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Abstract

With many non-human primates (NHPs) showing continued population decline, there is an
ongoing need to better understand their ecology and conservation threats. One such threat is
the risk of disease, with various bacterial, viral and parasitic infections previously reported to
have damaging consequences for NHP hosts. Strongylid nematodes are one of the most com-
monly reported parasitic infections in NHPs. Current knowledge of NHP strongylid infections
is restricted by their typical occurrence as mixed infections of multiple genera, which are
indistinguishable through traditional microscopic approaches. Here, modern metagenomics
approaches were applied for insight into the genetic diversity of strongylid infections in
South-East and East Asian NHPs. We hypothesized that strongylid nematodes occur in
mixed communities of multiple taxa, dominated by Oesophagostomum, matching previous
findings using single-specimen genetics. Utilizing the Illumina MiSeq platform, ITS-2 stron-
gylid metabarcoding was applied to 90 samples from various wild NHPs occurring in
Malaysian Borneo and Japan. A clear dominance of Oesophagostomum aculeatum was
found, with almost all sequences assigned to this species. This study suggests that strongylid
communities of Asian NHPs may be less species-rich than those in African NHPs, where
multi-genera communities are reported. Such knowledge contributes baseline data, assisting
with ongoing monitoring of health threats to NHPs.

Introduction

Non-human primates (NHPs) are among the most endangered of mammalian taxa (Estrada
et al., 2017; Fernández et al., 2022). Asian NHPs are particularly threatened, with one of
the largest proportions of threatened NHP species reported across global regions, second
only to Madagascar (Fernández et al., 2022). Asian NHPs commonly feature among the
International Union for Conservation of Nature’s ‘World’s 25 Most Endangered Primates’
and face a variety of conservation challenges (Mittermeier et al., 2006). Consequently, effective
conservation strategies rely on understanding both their ecology and conservation threats.
One such threat is the risk of disease, with various bacterial, viral and parasitic infections pre-
viously reported to have damaging consequences for NHP hosts (Chapman et al., 2005; Mul
et al., 2007; Gillespie et al., 2008; Bicca-Marques et al., 2022). In particular, host–parasite inter-
actions have long been associated with population dynamics of wildlife hosts (Hudson and
Dobson, 1995). Wild NHPs host numerous parasites (Nunn et al., 2003; Frias and
MacIntosh, 2020), including strongylid nematodes, a major radiation of parasitic helminths,
herein referred to as strongylids. Strongylids are amongst the most common gastrointestinal
parasites of wild NHPs, typically occurring as asymptomatic infections within such hosts
(Cantacessi et al., 2012; Pafčo et al., 2018). However, clinical manifestations have been previ-
ously reported in both captive and wild NHPs (Pit et al., 2001; Mul et al., 2007; Muhangi et al.,
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2021). Strongylids are expected to occur in complex communities
of multiple genera within NHP hosts, as is conventional in large
terrestrial herbivores (Pafčo et al., 2018).

While strongylids have been widely studied in both human
medicine and veterinary sciences (Zajac, 2006; Cantacessi et al.,
2012), knowledge of these infections in wildlife is still limited
(Krief et al., 2008; Mclean et al., 2012; Walker and Morgan,
2014). It is restricted by the indistinguishability of different spe-
cies, or even genera, through traditional coproscopic approaches
(Jex et al., 2011; Pafčo et al., 2018). Previously applied molecular
approaches are time consuming and require either single larval
specimens or species-specific primers. Such methodologies are
insufficient for capturing the true genetic diversity of these com-
plex communities, at risk of overlooking rarer taxa (Pafčo et al.,
2018). Technological advancements in high-throughput sequen-
cing (HTS) now facilitate simultaneous sequencing of mixed
DNA from entire communities, including identification of rare
taxa (von Bubnoff, 2008), in a timely and cost-effective manner.
In recent research, HTS methodologies have confirmed the pres-
ence of complex strongylid communities in various African NHPs
(Pafčo et al., 2019; Mason et al., 2022). However, application is
not currently widespread and these methods are yet to be applied
to strongylid communities of Asian NHPs.

