has a unital lifting, then every unital lifting σ of $\tau_{0} \mid M_{n_{1}}$ can be extended to a unital lifting of τ_{0}.

Proposition 2. For any UHF algebra $A=\overline{\bigcup_{k=1}^{\infty}} M_{n_{k}}$, $\Phi: \operatorname{Ext}^{s} A \rightarrow \lim \mathbb{Z} / n_{k} \mathbb{Z}$ is an isomorphism.

Proof. Since any UHF algebra is nuclear, $\operatorname{Ext}^{s} A$ is a group. It suffices to prove that Φ is one-to-one. For this purpose, suppose $\Phi([\tau])=0$. By applying Lemma 2 to each $\tau \mid M_{n_{1}}$, we get a unital *-monomorphism σ of $\bigcup_{k=1}^{\infty} M_{n_{k}}$ into $\mathscr{L}(\mathscr{H})$ such that $\tau \mid \bigcup_{k=1}^{\infty} M_{n_{m}}=\pi \sigma$. By continuity we get a unital lifting of $[\tau]$.

This result was obtained independently by Primsner and Popa [5].
Proposition 3. If $A=\rrbracket_{k=1}^{\infty} M_{n_{k}}$ is UHF, then $\operatorname{Ext}^{w} A \cong\left(\left\lfloor\mathbb{i m} \mathbb{Z} / n_{k} \mathbb{Z}\right) / \mathbb{Z}^{\prime}\right.$, where \mathbb{Z}^{\prime} is the subgroup generated by $(1,1, \ldots, 1, \ldots)$.

Proof. It is obvious that if τ has a lifting then the corresponding sequence described prior to Lemma 2 is constant eventually. Conversely, if the corresponding sequence is constant eventually, then by Lemma 2τ has a lifting. Hence the subgroup T is isomorphic to the subgroup generated by $(1,1, \ldots)$.

For $A F$ algebras, Φ is not always an isomorphism. For if A is UHF, then $A \oplus \mathbb{C}$ is $A F$, and by Remark $1 \operatorname{Ext}^{s}(A \oplus \mathbb{C})=\operatorname{Ext}^{w}(A \oplus \mathbb{C})=\operatorname{Ext}^{\mathrm{w}} A$, and the latter is nonzero by Proposition 3. But $\operatorname{Ext}^{s}\left(M_{n_{k}} \oplus \mathbb{C}\right)=\operatorname{Ext}^{w}\left(M_{n_{k}} \oplus \mathbb{C}\right)=0$ by Remark 2. In a private communication, L. G. Brown has indicated that lim ${ }^{(1)}$ sequence of [3] holds for $A F$ algebras (this gives an expression for ker Φ).

We have used the fact that $\beta: \operatorname{Ext}^{w} A \oplus \operatorname{Ext}^{w} B \rightarrow \operatorname{Ext}^{\omega}(A \oplus B)$, defined by

$$
\beta\left(\tau_{1}, \tau_{2}\right)(a \oplus b)=\tau_{1}(a) \oplus \tau_{2}(b)
$$

for a in A and b in B, is an isomorphism. The same map defines a homomorphism β^{s} of $\operatorname{Ext}^{s} A \oplus \operatorname{Ext}^{s} B$ onto $\operatorname{Ext}^{s}(A \oplus B)$. For two UHF algebras β^{s} is never one-to-one. The following generalization of the original statement for UHF algebras was pointed out by J. Phillips and the referee.

Proposition 4. For two nuclear C^{*}-algebras A and $B, \beta^{s}\left(\left[\tau_{1}\right],\left[\tau_{2}\right]\right)=0$ if and only if either $\left[\tau_{1}\right]$ and $\left[\tau_{2}\right]^{-1}$ have lifting of the same codimension or $\left[\tau_{1}\right]^{-1}$ and [τ_{2}] have lifting of the same codimension.

Proof. (\Leftarrow) Without loss of generality we assume τ_{1} and τ_{2}^{-1} have lifting of codimension k_{0}, say $\tau_{1}=\pi \sigma_{1}$ and $\tau_{2}^{-1}=\pi \sigma_{2}$, where codimension of $\sigma_{i}(1)$ is k_{0}. Let $\sigma_{1}=\left.\sigma\right|_{\mathrm{A} \oplus 0}, \sigma_{2}=\left.\sigma\right|_{0 \oplus B}, \sigma(1)\left(H_{1} \oplus H_{2}\right)=K_{1}$ and $\sigma_{2}(1)\left(H_{1} \oplus H_{2}\right)=K_{2}$. Since where U is a unitary of H_{2} onto $\sigma_{2}(1) H_{2}$. Then [$\left.\tau_{B}\right]=\left[\tau_{2}\right]$ and $\tau_{1}+\tau_{B}$ has a unital lifting. (\Rightarrow)

