
A CLASS OF HOMOMORPHISM
THEORIES FOR GROUPOIDS

by GERALD LOSEY f
(Received 25th March 1963)

1. Introduction

In a well-behaved homomorphism theory for a class (5 of algebraic systems
certain " closed objects " relative to a given 6 e § are distinguished which act
as kernels of homomorphisms. For example, if © is the class of groups then
the closed objects relative to a given group G are the normal subgroups of G;
if © is the class of semigroups with zero element then one can devise a homo-
morphism theory in which the closed objects relative to a given S e S are the
ideals of S[cf. Rees (3)]; in the class of groupoids one may define the closed
objects relative to a given groupoid G to be the congruence relations on G, that
is, subsets n^GxG which are equivalence relations having the property that
(*!>>!, x2y2) e n whenever (xu x2), (yx, y2) s n. Given such a closed object N
relative to G there exists a " factor " system G/N and a (canonical) homo-
morphism r\\ G-*G/N characterised by the property: If a: G->H is a homo-
morphism with kernel N then there is a unique homomorphism a: G/N^H
such that d . r\ = a and the kernel of d is trivial in the sense that the kernel of
a is the unique smallest closed object relative to G/N.

In order to construct a unified homomorphism theory for groupoids which
will include the examples of the preceding paragraph it is desirable that the
theory include a parameter whose specification reduces the general theory to
a particular one. In the theory to be constructed in this paper the parameter
will be a polynomial P(X) e Z\XX, ..., Xn~], Z being the ring of integers.

In Section 2 we shall describe a homomorphism theory for groupoids in
which the closed objects relative to a given groupoid G are the ideals of the
groupoid ring ZG. (This theory is essentially equivalent to that in which the
closed objects are the congruence relations on G.) In Section 3 this theory will
be used in defining the P-theory, P = P(X) a polynomial. In Section 4 we shall
show how the specification of P gives each of the theories mentioned above.

2. Groupoid rings and the ; -theory

In this section we shall construct a homomorphism theory for groupoids
which we shall call the r-theory (r for ring).

t This research was supported in part by the National Science Foundation under contract
NSF GP-2273.
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Let G be a groupoid and Z the ring of integers. Denote by ZG the set of all
formal sums 'LgeCtx.{g)g where a{g)eZ and <x(g) = 0 but for finitely many
g eG. Two sums are equal if and only if they are identical. Addition and
multiplication in ZG are defined in the natural manner and the resulting (not
necessarily associative) ring is called the groupoid ring of G. The mapping
g->I,a(h)h, a(g) = 1, tx(h) = 0 if h ¥= g, is an isomorphism of G into the multi-
plicative structure of ZG. We identify g with its image under this isomorphism.!

If (j>: G-*H is a (groupoid) homomorphism then <j> induces by linearity a
ring homomorphism (j>*: ZG-+ZH; that is,

Denote the kernel of <j>* by A^; we shall call A ,̂ the r-kernel of cj>. For each
hi e cj)(G) choose gt e G such that <K0.) = K a n d set X+ = {g,},e,. Let

+ * <j)(g,), g *gi}.

Then we have

Theorem 2.1. The set B(X$) is a Z-basisfor A^.

Proof. The Z-independence of B(X<t>) is an immediate consequence of the
Z-independence of the elements of G.

Let M be the Z-module generated by B{X^). Then, clearly, M s A f Let
a = Za(g)g e A^,. Then

o = <t>*(<x) =

Hence, 2^,(9) = ,j,(9,.)O((gf) = 0 for all i e / and so

Therefore, a = S,- s fZ^(9) = Hgda.{g)(g - gt) e M. Consequently, A^ c M . This
completes the proof of 2.1.

Let A be any ideal of ZG and let r\: ZG->ZG/A be the canonical homo-
morphism. Denote by fj the restriction of r\ to G. Then fj: G-+ZG/A is a
homomorphism of G into the multiplicative structure of ZG/A. Denote the
image of G under fj by G/A = {g + A: geG}. Thus given any ideal A of ZG
we construct the " factor " groupoid G/A of G by A. The map rj: G-+G/A
defined by g^g + A is called the canonical homomorphism. We will generally
write r\ for fj if there is no danger of confusion.