Recent research has revealed striking differences in strongylid
communities of African great apes (Pafčo et al., 2019; Ilík et al.,
2023), raising questions as to the drivers of these complex com-
munities. Parasite phylogenies are sometimes thought to emulate
the host phylogenies within which they evolved, as predicted by
the host-parasite co-speciation hypothesis (Brooks, 1979).
However, environmental parameters, such as temperature,
humidity or vegetation, are known to influence longevity and
transmission of parasite populations (Silangwa and Todd, 1964;
Callinan and Westcott, 1986; Jex et al., 2011). As soil-transmitted
helminths, strongylids may be particularly influenced by environ-
mental variation, due to development of infectious larvae involv-
ing free-living larval stages within the external environment
(Kalousová et al., 2014; Knapp-Lawitzke et al., 2014). Similarly,
parasite populations are also influenced by the presence or
absence of sympatric species, be that other wildlife or domestic
animals (Hatcher et al., 2012). Existence of multiple potential
hosts within a given area facilitates parasite sharing between
host species, particularly among phylogenetically related hosts
(Dallas et al., 2019), including NHPs (Cooper et al., 2012; Pafčo
et al., 2019). With a direct lifecycle, strongylids rely on overlap-
ping host ranges for transmission (Pafčo et al., 2019), without
an intermediate or transport host to facilitate wider transmission.

Coproscopic studies have confirmed a high prevalence of
strongylids in both South-East and East Asian primates
(Arizono et al., 2012; Frias et al., 2021). To date, genetic research
of strongylids in Asian NHPs has typically focused on
Oesophagostomum spp., the so-called ‘nodular worms’. Only
one species of nodular worm, O. aculeatum, has been genetically
identified in Asian NHPs thus far (Arizono et al., 2012; Frias
et al., 2019; Yalcindag et al., 2021). There are few reports of
other strongylid taxa in Asian NHPs. For example, a previous
molecular characterization identified the presence of a single
Ternidens deminutus larva in a sampled community of Bornean
NHPs (Frias et al., 2019). However, due to this previous research
using single larval specimens and relying on taxa-specific primers,
the strongylid communities identified cannot be deemed conclu-
sive. To build upon current knowledge, a holistic approach better
able to capture the entire strongylid community, including rare
taxa, is needed.

Here, a previously optimized HTS approach (Pafčo et al., 2018)
is utilized to shed light on the genetic diversity of strongylid com-
munities infecting South-East and East Asian NHPs. This

approach is applied to 5 distinct NHP populations, including
a total of 6 primate species. In describing the strongylid com-
munities of Bornean orangutans (Pongo pygmaeus), one of
the only Asian great apes, and several sympatric NHP species,
the aim is to provide a unique insight into the host–parasite
co-speciation hypothesis within great apes. Insight into within
species variation of NHP strongylid communities is also pro-
vided, through comparison of Japanese macaques (Macaca
fuscata) from 3 isolated localities. We hypothesize that strongy-
lid nematodes occur in mixed communities of multiple taxa,
dominated by Oesophagostomum, matching previous findings
based on single-specimen genetics.

Material and methods

Sample collection

In this study, 90 individual faecal samples were utilized, non-
invasively collected from 6 different wild NHP species in
South-East and East Asia, precisely across 5 localities in
Malaysian Borneo and Japan. In Borneo, sampling was conducted
at 2 localities: the Lower Kinabatangan Wildlife Sanctuary
(LKWS) and Danum Valley Conservation Area (DVCA), both
of which occur in the state of Sabah. At LKWS, 36 samples repre-
senting 5 primate species were collected: crab-eating macaque
(Macaca fascicularis, n = 17), southern pig-tailed macaque
(Macaca nemestrina, n = 2), proboscis monkey (Nasalis larvatus,
n = 4), silvery lutung (Trachypithecus cristatus, n = 5), and
Bornean orangutan (Pongo pygmaeus, n = 2). Except for
Bornean orangutans, which were either followed or sampled
opportunistically during their visits to the Centre, LKWS samples
were collected during systematic boat surveys along the
Kinabatangan River, with NHP species being opportunistically
sampled when encountered at sleeping sites early in the morning.
Visual appearance of faeces based on softness and presence of
invertebrates was used to ensure that only fresh samples were col-
lected. Finally, 12 identified Bornean orangutans inhabiting
DVCA were sampled during standard focal follows of habituated
individuals. Further sampling was conducted in Japan, with 48
samples collected from the 2 subspecies of Japanese macaques
(Macaca fuscata fuscata and M. f. yakui) inhabiting 3 localities:
Jigokudani (n = 15), Koshima (n = 21) and Yakushima (n = 12).
At these 3 localities, the primates are habituated to human pres-
ence and each sample can be attributed to a known individual.
Samples from all localities were fixed in ethanol as soon as pos-
sible after collection, always on the same day, with fixed samples
then stored at environmental temperature before transportation to
Wildlife Research Center, Kyoto University, Japan.

