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Abstract

Let Xo, X i , . . . , Xn,... be a stationary Gaussian process. We give sufficient conditions for the
expected number of real zeros of the polynomial Qn(z) = YT=o Xiz' t o ^ e (V'r) logn as n
tends to infinity.
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1. Introduction

Let (Xj, j = 0,1,.. .) be a sequence of real-valued random variables satisfying

the following moment conditions.

(1.1) E{Xj) = 0 and E{Xj)
i = l for all j > 0.

A random polynomial of order n is given by

(1.2) Qn(z) =
j=0
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[2] Real zeros of a random polynomial 101

Denote the number of real zeros of (1.2) in the interval (a,b) by Nn((a,b)).
Ibragimov and Maslova (1971a) show t h a t

(1.3) ENn((-oo,oo)) ~ (2/7r)logn a sn -»oo ,

when (Xj, j = 0,1,. . .) is a sequence of independent and identically distributed
random variables satisfying (1.1) and belonging to the domain of attraction of
the normal law.

In this paper we give sufficient conditions for (1.3) to hold when (Xj,
j = 0,1,...) is a stationary real-valued Gaussian process satisfying (1.1).

The earliest work on polynomials with dependent coefficients is due to Ham-
blen (1956) who examined the expected number of real zeros of Xo + X\z + z1

when (A"o,Xi) is a bivariate normal random vector satisfying (1.1) for j = 0,1.

Much subsequent work, Sambandham (1977, 1979), has concentrated on the
case where (Xj, j = 0 , 1 , . . . , n) is a multivariate normal random vector with
simple correlation matrix. Shenker (1981) gives two sets of sufficient conditions
for (1.3) to hold when (Xj, j = 0,1,. . .) is a stationary real-valued Gaussian
process satisfying (1.1).

We extend Theorem 1 of Shenker (1981) and give some complementary results.
We also consider the case where (Xj) is a stationary uniformly mixing Gaussian
process. In contrast to Shenker our conditions are in terms of the spectral density
associated with (Xj) rather than its autocorrelation function.

The analogous problem for random trigonometric polynomials has been stud-
ied in Sambandham (1976a, 1976b), Sambandham and Maruthachalam (1978),
Renganathan and Sambandham (1984) and Bharucha-Reid and Sambandham
(1986).

The main results of this paper are given in Section 2. The key step in our
proof is to estimate ENn([0,i\) by counting the sign changes of a piece-wise
approximation to Qn(x). This approach has been used by Ibragimov and Maslova
(1971a, 1971b) to derive sufficient conditions for (1.3) in the iid case. Note that
this extension depends on the fact that Qn(x) behaves like a polynomial with
Gaussian coefficients for large n. Our results are compared with earlier work in
Section 7.

2. Main results

Theorems 2.1, 2.2 and 2.3 give sufficient conditions for ENn([0,1]) ~ (1/2TT)

logn as n tends to infinity. Sufficient conditions for (1.3) follow when these
conditions are also satisfied by the sequence ((—l)*Xj, j > 0).
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102 Richard Glendinning [3]

First we give some notation. Let Tj = E{XQXJ). The spectral density as-
sociated with (rj, j > 0) is denoted by f(0). So rv = f*ne-ivef(9)d0 for
v>0.

THEOREM 2 . 1 . Let (Xj, j > 0) be a stationary real-valued Gaussian process
satisfying (1.1). Suppose that

(i) there is an interval [-b,b], 0 < b < w, where f(0) can be uniformly ap-
proximated by the partial sums, Snf(0) of its Fourier series development,
and

(ii) oo > M > f(0) > m >0 , 0 € [-n,ir].

Then
£7Vn([0,l])~(l/27r)logn, n _, oo.

THEOREM 2 .2 . The conclusions of Theorem 2.1 hold if condition (i) is sat-
isfied with b — n and there is a constant a such that

n

k + Yl roxJ - a > 0) x € [0,1], n > JVo,

for some integer No.

Let M* be the a-algebra generated by the random variables (Xj, j = a,...,b).
Then (Xj, j > 0) is said to be uniformly mixing if there exists a non-increasing
sequence (<p(k), k > 1) such that

(2.1) sup \P(AB) - P(A)P(B)\ < 4>(k)P(A), 4>(k) I 0,

where the supremum in (2.1) is taken over all A e MQ and B e M^_k, n > 0.