Theorem 2.2. Let (f>: G^H be a homomorphism of groupoids and let A^ be
the r-kernel of <j>. Let n: G->G/A^ be the canonical homomorphism. Then there
is a unique isomorphism $: G/A^-^H such that <j>n - <j>.

f If G has a zero element O' then, using the above definition of ZG, O' is not identified with
the zero element Tg e a 0-,? of ZG. If it is desired to make this identification then one must
reduce ZG modulo the ideal 6 = {~£,ai(g)g: a(^) = 0 for all g 3= 0'}.
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Proof. Define <i>(g + A0) = <j>{g). If g, g' e G then <j>(g) = 4>(g') if and only
if g-g' e A0, that is, if and only if g+A^ = g' + A^. Thus 4> is both well-
defined and one-one. It is easily verified to be a homomorphism. Moreover,
Hid) = <?(# + <<%) = <t>(9)- The uniqueness of $ follows from this last relation.

The following isomorphism theorems are also easily proved.

Theorem 2.3. Let <$>: G^G' be a homomorphism of G onto G'. If A' is an
ideal of ZG' then A = ^>*~1(A') is an ideal of ZG containing A^ and there is a
unique isomorphism $: G/A-*G'/A' such that rf'<f> = <[>n, where n: G-»G/A and
n': G'-*G'/A' are the canonical homomorphisms.

Theorem 2.4. Let <j>: G-*H be a homomorphism with r-kernel A^. Let K
be a subgroupoid of G and x: K-*H the restriction of<j) to K. Then Ar = A^nZK
and, thus, there is a unique isomorphism

such that in = x, where r\: K^K/A^nZK is the canonical homomorphism.

3. TheP-theory.
A collection (5 of groupoids will be said to be complete if for every G e (5,

© also contains all homomorphic images of G. For example, the collection
of all semigroups with zero is complete but the collection of all loops is not
[cf. (1)].

Let Xu ..., Xn be a finite set of non-associative, non-commuting indeter-
minates and let P{X) e Z\_X1, ..., Xn~]. The polynomial P is compatible with the
complete collection of groupoids © if for every element (k) = (ku ••-,kn) in
G" = Gx...xG, G e ® , P(ku ...,kn)eZG. If P has zero constant term then
P is compatible with all collections ©; if P has a non-zero constant term then
P is compatible with © if and only if every groupoid G e © has an identity
element l c in which case P(k) = aolG + a1k1 +....

Throughout the remainder of this section © will be a fixed complete collec-
tion of groupoids and P a fixed polynomial compatible with ©.

Let G e © and let K be a non-empty subset of G". We define AP(K) to be
the ideal of ZG generated by the elements P(k), {k) e K. We define

ClP(K) = {(g)eG":P(g)eAP(K)}.

If K is the empty set 0 then we set

ClP(0) = 7p(G) = {(g) e G": P(g) = 0}.

A subset K of G" is said to be P-closed if ClP(K) = K. Note that IP(G) is the
unique minimal P-closed subset of G";IP(G) may be empty. We call TP(G)
the trivial closed subset of G".

Theorem 3.1. The operator ClP satisfies the following :

(a) K^ClP(K);

(b) For any KsGn, ClP(K) is P-closed;
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(c) If {Ki}iel is a collection of P-closed subsets of G" then K= f]ieIKi is
P-closed;

(d) JP(G) and G" are P-closed.

Proof, (a) and (d) follow trivially from the definition. Also from the
definition we have P(g) e AP(K) for all (g) e C1P{K). Hence, AP(ClP(K)) =
AP(K) and so C/P(C/P(A:)) = ClP(K).

Let {Kj}ier be a collection of P-closed sets. Then (g)eClP(f]Ki) only if
P(g) e A,(f]Kd ^ f]Ap(K,). Thus P(g) e AF(/Q for all / and hence, (g) e C/,(A",-)
= Ki for all /. Thus, (g) e f]K(. Therefore, ClP{[]K^ s n#,.. Now (c) follows
from (a).

Let G, He (5 and let a: G~*H be a homomorphism. We extend i r t o a
mapping a: G"-+H" componentwise, that is, 5(gu ...,gn) = (o(g{), ..., ff(gj).

Lemma 3.2. / / a: G-*H is a homomorphism then

<r*(AP(K)) = AP(d(K))
for all subsets K^Gn.

Proof. AP{K) is generated by the elements P(k), (k) e K, and so o*(AP{K))
is generated by the elements a*P(k) = P(d(kJ) e AP(a(K)). Hence

On the other hand, AP(5(K)) is generated by the elements P(5(k)) = a*P(k).
Therefore AP(d(K))<=a*(AP(K)).

Using this lemma we can show that all homomorphisms are " continuous "
in the following sense:

Theorem 3.3. Let a: G-*H be a homomorphism and let K' be a P-closed
subset of H. Then K = S~ i(K') is a P-closed subset of G.