DNA isolation and sequencing

Total genomic DNA was extracted from faecal samples using a
QIAamp DNA stool mini kit (Qiagen, Japan) following the manu-
facturer’s recommendations. To ensure correct host identification of
samples originating from unidentified hosts in LKWS, cytochrome
b (cytb) gene fragments were amplified using the primer pair
L14724/H15915 (CGAAGCTTGATATGAAAAACCATCGTTG/
AACTGCAGTCATCTCCGGTTTACAAGAC – respectively) (Irwin
et al., 1991). Amplicons were then purified using the Agencourt
AMPure system (Agencourt Bioscience Corp., USA) before sequen-
cing in an ABI 3730xl DNA Analyzer (Applied Biosystems, USA).
Resulting sequences were compared with GenBank template
sequences to identify the correct primate species, described in full
in Frias et al. (2018).

Strongylid presence was assessed in each sample using HTS,
where the entire strongylid community was determined by
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amplification of the second internal transcribed spacer (ITS-2) of
nuclearDNAthroughPCR(polymerase chain reaction)using the for-
ward primer Strongyl_ITS-2_F (ACGTCTGGTTCAGGGTTG) and
the reverse Strongyl_ITS-2_R (ATGCTTAAGTTCAGCGGGTA)
(Pafčo et al., 2018). To generate HTS sequencing libraries a 2-step
PCR approach that employs Nextera primer design was used
(Pafčo et al., 2018), with each sample tagged with a unique primer
barcode, following Illumina libraries guide. Through the Illumina
MiSeq platform the final library was sequenced using MiSeq
Reagent Kit version 2 (2 × 250-bp pair-end reads, 500 cycles).

Bioinformatics and data analysis

Gene-specific primers were trimmed using SKEWER (Jiang et al.,
2014). Using DADA2, paired end reads were assembled (Callahan
et al., 2016). The dataset was then denoised, low-quality reads
(expected error rate >1) eliminated and inflation of strongylid
diversity by PCR/sequencing artefacts (chimeras) avoided by cor-
rections in DADA2 (Callahan et al., 2016). To taxonomically
assign amplicon sequence variants (ASVs) the naïve Bayesian
RDP classifier (Wang et al., 2007) was employed in the DADA2
pipeline. With strongylid ITS-2 sequences, downloaded from
the NCBI nr/nt database (200 top BLASTN hits for each
ASVs), a training database of reference sequences for assign-
ment was constructed. The dataset was then filtered to remove
all unclassified ASVs, those not assigned to Strongylida.
Phylogenetic maximum likelihood analysis was performed using
the web version of IQ TREE (Trifinopoulos et al., 2016), with
integrated ModelFinder selecting the most suitable model based
on Bayesian information criterion (BIC) (Kalyaanamoorthy
et al., 2017), after removal of outlying ASV sequences with both
low abundance and prevalence and addition of Oesophagostomum
spp. sequences available in the GenBank. The topology of phylo-
genetic trees was tested using 1000 replicates of ultrafast bootstrap
(Hoang et al., 2018) and Shimodaira–Hasegawa approximate like-
lihood ratio test (SH-aLRT) (Anisimova et al., 2011). Through the
model outputs, attention was also paid to pairwise distances
between taxa, which were calculated from the alignments guided
by Clustal Omega integrated into Geneious Prime 2023 2.1
(http://www.geneious.com). The trees were visualized and anno-
tated in iTOL v5 (Letunic and Bork, 2021).