THEOREM 2 . 3 . When (Xj) is a uniformly mixing Gaussian process with (i)
Z)fcli <t>1/2{k) < oo and (ii) /(0) > 0, then the conclusions of Theorem 2.1 hold.

When the conditions given in Theorems 2.1, 2.2 and 2.3 are also satisfied by
the sequence (( — iyXj, j > 0) we have (1.3). In particular we have the following
result.

COROLLARY 2 . 1 . If the conditions of Theorem 2.1 hold with b = w then
(1.3) follows.

We give a brief overview of the proof of these results. We partition [0,1] into
intervals I\, 1% and /^ so that

ENn(li) + ENn(ll) = o(logn) and ENn(ll) ~ (l/27r)logn
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[4] Real zeros of a random polynomial 103

as n tends to infinity. These quanti t ies depend on certain variance and covariance
estimates derived in Section 3. Let Nn(a,b) be the number of sign changes of a
piece-wise linear approximation to Qn{x)- In Section 4 we est imate \ENn(a, b) —
ENn([a,b])\. In Section 5 we construct a sequence (XJ, j = Po\--->P™) and
estimate ENn(I%) by the sum Z ^ I p « ENn(xj, XJ+I). In Section 6 we show tha t
£7Vn( /^) and ENn(I%) are o( logn) as n tends to infinity.

Par t i t ion [0,1] into intervals l\, l\ and 1% given by

(2-2) / i = [0 , l - ( logn)- 1 / 2 ] ,

II = [1 - (logn)-1/2,1 - n - 1 log log n],

II = [1 - n~x log log n, 1] for n > 3.

Throughout this paper we take C to be a generic positive constant.

3. Covariance estimates

Let kn(x,y) = EQn{x)Qn(y) and rn(x,y) - Cor(Qn(x),Qn(j/)). We estimate
kn(x,y) and rn(x,y) for x, y satisfying certain conditions. For x € /^ we derive
upper and lower bounds for kn(x, x). We weaken the conditions of a result due
to Yoshihara (1978).

In this section we take (Xj, j > 0) to be a sequence of not necessarily Gaussian
random variables satisfying (1.1). Let Tj = EXQXJ. We denote the spectral
density associated with (ry, j > 0) by f(0). Where convenient we interpret f(0)
as a function defined on the set of complex numbers with modulus one. So f{e%e)
and f(6), 0 G [—n, TT], are equivalent.

Let Tn(0) be a trigonometric polynomial of order n with real coefficients.
Suppose that

n
TniP) = £ cve

ive, 0 6 [-7r,7r], cv e R.
v=—n

Define

G(Tn,x) =

Then

* * , , ) -

Take oo > d > 0. We estimate A;n(x, j/) for x, j / satisfying the conditions r'(x, y) >
d>0and x,y e 1%.
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104 Richard Glendinning [5]

THEOREM 3 . 1 . Suppose that 0 < b < TT. / /

(i) f(0) can be uniformly approximated by the partial sums of its Fourier
series development, Snf{6) for 0 G [—6,6],

(ii) /(0)<,4<oo, 0€[-7r,7r],
(iii) /(0)>0,

then
kn(x,y)

sup k°(Snf,x,y)
r'(x,y)>d>0

- 1 0 as n —• oo.

COROLLARY 3 . 1 . Under the conditions of the previous theorem we have

sup \rn{x,y) -r'(x,y)\ - t O as n -> oo.

r'(x,y)>d>0

For x, y € I* U1% we have

THEOREM 3.2 . Suppose that condition (i) in Theorem 3.1 is satisfied with
b = n. If there is a constant a and an integer NQ such that

(ii) G(Snf, x) > a > 0 for n > No, x € [0,1], then the conclusions of Theorem
3.1 hold for x, y € 1^ U J^. Next we give a bound for the variance of Qn{x) for

THEOREM 3 . 3 . Suppose that conditions (ii) and (iii) of Theorem 3.1 are
satisfied and f(0) is continuous at 0 = 0. Then there exist C, D > 0 such that

kn{x,x) < D^2x2j, n>Nuxe %Ull
j=0 j=0

where N\ is an integer depending on C, D.

Next we give a result of a more general character. Suppose (aj, j > 0) is a
sequence of real numbers.