Proof. If (g)eClP(K) then P(g)e AP(K)^a*~l(AP(K')), by Lemma 4.2.
Therefore, <t*P(g) = P(&(g)) e AP(K') and so a(g) e C!P(K') = K' or

(g)ed-\K') = K.

Let a: G-*H be a homomorphism. Define the P-kernel of a to be the set
N = {(JC) e G": 5(x) e IP(G')}. Since N = d'^IpiG')) is the inverse image of a
P-closed set, N is a P-closed set of G". The homomorphism a is said to be a
P-isomorphism if the P-kernel of a is IP(G).

If N is any P-closed subset of G" then we define the P-factor-groupoid
(G/N)P = G/AP(N). The canonical homomorphism n: G~*(G/N)P is the
homomorphism g->g + AP(N) as defined in Section 2.

Theorem 3.4. 77/e P-kernel of the natural homomorphism r\: G-*(GIN)P is
N. Moreover,

IP((G/N)P) = {(Su ...,gj:gt = gl + HtiN),(adeN}.
Proof. I((PG/N)P) is the set of all (gl5 ...,gB), gf = 0; + AP(iV), such that

P(9u--;9») = P(9i,--;9n) + Ai>(A0 = Ap(iV). Thus, (3) e G" is in the P-kernel
of r\ if and only if P{g) e AP(iV), that is, if and only if (g) e N.
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Theorem 3.5. Let a: G->H be a homomorphism with P-kernel N. Then
there exists a unique P-isomorphism <r:(G/N)P->H such that an = a, where
n: G-*(G/N)P is the canonical homomorphism.

Proof. Defines: (G/N)P^Hbyg+AP(N)->a(g).
then g — g'e AP(N) and so

a(g)-a(g') = a(g-g')ea*(AP(N)) = A ^ V ) ) = AP(fP(H)) = {0}

since P(h) = 0 for all (h) e IP(H). Therefore, a(g) = a(g') and so a is well
defined. It is clearly a homomorphism. An element (g) e (G/N)P belongs to
the /'-kernel of a if and only if

) , . . . , a(gn)) = a(gu ...,gn) e

that is, if and only if (g) e N. Thus, by 4.4, (g) is in the kernel of a if and only
if (g) e lP((G/N)P). Hence a is a P-isomorphism. Moreover

ar,(g) = a(g + AP(N)) = ff(g).

The uniqueness of a follows from this relation.
The property of theorem 3.5 characterises the P-factor-group up to iso-

morphism.

Theorem 3.6. Let G be a groupoid and N a P-closed subset of G". Let K be
a groupoid and /i: G^K a homomorphism with P-kernel N. Suppose that for
every homomorphism <f>: G^H with P-kernel N there exists a P-isomorphism <f>':
K^-H such that <f>'n = (j>. Then K and (G/N)P are isomorphic.

Proof. By 3.5 there exists a homomorphism /Z: (G/^V)P->^such that jirj = /J.
By the hypothesis, there exists a homomorphism rj': K^>(G/N)P such that
fj'/i = n. Hence (fir]')n = n and (n'fi)ri = rj. Thus firj' is the identity mapping
on K and rj'fi is the identity mapping on (G/N)P. Therefore p. and r\' are inverse
isomorphisms.

The following " isomorphism " theorems can be proved in a manner similar
to that of 3.5.

Theorem 3.7. Let a: G-*G' be a homomorphism of G onto G' with P-kernel
N. Then there is a one-one correspondence between the P-closed subsets H' of G'n

and the P-closed subsets H of G" containing N given by H = 5~1{H'). If H and
H' are corresponding P-closed subsets then there exists a unique P-isomorphism
a:(G/H)P-*(G'/H')P such that rj'a = an, where rj:G^(GIH)P and n':G'^
(G'/H')P are the canonical homomorphisms.

Theorem 3.8. Let a: G^H be a homomorphism with P-kernel N. Let K
be a subgroupoid of G and let x: K-*H be the restriction of a to K. Then the
P-kernel of T is NriK" and, thus, there exists a unique P-isomorphism

such that xn = x, where n: K->(K/NnK")P is the canonical homomorphism.
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4. Examples
I. Let (5 be the collection of all groups and let P(X) = X— 1. Then the

P-closed subsets of a group G will be subsets of G1 = G. We claim that the
P-closed subsets of G are precisely the normal subgroups of G.