Differences in alpha diversity of strongylid communities were
investigated by using the number of ASVs per sample as a proxy
measure. Using the lme4 R package (de Boeck et al., 2011; Bates
et al., 2015), a GLMM (generalized linear mixed model) with
negative binomial distribution was applied, accounting for aggre-
gated parasite distributions, to assess the effect of host species on
alpha diversity, including study site as a random factor. To assess
overdispersion and ensure correct model selection, residual diag-
nostics were implemented and visually inspected through the
DHARMa R package (Hartig, 2020), with no significant deviation
found. Then the drop1() function (again in lme4 R package) was
implemented to determine the importance of host species as a
model effector, with strong significance identified comparative
to a null hypothesis. Post hoc comparisons, using Tukey Honest
Significant Differences, were employed to test the effect of host
species factorially. Using the vegan R package (Oksanen et al.,
2019), between species variation in beta diversity, at the individual
ASV level, was investigated through ANOSIM-based community
compositional dissimilarities and tests of multivariate homogen-
eity, employing Bray–Curtis dissimilarities to account for ASV
relative abundances. Clustering was visualized through weighted
PCoA (principal coordinates analysis), again using the vegan R
package (Oksanen et al., 2019). To investigate within species vari-
ation of beta diversity, the same methods were applied to a data

subset including only Japanese macaques, employing host locality
as the effector variable.

Results

Sequencing data consisted of 4 554 168 ITS-2 reads, with an aver-
age of 50 602 (S.D. 62 306) reads per sample. In total, 69 individual
ASVs were identified, 65 of which were assigned to a single stron-
gylid species: Oesophagostomum aculeatum. The remaining 4
ASVs were unidentified as strongylid taxa, assigned to superfam-
ily trichostrongyloidea and could not be assigned at the genus
level. The pairwise sequence distance (PSD) among all
Oesophagostomum ASVs derived from the samples reached up
to 10%, although such differences were restricted to 6 ASVs (8,
50, 51, 52, 57 and 67), with the PSD among all other ASVs not
exceeding 5.4%. In the phylogenetic tree, all ASVs clustered
within one strongly supported clade corresponding to O. aculea-
tum, with further internal structure (Fig. 1). One subclade com-
prised ASVs found in Bornean orangutans at both localities in
Sabah, with 2 of these ASVs also detected in Japanese macaques
in Jigokudani. Moreover, GenBank sequences originating from
orangutans, in both Borneo (P. pygmaeus) and Sumatra (P. abelii),
and Bornean white-bearded gibbons (Hylobates albibarbis) clus-
tered within this subclade. The PSD within this subclade was
below 2.5%.

Another small subclade comprised 5 ASVs (7, 9, 20, 23 and
30) detected in Japanese macaques across the 3 localities and
one ASV (1) which occurred at all 3 Japanese localities as well
as in crab-eating macaques at LKWS and orangutans at DVCA.
This subclade also included 3 additional GenBank sequences
from Japanese macaques. Other ASVs occurred across localities
and host species, some occurred in multiple hosts at multiple
localities, e.g. ASV 2 or ASV 22, some occurred in multiple
hosts at a single locality, e.g. ASVs 25, 10 or 14, and some
occurred in a single host at a single locality, e.g. ASVs 38, 27 or
69. Interestingly, these single-host-ASVs were always recorded
in crab-eating macaques or Japanese macaques. It is worth men-
tioning that 2 sequences labelled as O. bifurcum in GenBank and
originating from free-ranging bonobos (Pan paniscus) (Medkour
et al., 2021) clustered in the O. aculeatum clade and differed by
only 1.2–6.6% (below 3.7% for most haplotypes) from any O. acu-
leatum sequence.

Of the 4 ASVs assigned only to trichostrongyloidea, all were
restricted to a single host species at a single locality, occurring
only in crab-eating macaques at LKWS, with none showing a
close identity match with any GenBank sequences. All 4 ASVs
clustered together and formed a small subclade (SUP FIG 1)
closely related to a clade comprising Hyostrongylus spp. and to
a clade including Ostertagia nianqingtanggulansis (AJ577459,
from unspecified host from Tibet), Ostertagia sp. (AB367797,
Japanese Serow, Japan), Mazamastrongylus dagestanica (JQ925868,
OM445254; moose, Russia) and Spiculopteragia spp. (European
cervids). Although M. dagestanica is currently assigned to the
family Trichostrongylidae, all other taxa are from the family
Haemonchidae, suggesting the nature of the trichostrongylids
detected in macaques.