THEOREM 3.4 . If f{9) < A < oo we have

m(
j=o

REMARK 3.1. The bound given in Theorem 3.4 was obtained by Yoshihara
(1978) when (Xj, j > 0) is uniformly mixing with mixing coefficient </>(j) satis-
fying the condition $2^=i ^^{j) < oo.
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[6] Real zeros of a random polynomial 105

PROOF OF THEOREM 3.1. First notice t h a t

(3.1) kn(x, y) = ^ ( £ *"«"**) ( £ »"«*"') W) d 6 ' x> V e [°> ̂
"'-"' \v=0 ) \v=0 )

This can be seen by expanding the product inside the integral sign. Using (3.1)
we deduce that Qn{x) converges in mean square to a function Q{x) for fixed
x e [0,1). Let k(x, y) = EQ{x)Q{y). We have

(3.2) k{x,y)= lim kn(x,y) = [* (1 - xe-ie)-\l - ye^y1 f(O)dO

for a:,y e [0,1).
We construct a sequence of approximations (fc°(Tm,z,y),m = 0,1,...) to

k(x,y) by replacing f{6) in (3.2) by a trigonometric polynomial Tm(9) of order
m. Take m = n and Tm(0) to be the mth partial sum of the Fourier series
development of f(0). We show that ka(Snf,x,y) is a good approximation to
kn(x,y) for large n and particular x,y € /^.

We break the proof of Theorem 3.1 into a number of lemmas.

LEMMA 3 . 1 . Let (cv,v = — m , . . . , m ) be a sequence of real numbers with

cv = c-v, v = 1 , . . . , m , and Tm(9) = E £ = - m W™"• We have

1 — xy

PROOF. We can write
m f*

(3.3) ka{Tm,x,y)= 2 j c v / etv6{l-:
. . n J —7T

-VC*)-1*^.

For v > 0 and x, y G [0,1) we have by Cauchy's residue theorem that

(3.4) C eive{l - xe-ie)-\l - ye*6)'1 dO = 2*^(1 - xy)~\
J — 7T

and

(3.5) /" e- i t > f l(l-xe-i f l)-1(l-j/ei e)-1d(9 = 2 x ^ ( 1 - x y ) - 1 .

Lemma 3.1 follows.

The next lemma allows us to determine the behaviour of k(x, y) and
ka(Tm,x,y) by the behaviour of f(6) and Tm(0) respectively, in a symmetric
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106 Richard Glendinning [7]

neighbourhood of $ — 0. Let g{6) be a real-valued function defined on 0 G [—TT, TT].
Suppose that

(3.6)

Define

(3.7)

\g{0)\dO<B<oo.

LEMMA 3.2. Ifw>b>0we have

rb

h{x,y)- f (l-xe-'VU-ye'V^)^
J-b

where C is a constant depending on B and b.

PROOF. NOW

(3.8) h(x,y)- f\l-xe-ie)-1(l-yeier1g(9)de
J-b

<2wB\ sup l l - sup l l -
[

The following inequality holds for x € [0,1).

(3.9) sup |1 - xe-^l"1 < (1 - cos2 b)'1'2, n/2>b> 0, and
n>\9\>b>0

sup |1 - xe"*9!"1 < 1, 7T > 6 > TT/2.

The desired result follows.

LEMMA 3.3. // f{6) < A < oo and x, y € [0,1) we have

_ 5,2)1/2 •

PROOF. Sum the series inside the integral sign of (3.1) to give
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[8] Real zeros of a random polynomial 107

Expand the product inside the integral sign of (3.10). Using Cauchy's inequality
f(Q) < A <oo gives

\ 1/2

\l-yeie\-2d6) .

* € [0,1).

(3.11) \kn(x, y) - k{x, y)\ < A(xn+1 + yn+1 + (xy)n+1)

x I I II - xe~ie\~21
\J-w

Using Lemma 3.1 with 7o(0) = 1 gives

(3.12) ka{T0,x,x)= f \l-xe-ie\-2d0

The desired result follows.
We complete the proof of Theorem 3.1. Take m = n and Tn(6) = Snf(9),

where Snf(6) is the nth partial sum of the Fourier series development of f(6).
Now for x, y € [0,1) we have

(3.13) \kn(x,y) - ka(Snf,x,y)\ <J1 + J2 + J3 + J4,

where

(3.14)
fb

ka(Snf,x,y)- / {\-xe-%e)-l{l-ye%e)-1Snf{0)d0
J-b

k(x,y)- f (l-xe-ie)-1(l-yeie)-1f(0)d0
J-b

f (1 - xe-^-'il - yei6)-l{Snf{0) - f(0))d0
J-b

JA = \kn(x,y) - k(x,y)\.