Suppose H^G and H is P-closed. Then x,yeH implies that x — 1,
y-1 e AP(H) and thus that x-1, -y'1(y-1) = j " 1 - 1 6 AP(H). Therefore,
xy~1-\ =(x-l)(y-1-l) + (x-l) + (y-i-l)eAP(H)andsoxy-1eH. Thus
H is a subgroup of G. Moreover, for any x e H, z e G we have

z~lxz-\ = z-^x-Vze

Therefore, if is a normal subgroup of G. Conversely, suppose H is a normal
subgroup of G and G = G/H. Then the kernel of the homomorphism ZG->ZG
denned by Ea(#)g -+I,<x(g)g, g = #/f, is precisely AP(H). [This follows from 2.2;
see also Jennings, (2).] Therefore, if g e ClP(H) then g — 1 e AP(H) and so
0 = T, that is geH. Hence # = ClP(H).

The trivial P-closed subset of G is {1} and it is easy to see that every P-
isomorphism is an isomorphism. By 3.6, (GJH)P = G/H and this isomorphism
is given by g + AP(H)<-+gH.

II. Lety be the collection of all semigroups with 0 and let Q(X) = X. The
g-closed sets are subsets of S1 = S. We claim that the Q-closed subsets of S
are precisely the ideals of S.

Suppose J is a Q-closed subset of S. Then x e J if and only if x e AQ(J).
Thus if x e J and yeS then both yx and xy belong to AQ(J) and, hence, to J.
Therefore, J is an ideal of S. Conversely, suppose J is an ideal of S. Then it is
clear that Ae(J) is the set of all finite sums l,xeJn(x)x where n(x)eZ. If
y e ClQ(J) then yeS and y = EXEJH(JC)X. By the linear independence of the
elements of S in ZS, this implies y = x for some x e J . Consequently,
C7Q(J) = J and J is g-closed.

Let S be a semigroup with 0 and J an ideal of S. Then
(SIJ)Q = {x+AQ(J):xeS}.

Let x = x + AQ(J). Then 3c = 0 if and only if x e AC(J), that is, if and only if
x 6 J. If x, ye S then 3c = j? if and only if x—y e AQ(J). But this can happen
if and only if x = y or x and j> e J, that is, 3c = y implies x = yorx = y = t).
Thus, under the canonical homomorphism, the elements of J are mapped onto
0 and the elements x e S—J are mapped onto distinct elements x = 0. This is
precisely the definition of the Rees quotient of S by J [cf. Rees (3)].

III. Let Jt be the class of all groupoids and R(X, Y) = X- Y. The
J?-closed sets will be subsets of G x G, Ge Ji. The trivial .R-closed subset will
be the diagonal: IR(G) = {(g, g):ge G}. We claim that the inclosed subsets
of G x G are precisely the congruence relations in G x G.

Suppose 7i £ G x G is i?-closed. Clearly (x, x)en for all x e G since IR(G)
is contained in all iJ-closed sets. If (x, y)en then R(y, x) = — R(x, y) e AR(n)
and so (y, x)en. If (x, y), (y, z)en then

(x-y)+(y-z) = (x-z) = R(x, z) e AK(n)
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and so (x, z) e n. Thus n is an equivalence relation. Let {xu yj, (x2, y2) e n.
Then (xl-yi)x2+y1(x2-y2) = xxx2-yxy2 e AR(n) and so {xxx2,y^y2) e n.
Therefore n is a congruence relation in G x G.

Conversely, let n be a congruence relation in G x G. Let G' be the groupoid
of congruence classes, G' = Gjn and let n: G-+G' be the natural mapping, that
is, n(g) is the congruence class containing g. Then it*:ZG->ZG' has kernel
Aj which is spanned over Z by the elements xt—yh (xh yt) e n. Since AR(7t)
is spanned over ZG by the elements xv—yh (xh yt) e n, it follows that

AR(n) - AK.

Hence every element of AR(n) can be expressed in the form T.ni(xi—yi) where
(xt,yt)en, riiEZ. Since (xhyt)en implies (vh x;) e n we can further assume
that every element of AR(n) can be written 2(Xj—yt) with (xh y,) e n (with
repetitions allowed). Suppose that in such an expression yt = Xj for some
i andj; then we can replace (xi—yi) + (Xj~yJ) by xt—yj since (x{, yt), (xj, yj) e n
implies (x^y^en. Thus every element of AR(n) can be written S(jcf—y,)
where (x;, j ; ) e 7t and no yt = Xj. Now suppose (x, j ) e ClR(n); then

If the sum on the right included more than one term then, in order that the
appropriate cancellations occur, we would have yx = Xj for s o m e j > l . But
this cannot occur. Therefore x—y = x1—yy and so x = x t and y = yl.
Thus (x, y) = (*!, j j ) e 7r. Hence 7t is i?-closed.

The isomorphism Gjn = {Gjn)R is given by n(g)<-+g + AR(n).
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