Upon visual inspection, alpha diversity (at the level of individ-
ual ASVs) of strongylid communities appeared to show minimal
variation between host species (Fig. 2). GLMMs found statistically
significant differences in alpha diversity with post hoc analysis
revealing differences between only Japanese macaques and other
host species, with no alpha diversity differences found among
sympatric host species at LKWS (P > 0.08 for all pairwise compar-
isons). Japanese macaques showed lower alpha diversity of stron-
gylid communities compared to crab-eating macaques, silvery
lutungs and orangutans (P < 0.001 for all pairwise comparisons),
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yet no differences were found between the 3 localities in Japan.
However, ASV composition of strongylid communities showed
significant interspecific variation, both between host species

(ANOSIM: R = 0.597, P = 0.001) and amongst Japanese macaques
in different localities (ANOSIM: R = 0.425, P = 0.001), supported
by visual inspection of ordination plots (Fig. 3).

Figure 1. Maximum likelihood cladogram of Oesophagostomum ITS-2 region (245 bp), computed in IQ tree3 by model K2P + G4, using O. dentatum as an outgroup.
The tree topology was tested by 1000 replicates of ultrafast bootstrap4 and SH-like aLRT5. Green circles mark nodes with support higher than 75%, with circle size
depicting value. Sequences from GenBank are labelled by accession number.
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Discussion

Faecal samples from 6 NHP species inhabiting regions of
South-East and East Asia were examined to assess the diversity of
their strongylid nematode communities. A community profiling
approach was applied, based on a previously optimized and tested
HTS amplicon sequencing methodology. Focusing on strongylid
communities from multiple NHP species allowed the diversity of
these communities to be investigated with reference to sympatric
species, different localities and host phylogenies. The reported
diversity of strongylid nematodes highlights the potential consist-
ency of these communities in NHP hosts within South-East and
East Asia. The limitations of HTS methods should be noted,
most poignantly the restriction in taxonomic resolution due to
short sequence lengths and potential for sequencing errors from
PCR biases (Kircher and Kelso, 2010; Ambardar et al., 2016).
However, previous work (Pafčo et al., 2018) has shown successful
approaches for diminishing the impact of these stochastic effects.

There was a clear dominance of O. aculeatum, with nearly all
ASVs assigned to this taxon. Dominance of O. aculeatum was
expected, mirroring previous reports of strongylid infections in
Asian NHPs (Frias et al., 2019). Still, the near complete absence
of other strongylid taxa was surprising, as strongylid nematodes
occur in complex communities comprised of multiple genera in
other studied hosts. The majority of studied samples showed sin-
gle species infections, contrasting with reports of strongylid infec-
tions in African NHPs (Pafčo et al., 2019; Mason et al., 2022; Ilík
et al., 2023). Previously implemented molecular methods, involv-
ing individual larval specimens, identified the presence of a single
larva of Ternidens in one Bornean orangutan (Frias et al., 2019),
raising questions as to why this study did not identify the presence
of Ternidens. The absence of Necator americanus among these
samples should also be noted, as this strongylid has previously
been reported in the local human population (Lim-Leroy and
Chua, 2020) and is known to be frequently transmitted between
humans and wild NHPs in Africa (Pafčo et al., 2019).
Potentially, this study is restricted by the limited sample size of
some host species (especially orangutans at LKWS), with further

sampling required for a more complete picture of strongylid
diversity among Asian NHPs.