We deduce from condition (ii) of Theorem 3.1 and Zygmund (1958) page
267, Theorem 6.9 that there is a constant B not depending on n such that
f!n \Snf(0)\d0 < B < oo, for all n > 0. Then applying Lemma 3.2 with
g{6) = Snf(0) gives

(3.15) Ji < C < oo,

where C depends on b and B. Applying Lemma 3.2 with g(0) = f(0) gives

(3.16) J2 < C < oo,

where C depends on b and A, and where A is an upper bound for f(0). Let

a(n) = 6 sup \Snf{6) - f(0)\.

By Cauchy's inequality and (3.12) we have

(3.17 ) J3 < _ *»(»)
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108 Richard Glendinning [9]

From (3.15), (3.16), (3.17) and Lemma 3.3 we have

(3.18) \kn(x,y) " ka(Snf,x,y)\ < C ( l + ^ ^ y ^ l

for x, y €E [0,1) and where C is a constant depending on 6, A and B. So

(3.19) \kn(x,y)-ka(Snf,x,y)\< { i x 2 ) ™ ^ y 2 ) 1 / 2 , z , y e [0,1),

where w(n) —• 0, n —* oo for x, y £ I* U 1%.
Now G(Snf,x) = 5 + 5Z"=i rt>zv- We show that there is a constant a > 0

and an integer TVo such that

(3.20) G(Snf, x) > a > 0, x £ /£, n > AT0.

From Abel's Theorem, Titchmarsh (1939), page 9 and condition (i) of Theorem
3.1 we see that G(Snf,x) is uniformly convergent for x € [0,1] and

oo

(3.21) lim G(Soof,x) = \

Condition (3.20) follows from the uniform convergence of G(Snf, x), (3.21) and
condition (iii) of Theorem 3.1. The conclusions of Theorem 3.1 follow.

PROOF OF COROLLARY 3.1. Now by simple manipulation we have

rn(x,y) _ i kn(x,y)/ka(Snf,x,y) \rn(x,y) = J
r'(x,y) \(kn(x,x))/k-(Snf, x, x))i/2(fcn(j/,y)/k-(Snf,y,

f G(Snf,x) + G(Snf,y) ]
\(4G(Snf,x)G(Snf,y)y/*j-

PROOF OF THEOREM 3.2. Conditions (ii) and (iii) of Theorem 3.1 follow
from the uniform convergence of Snf(0), 0 € [—TT, TT], and TrSnf(O) = G(Snf,O).
Following the proof of Theorem 3.1 we see that Ji = J-z — 0. So (3.19) holds
for x € I\ U 1%. The desired result follows as (3.20) holds for x € I\ U l\ by
assumption.

PROOF OF THEOREM 3.3. For some n we construct an interval [-6,6],
7T > 6 > 0, where f(0) > /i > 0, 6 € [—6,6]. Such an interval exists as
f(6) is continuous at 0 = 0 and /(0) > 0. We consider the case when x €
[1 — (logn)"1/2,1) and x = 1 separately. Use (3.1) to represent fcn(x,x). As
(3.9) holds for

sup
ir>\8\>b>0 t>=0

x € [0,1),
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[10] Real zeros of a random polynomial 109

we can apply Lemma 3.2 to kn(x,x) with \l-xe~iv0\2replaced by |X^"=o xve~iv6\2

to give
2

(3.23) kn(x,x) -
J-b

-tufl

v=0

f(0)dO x€[0 , l ) .

Substitute f(9) = 1/2TT in (3.23) to give

(3.24)
/•7T

J —IT

n

v=0

where C depends only on
Lemma 3.2.

By simple calculation

(3.25) f
n

v=0

v — ivB
2

d$-
n

V~* -v —iv8

v=0

2

dO ,0,

b and A. These inequalities follow in the same way as

we have

ve-iv8
2 n

v=0
«l

From (3.25) and (3.24) we have

(3.26)
J-t

o-iv8

v=0 v=0

and x € [1 - (logn) 1/2,1). From our construction of [—b, b] we have

(3.27)
/ '
J-b

w=0

-iv0 f(O)de>n I
j-b

a-iv8

v=0

d$.

So the desired result follows from (3.27), (3.26) and (3.23) for x e [l-(log n)"1/2,1).
When x = 1 we have

n
(3.28) jfcn(l, 1) = n + 1 + 2 ]P(n - j + l)rj = 2?r(n + l)an/(0).

where anf{6) is the nth Cesaro sum associated with f(0). As f{0) is continuous
at 8 = 0 we have cn/(0) —> /(0), n —»• oo. The desired result follows.