Suppose $\beta^{s}\left(\left[\tau_{1}\right],\left[\tau_{2}\right]\right)=0$. Then there exists a unital lifting σ of $\beta^{s}\left(\left[\tau_{1}\right],\left[\tau_{2}\right]\right)$. Let $\sigma_{1}=\left.\sigma\right|_{\mathrm{A} \oplus 0}, \sigma_{2}=\left.\sigma\right|_{0 \oplus B}, \sigma(1)\left(H_{1} \oplus H_{2}\right)=K_{1}$ and $\sigma_{2}(1)\left(H_{1} \oplus H_{2}\right)=K_{2}$. Since $\pi \sigma_{i}(1)=\tau_{i}(1)$, there exists partial isometries W_{i} such that $\pi\left(W_{i}\right)=\tau_{i}(1)$, $W_{i} W_{i}^{*} \leq \sigma_{i}(1)$ and $W_{i}^{*} W_{i} \leq P_{i}$, where P_{i} are projections onto H_{i} for $i=1,2$. Since $\pi\left(W_{1} \oplus W_{2}\right)=1, \quad \operatorname{ind}\left(W_{1} \oplus W_{2}\right)=0$, which implies that ind $W_{1}($ in $L\left(H_{1}, K_{1}\right)=-$ ind $W_{2}\left(\right.$ in $\left.L\left(H_{2}, K_{2}\right)\right)$. Therefore we get a unitary extension $U_{1} \oplus U_{2}$ of $W_{1} \oplus W_{2}$ such that either

$$
U_{1}: H_{1} \oplus \mathbb{C}^{k_{0}} \rightarrow K_{1} \quad \text { and } \quad U_{2}: H_{2} \ominus \mathbb{C}^{k_{0}} \rightarrow K_{2}
$$

or

$$
U_{1}: H_{1} \ominus \mathbb{C}^{k_{0}} \rightarrow K_{1} \quad \text { and } \quad U_{2}: H_{2} \oplus \mathbb{C}^{k_{0}} \rightarrow K_{2}
$$

where $K_{0}=\mid$ ind $W_{1} \mid$. Again we may assume the latter occurs. Since $\pi\left(U_{1} \oplus\right.$ $\left.U_{2}\right)=1, \pi\left(U_{i}\right)=\tau_{i}(1)$, and since

$$
\left(U_{1} \oplus U_{2}\right)^{*}\left(\sigma_{1(.)} \oplus \sigma_{2(.)}\right)\left(U_{1} \oplus U_{2}\right)=U_{1}^{*} \sigma_{1(\cdot)} U_{1} \oplus U_{2}^{*} \sigma_{2(.)} U_{2}
$$

we can assume that $K_{1}=H_{1} \ominus \mathbb{C}$ and $K_{2}=H_{2} \oplus \mathbb{C}$. Therefore τ_{1} has a lifting $U_{1}^{*} \sigma_{1(\cdot)} U_{1}$ of codimension K_{0} and τ_{2}^{-1} has a lifting of codimensiơn K_{0}.

The author is pleased to record his gratitude to Professor P. A. Fillmore for many helpful suggestions and for patient supervision of research in this paper.

References

1. L. G. Brown, R. G. Douglas and P. A. Fillmore, Extensions of C^{*}-algebras, operators with compact self-commutators, and K-homology, Bull. Amer. Math. Soc. 79 (1973), 973-978.
2. -_, -, Unitary equivalence modulo the compact operators and extensions of C^{*}-algebras, in Proceedings of a Conference on Operator Theory, Lecture Notes in Mathematics, 345, Springer-Verlag, 1973. 58-128.
3. -_, ——, Extensions of C^{*}-algebras and K-theory, Annals of Mathematics, Vol. 105 (1977), 265-324.
4. M. D. Choi and E. G. Effros, The completely positive lifting problem Annals of Math., Vol. 104 (1976) 585-609.
5. M. Pimsner and S. Popa, On the Ext-group of U.H.F.-algebras and a Theorem of Glimm, preprint.
6. F. J. Thayer, Obstructions to lifting *-morphisms into the Calkin algebra, I11, J. of Math., Vol. 20 (1976) no. 2, 322-328.
7. D. Voiculescu, A non commutative Weyl-von Newmann theorem, Rev. Roum. Math. Pures et Appl., Tome XXI, No. 1 (1976), 97-113.

Dalhousie University

Halifax, Nova Scotia B3H 3J5