ASVs of O. aculeatum found in this study were further sepa-
rated into 2 clusters. The first cluster consisted mainly of ASVs
from orangutans, with 2 additional ASVs identified from
Japanese macaques. This cluster also includes 4 sequences
from GenBank, recorded as infecting P. pygmaeus, P. abelii
and H. albibarbis, suggesting a lineage specialized to orangutans,
with historical spill-over to other hosts. This cluster assembled
closely with the 2 sequences from bonobos registered as O. bifur-
cum, though based on clustering these sequences may in fact
represent O. aculeatum (Medkour et al., 2021). The second clus-
ter contained more ASVs and is identified in a larger diversity of
host species, indicating it may be a more generalist lineage.
Differentiation of these clusters as lineages or species would
require morphological examination of adult worms and analysis
of more markers. Cryptic species of Oesophagostomum have pre-
viously been proposed for nodular worm infections in humans
and NHPs in Uganda (Ghai et al., 2014), with high genetic vari-
ability of Oesophagostomum spp. observed in African primates
(Sirima et al., 2021; Mason et al., 2022). However, although
the ITS-2 marker, also used in this study, is ideal for distinguish-
ing between known species for which genetic data exists in
repositories, it should be noted that this marker shows high
levels of intraspecific variability, which may limit its value
in identifying potential cryptic species (Conole et al., 1999;
Poissant et al., 2021; Halvarsson and Tydén, 2023). Several
host-specific lineages were previously found in Oesophagostomum
following cox1 analyses with 2 clear lineages showed within O. acu-
leatum, the first being found in a number of hosts, while the second
being more host-specific (Frias et al., 2019). This confirms a certain
degree of host preference within the O. aculeatum lineages detected
and shows that involving genetic markers of divergence at the mito-
chondrial DNA loci would be an important aid in deciphering
potentially cryptic species (Blouin, 2002).

The 4 trichostrongyloidea ASVs identified in crab-eating
macaques highlight the current convolution in genetic distinction
of strongylids in wildlife hosts. There are records of unspecified

Figure 2. Amplicon sequence variant (ASV) diversity of strongylid nematodes detected in faecal samples of South-East and East Asian primates from 5 localities,
indicated across the upper x-axis.

Parasitology 5

https://doi.org/10.1017/S0031182024000386 Published online by Cambridge University Press

https://doi.org/10.1017/S0031182024000386


Trichostrongylus sp. based on the presence of eggs in various
Asian macaque species (Kumar et al., 2018; Kurniawati et al.,
2020; Fernando et al., 2022). Although humans and some
African cercopithecoid primates are occasionally reported with
Trichostrongylus colubriformis infection (Phosuk et al., 2013;
Sharifdini et al., 2017; Obanda et al., 2019), and apparently
there are Trichostrongylus spp. infecting African great apes
(Mason et al., 2022), these sequences did not cluster with any
Trichostrongylus spp. provided in the GenBank. Thus, as a more
probable candidate Nochtia nochti is proposed, a trichostrongy-
loid nematode parasitizing Macaca spp. across Asia which unfor-
tunately is not represented in available sequence databases.
However, pathogenesis described in N. nochti (Yalcindag et al.,
2021; Fonti et al., 2023) holds similarities to other trichostrongy-
loids from the family Haemonchidae (Deplazes et al., 2016),
within which these sequences clustered.

The number of strongylid ASVs per sample, a quasi-measure
of alpha diversity, was generally consistent across host species.
Of all host species, only Japanese macaques showed noticeable
differences (significantly lower number of ASVs) from other spe-
cies. This finding may be as expected, with Japanese macaques
being the unique sampled species occurring in East Asia,

compared to the other species in South-East Asia. Of particular
note is the variation identified between the 2 macaque species,
Japanese macaques and crab-eating macaques, highlighting how
geographical factors and sympatric species can influence strongy-
lid communities of closely related host taxa. Japanese macaques
are the world’s most northern-living primate (Cozzolino et al.,
1992; Tsuji et al., 2008), meaning it is one of the few NHP species
that exists solely in single-primate communities (Ito et al., 2021).
As such, the ability for parasites to host switch, a method whereby
a parasite establishes within a novel host species (De Vienne et al.,
2007; Cooper et al., 2012), is limited due to the absence of closely
related species already hosting the parasite. Fossil evidence sug-
gests that Japanese macaques may have long existed within a
single-primate community (Marmi et al., 2004; Kawamoto
et al., 2007), which may also be reflected among their intestinal
parasite fauna (Gotoh, 2000).