PROOF OF THEOREM 3.4. Now
2

(3.29) E
m \ [•* ( rn

£°i^ =/ £a-
j=o y •'-"• \«=o

, - t t i 9

Note that f{0) < A < oo. Then by Cauchy's inequality we have

(3.30)
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By simple calculation we have

(3.31) j ^
m

-iv8
(IV

v=0 j=o

The desired result follows from (3.30) and (3.31).

4. Approximation

For x e [a, b] we approximate Qn(z) by a process which linearly interpolates
between Qn{o) and Qn(6). It is convenient to count the sign changes of this
process in [a, b] by

(4-1) Nn(a,b) = (I) - (±)sgn(Qn(a)Qn(6)),

where sgnx = x/|x|, x ^ 0 and sgnO = 0. The results of this section depend on
an upper bound for the number of zeros of Qn(x) in an interval [a, 6]. Define the
event

Uk — (Qn{x) has k or more zeros in [a, b]), k > 0.

For any interval [a, b] C [0,1] let

(4.2) 1={b-a)(l-b)-\ 6 G [ 0 , l - ( n + l)-1] , and

7 = ( n + l ) (6 -a ) , b € [1 - (n+ I)"1,1].

LEMMA 4 .1 . Provided 7 < 2~30 and
(i) /(#) is continuous at 0 = 0,

(ii) /(0) > 0,
(iii) f(0)<A<oo, 6e[-v,ir],

then there is an integer Ni and an absolute constant C such that

P{Uk) < C73fc/5, n>Ni, k>0.

COROLLARY 4 .1 . Under the conditions of Lemma 4.1 we have

\ENn(a,b) - ENn([a,b})\ < <77
6/5, n > Nlt

where C is an absolute constant.

PROOF OF LEMMA 4.1. Let < > 0. Then

We estimate the second term in (4.3). Let

j=k

https://doi.org/10.1017/S1446788700030408 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700030408


[12] Real zeros of a random polynomial 111

In the same way as (2.13) of Ibragimov and Masolva (1971a) page 233, we have

Applying Theorem 3.4 to E(Q^ (x))2 and using the upper bound of Stevens
(1969), Lemma 9, gives

( \ 2fc+1

f > 2 M , X6[O,1].
i=o J

From Theorem 3.3 there is an integer iVi and a constant C such that

(4.6) kn(b,b)>

3=0

Take n > N\. From (4.5) and (4.6) we have

Take t = 72fc/3. Substitute in (4.7) for (b - a) given by (4.2) where

l / 2 , l - ( n + l )~ 1 ] and b € [1 - (n + I ) " 1 , ! ] .

By Stirling's Theorem (Titchmarsh (1939), page 58) there is a constant C such
that (2fc)!/(fc!)2 < C22fc. So

(4.8) P (uk n

for n > Ni and b G 72 U 73. The desired result follows as 7 < 2~3 0.
We estimate the first term in (4.3) by noting that Qn{x) is distributed as a

normal random variable with zero mean and variance kn(x, x). So

P

The desired result follows.

PROOF OF COROLLARY 4.1. From the definition of Nn{a,b) we have

(4.10) \ENn(a,b) - ENn([a,b})\ <
fc=2

The desired result follows immediately.
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5. An estimate for ENn(I%)

[13]

In this section we give sufficient conditions for ENn(I%) ~ (l/27r)logn as
n tends to infinity. These conditions are satisfied by the Gaussian processes
specified in Theorems 2.1, 2.2 and 2.3.

LEMMA 5 . 1 . Suppose that 0 < b < TT. If

(i) f(0) can be uniformly approximated in [—b, b] by the partial sums of its
Fourier series development, Snf(6),

(ii) /(0) > 0,
(iii) f(0)<A<oo,9e[-n,w},

then ENn(I%) ~ (l/27r)logn as n ->• oo.

PROOF. For fixed 6 € (0,2~30) define the set P = [x,, j > 0) where

(5-1) xj = 1 - ^ L ^ .

Let pfi, pi be positive integers satisfying the inequalities

1 . 1 1(5.2)

(5.3)
1

(logn)V2

log log n
<

n
>3.

We estimate the asymptotic growth of Y?j=v
n ENn(xj,Xj+i) and show that

it is a good approximation to the growth of ENn(I%).
From Dunnage (1966) Lemma 4 we have

By simple calculation we have

0.

(5.5) sup - 2 -
2 + 6

0, n —> oo.

So by Corollary 3.1 we have
(5.6)

sup - sin" 1 0, n —» oo.

Now there is an absolute constant C such that

(5.7) • - i f & \
sin - — - -\2 + 6j

6/2 < C62/2, oo > C > 0, 6 € [0,2~15).
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We choose an integer N2 so that the left-hand side of (5.6) is at most C62/2 for
n>N2. From (5.7), (5.6) and (5.4) we have

(5.8) sup \ENn{xj,xj+1) - 6/2n\ < C62, n > N2.

From (5.2) and (5.3) there is an integer iV3 such that

(5.9)

So

(5.10)

Pi-Po 1
log n/S

<e, n> N3, for any e > 0.

ENn(xj,xj+1) _ x

log n/2-K
27r{l+e)6C, n>max{N2,N3).

By our choice of 6 and e we can make the right-hand side of (5.10) arbitrarily
small. So

(5.11) ENn(xj,xj+i) ~ (l/27r)logn, n-»oo.

From condition (i) of Lemma 5.1 we see that f{6) is continuous in (—b,b). Then
applying Corollary 4.1 with -7 = 6 for [XJ,XJ+I], j = pg, • • • ,p" - 1, gives

(5.12) ENn(Xj,xj+1)
3=Vo

n >

In the following intervals we have 7 < S. Then from Lemma 4.1 we have

(5.13) ENn([xpn, 1 - n - 1 loglogn]) < CT6/5

and
ENn([l - (logn)-1/2,xpn]) < CT6/5 for n > ATX.

From (5.12), (5.13) and P(Qn{x) = 0) = 0 we have

ENn(%)- J2 ENn(Xj,xj+1)(5.14)

where C is a constant. From (5.9) and (5.14) we have

(5.15)
log n/27r

ENn(Xj,xj+1)

J-Po
log n/27r logn

n > max(iV!,
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The desired result follows from (5.10) and (5.15) by taking <5 and s arbitrarily
small.

6. An estimate for ENn{I\) and ENn{I*)

In this section we show that £7Vn(J^) and ENn(I%) are o(logn) as n tends
to infinity under the conditions of Theorems 2.1, 2.2 and 2.3.

LEMMA 6.1. Under the conditions of Theorem 2.1 there is a finite constant
C such that

ft) < {C1'2^) log log n, n > 2.

PROOF. The proof of this result is based on the Kac-Rice formula (Shenker
(1981), page 511, or Kac (1948)) which states that

(6.1) ENn{[a,b]) = (l/*)

where

I A \ 2

Bn = E{Qn{x))2, Cn = E(—Qn(x)j and

Rn = Car (Qn{x),±Qn(

We find an upper bound for Cn/Bn with x € 1^ and apply (6.1) to obtain the
desired result.

We represent Bn = kn{x,x) by (3.1). Noting that f{0) >m>O,0e [-TT.TT],

and applying (3.25) gives

(6.2) Bn > £
v=0

From Theorem 3.4 we have Cn < 2irA E " = 1 v2x2l>v-1). Summing ££=0 x2v and
noting that

(6.3) f

gives

(6.4) CJBn < (2A/m)(l - a*"

As x2(n + 1) < 1, x e In, n > 2 and s u p ^ i x 2 ( n + 1 ) -»• 0, x € In, n -» oo, we

deduce that (1 - x2^""1"1^)"1 is bounded above by a constant. So

(6.5) Cn/Bn < (1 - x)~2, n > 2 and x e l\.
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Substituting for Cn/Bn in (6.1) and noting that (1 — R%) < 1 gives the desired
result.

LEMMA 6.2. Under the conditions of Theorem 2.2 there is a constant C and
an integer N$ such that

ENn{I*) < (C1 / 2 /2TT) log log n, n > N5.

PROOF. Again we find an upper bound for Cn/Bn, x G I\ and apply (6.1).
Note that G{Snf,x) = f + £"= i r,zJ > a > 0 for n > No. So the conditions
of Theorem 3.2 are satisfied. From Theorem 3.2 and any C G (0,1) we have an
integer N4 such that

(6.6) Bn = kn{x,x)>Cka(Snf,x,x), n>N4,xeI*.