Additionally, this northern distribution means Japanese maca-
ques inhabit Japanese islands where environmental conditions
differ quite dramatically from those in Borneo. Japanese maca-
ques living at more northern latitudes, where the climate is char-
acterized by colder winters, were previously shown to carry fewer
gastrointestinal parasites at lower prevalence (Gotoh, 2000). The
harsher seasonal environment in Japan may reduce the longevity
of strongylids during developmental stages in the external envir-
onment (Knapp-Lawitzke et al., 2014). As such, ASV diversity, in
Japan compared to Borneo, is limited by the robustness of stron-
gylid taxa and their ability to withstand harsher environmental
conditions.

Great variation between the samples according to the commu-
nity composition of strongylids was observed both among species
as well as within species (when concerning Japanese macaques).
Some of this among-species variation is explained by the 2 iden-
tified lineages of O. aculeatum, with the divergent ordination of
orangutans coinciding with the ‘orangutan’ lineage, almost exclu-
sively identified within this host. Likewise, the divergent ordin-
ation of crab-eating and pig-tailed macaques from Japanese
macaques attests to the importance of sharing a habitat with
other sympatric primates, supported by the widespread second
lineage of ASVs identified within these hosts. Japanese macaques
occupying a separate ordination space are additionally at least in
part due to the reduced diversity of strongylid communities in
this host species. This divergent ordination of macaque species,
suggesting divergent composition of strongylid communities,
contradicts the host–parasite co-speciation hypothesis (Brooks,
1979). Interestingly, only a single ASV was commonly identified
among all 3 macaque species, with Japanese macaques sharing
just 3 additional ASVs with either crab-eating or pig-tailed maca-
ques, highlighting the role of environmental factors influencing
parasite communities. Divergent ordination among Japanese
macaques from different localities further emphasizes this, with
hosts of the same species showing variation within strongylid
community composition and only a single shared ASV identified
across all 3 localities. Geographical isolation within Japanese
macaques has led to the evolution of a subspecies in one locality:
M. f. yakui in Yakushima (Hayaishi and Kawamoto, 2006). Host
evolution is not mirrored by their strongylid communities in this
case, however, with Yakushima strongylid communities showing
convergence, in terms of composition, with Koshima, while
Jigokudani strongylid communities show far greater divergence,
again opposing the host–parasite co-speciation hypothesis.
Further exploration of this hypothesis among NHPs, and environ-
mentally driven deviation, could benefit from using the Macaca
genus as a model, with 22 currently recognized species distributed
into several lineages (Thierry, 2007) and occupying the widest
geographical range of all NHP, spanning both tropical and tem-
perate regions (Fooden, 1982).

Figure 3. Principal coordinate analysis (PCoA) plots of the beta diversity (assessed
through Bray–Curtis dissimilarities) among strongylid nematode communities of (a)
6 South-East and East Asian Primate species from 5 localities and (b) M. fuscata
from 3 localities in Japan. Convergent dots indicate similarities in community com-
position. While Koshima and Yakushima are represented by multiple samples, close
convergence of points shows no separation within ordination space at this scale.
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Concluding, the strongylid nematode communities of
South-East and East Asian NHP were dominated by O. aculea-
tum, with single-species occurrence identified in most samples,
which is in sharp contrast to the rich strongylid communities har-
boured by African great apes and other African NHPs. The gen-
etic distances between sequences suggests the potential for 2
cryptic lineages within O. aculeatum. One lineage appears more
specialized in terms of host diversity, with the other being more
generalist and diverse. However, ITS-2 does not provide a suitable
marker for evaluation of intraspecific diversity, therefore further
sequencing with the inclusion of more genetic markers is required
to better decipher the genetic make-up of the O. aculeatum com-
plex. These findings highlight how geographic variables may
influence parasite communities within NHPs, disuniting host–
parasite co-speciation. While the reported strongylid communi-
ties seem low in species richness, this report is only an initial
insight and additional sampling is required to truly capture the
genetic diversity of strongylid communities in Asian NHPs.
Establishing baseline data on NHP strongylid infections can assist
with ongoing monitoring of health threats to wild NHPs with
HTS providing complex insights into strongylid community com-
position and ability to detect even less prevalent, but more patho-
genic taxa.

Supplementary material. The supplementary material for this article can
be found at https://doi.org/10.1017/S0031182024000386.
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