From Lemma 3.1 we have

\o. t) K yijnj, x, xj

But G{Snf, x) > a > 0 for n > No. So

2aC
(6.8) Bn> n> N5 =n ' 1 - x 2 '
In the same way as in Lemma 6.1 we have

(6.9) Bn/Cn < (1 - z ) - 2 , n > N5 = max(7V0, N4).

The desired result follows.
We need the following inequality.

LEMMA 6.3 (Ibragimov (1962), Lemma 1.9, p. 361). Let {Zj, j > 0) be a
stationary sequence of uniformly mixing random variables with zero mean and

(i) E\Zj\2+s < oo, 6 > 0.

1+8/2

Then there exists a constant C such that

•2+6

E
j=o

<c

LEMMA 6.4. Under the conditions of Theorem 2.3 we have

ENn{li) <C{\ogn)l>2\oz\ogn,

where C is a constant.

PROOF. Choose c such that

(6.10) P(\X0\ >c)=q<l.
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Define the events BQ — {\X0\ < c) and

(6.11) Sfc = ( | X 0 | < c , . . . , | X f c _ 1 | < c , | ^ f c | > c ) , k = l,...,n.

B = {\X0\<c,...,\Xn\<c).

Let 0 < r < R. Following the argument of Ibragimov and Maslova (1971a)
leading to the relationship (2.6) we obtain

(6.12) ENn([-r, r}) < £ kP(Bk) + nP(B) +

where

(6.13)

^, r
1^2 HadP,

k=0^Bk

Ha = \og( sup (fclcJ- ' IQj*)^)! ) .

Here Q« ^(x) is the fcth derivative of Qn(x) with respect to x.
We estimate P{Bk) and P{B). Define a sequence of random variables

fc = 0 , . . . , n ) b y

(6.14) Zk = l-q, \Xk\ >c and Zk = -q, \Xk\ < c.

Now for k — 1 , . . . , n we have

(6.15) Bk = I I Y, Zj = -fc<? I n (Zfc = 1 - 9) and

We show that the conditions of Lemma 6.3 are satisfied by (Zk, k > 0) with
6 = 4. Clearly (Zk, k > 0) is a stationary sequence of uniformly mixing random
variables with mixing coefficient <j>{j). Using Ibragimov (1962), page 364, and

gives

2
r n - l

(6.16) n, n —» oo.

So condition (ii) is satisfied. Condition (i) is immediate.
Using (6.15), Markov's inequality and Lemma 6.3 with 6 = 4 gives

(6.17)

and

(6.18)

P(Bk) < P
fc-i

> kq/2 < C/fc3, C < oo, Jfc > 1,

< oo.
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In the same way

117

(6.19)

and

(6.20)

P\B) < P
3=0

> q(n + l)/2 < C/n3, C < oo,

nP(B) — 0, n -» oo.

We estimate the final term in (6.12) using the method of Ibragimov and
Maslova (1971a), Lemma 1. Let T > 0. Then

(6.21) f H

where C is a constant, io = log T and

( 6 . 2 2 ) W t . E

Taking T to be the following function of k,

(6.23) T = 1, k = 0; T = k1+£, k > 1, e > 0,

in (6.1) and noting that Wk < C(l - R)-k-1c~1, 0 < R < 1 we have

(6.24)

where C and D are constants. Substitute r — 1 — (logn)"1/2 and /Z = 1 —
^(logn)-1/2 in (6.24). Using (6.17) and noting (6.18) and (6.20) gives the desired
result.

Next we estimate the growth of ENn(I%).

LEMMA 6.5. / /

(i) f(8) is continuous at 9 = 0,
(ii) /(0) > 0,

(hi) f{0) <A<oo,0€ [—7T,7r],
</ien there is a constant C and an integer 7V6 such that

n > JV6.
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PROOF. Define p = ((n 4- 1) log log n ) " 1 . Partition 1% into intervals (Js,
s — 1 , . . . ,v) where

(6.25) Ja = [ l -n~1loglogn+(s- l )p , 1 - n"1 loglogn +sp],

for s = 1,... ,v — 1,

Jv = [ l - n ' M o g l o g n + ^ - l J p , 1], n > 3 .

If [x] is the integer part of x we have

(6.26) v = [((n + l)/n)(loglogn)2] + 1.

For Uk defined in Section 4 we have

(6.27)
fc=i

Applying Lemma 4.1 to Js and noting that 7 < (log log n ) " 1 gives

(6.28) £7V n ( J s )<c£7 3 f c / 5 =<?7 3 / 5 ( l - 7 3 / 5 r \ n>N6,
k=i

where N6 > max(^i,exp(exp(230))). So 7 < 2-3 0. Using (6.26), (6.28) and
noting that P(Qn {%) = 0) = 0 gives

JL -3/5
(6.29) ENn(I*) = J2EN»(J°) < CT^-m{l + VnJOoglogn)3

s = l '

for n > 7V"6. The desired result follows.

PROOF OF THEOREMS 2.1, 2.2 AND 2.3. We show that

(6.30) ENn(li) = o(logn), ENn(I*) = o(logn)

and
ENn{I2

n) ~ (1/2TT) logn, n ^ o o .

We have already shown that ENn(I^) = o(logn), n-»oo, under the condi-
tions of Theorems 2.1, 2.2 and 2.3. The remaining relationships hold when the
conditions of Lemmas 6.5 and 5.1 are satisfied. Notice that the conditions of
Lemma 6.5 are contained in those of Lemma 5.1. So Theorems 2.1, 2.2 and 2.3
follow when the conditions of Lemma 5.1 are satisfied. This is immediate for
Theorem 2.1. For Theorem 2.2 we note that the uniform convergence of Snf(6)
to /(#), 0 e [—7r,7r], implies condition (i) and (iii) of Lemma 5.1. Now

(6.31) SB/(0) = (1/TT) U + f> , - I > a/* > 0,

so condition (ii) of Lemma 5.1 follows.
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Consider the conditions of Theorem 2.3. From Ibragimov, (1962) page 364,
and (1.1) it follows that

(6.32) |r,-| < 2 ^ / 2 ( y ) ; j > L

So under the conditions of Theorem 2.3 we have
oo

(6.33)

We deduce that Snf(6) converges uniformly to /(#), 0 € [—w, TT]. SO conditions
(i) and (iii) of Lemma 5.1 are satisfied. Condition (ii) holds by assumption.

PROOF OF COROLLARY 2.1. As (X,, j > 0) is stationary we have

(6.34) ENn([l,oo)) =

and

We have already shown that ENn([0,1]) ~ (27r)-1 logn, n —• oo. So Corollary
2.1 follows if

(6.35) jEiVn([-l,0])~(27r)-1logn, n -»oo.

Now Qn(x) for x € [—1,0] can be written as
n

(6.36) Qn(-x) = 53(-l)>X,V, x e [0,1].
j=0

The spectral density associated with ((— iyXj, j > 0) is f(O + ir), so the desired
result follows.

7. Comparison with earlier work

Sufficient conditions for (1.3) are given in Theorems 1 and 3 of Shenker (1981)
when (Xj) is a stationary Gaussian process satisfying (1.1).

The principal result is Theorem 1 which states that Yl^Lo \ri\ < h 1S s u m c ' e n t
for (1.3) to hold. This result is contained in Corollary 2.1.

Theorem 3 of Shenker (1981) states that (1.3) holds when (|r,-|,j > 0) is
strictly convex (that is, | r j+2 | -2 | r j + i | + |rj| > 0); r2j > 0 and YJj=\ J\rj\ — °(n)
as n tends to infinity.

Define the sequence (rj5 j > 0) by

(6.37) r ^ O ' + i r 'OogO + lJ + l ) - 1 , 3>0.

This sequence is an autocorrelation function of a stationary process. This follows
from the strict convexity of (rj, j > 0) and Zygmund (1958), Theorem 1.5, page
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183. Since (r,, j > 0) satisfies the conditions of Theorem 3 yet 5 n / (0) —> oo,

n - » o o this process is not contained in any of our results.

Sufficient conditions for ENn([0,1]) ~ (l/27r)logn as n tends to infinity are

given in Theorem 2 of Shenker (1981) when r, > 0, j > 1. Our construction

(6.37) satisfies the conditions of this result yet is not contained in any of our

results.

Suppose that (Xj, j = 0,... ,n) is distributed as a multivariate normal ran-

dom vector satisfying (1.1). Let r^ = EXiXj. Take r G (0,1). The case where

Tij — r and r^ = rl*~J'l, for all i,j (with i ^ j) are considered in Sambandham

(1979, 1977) respectively. In the first case £JVn((-oo,oo)) ~ (1/2) logn as n

tends to infinity and in the second (1.3) holds when 0 < r < 1/2.

By calculating f(0) we see that the second case is contained in Corollary 2.1.

By considering 5Z?=1 r, we see that no Gaussian process with r,• = r, j > 1,

r G (0,1) can be included in any of our results.
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