
Linear Systems of Cubics Singular at General

Points of Projective Space

KAREN A. CHANDLER
Department of Mathematics, University of Notre Dame, Notre Dame, IN 46556, U.S.A.
e-mail: karen.a.chandler@nd.edu

(Received: 29 March 2001; accepted in final form: 25 July 2001)

Abstract. We present an elementary proof that given a general collection of d points in Pn the

linear system of cubics singular on each point has the expected codimension except when n ¼ 4
and d ¼ 7. In that case the cubic is unique. This, together with previous work of the author,
gives a proof of the Alexander–Hirschowitz interpolation theorem.
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1. Introduction

Let K be an infinite field and Pn
¼ Pn

K.

We prove the following result of J. Alexander and A. Hirschowitz:

THEOREM 1 ([AH3]). Let F be a general collection of d points in Pn. Then the

codimension in H0ðOPn ð3ÞÞ of the space of sections singular on F is equal to

min ðnþ 1Þd; nþ3
3

� �� �
unless n ¼ 4 and d ¼ 7.

This completes the proof begun in [C3] of the Alexander–Hirschowitz interpola-

tion theorem comprised by [H], [A], [AH1], [AH2], [AH3]. The general theorem

states that the codimension in H0ðOPn ðmÞÞ of the space of sections singular on a gen-

eral collection of d points is as expected, with four exceptions (namely, ðn;m; dÞ ¼

ð2; 4; 5Þ, ð3; 4; 9Þ; ð4; 3; 7Þ, and ð4; 4; 14Þ).

The overall theorem has the immediate consequence of determining when a

polynomial of given degree together with its partial derivatives may be interpola-

ted to a general collection of points in affine space. Less obvious is Lasker’s dis-

covery ([L]) of the connection to the Waring problem for general linear forms.

That problem asks: when is a general degree m form in nþ 1 variables expressible

as a sum of mth powers of linear forms? More recently, R. Lazarsfeld observed

and A. Iarrobino ([I]) made explicit the equivalence of this problem to that of

Alexander and Hirschowitz, in appropriate characteristic. For example, if char

K 6¼ 3, a general cubic form in K½X0; . . . ;Xn� may be written as a sum of d cubes

Compositio Mathematica 134: 269–282, 2002. 269
# 2002 Kluwer Academic Publishers. Printed in the Netherlands.

https://doi.org/10.1023/A:1020905322129 Published online by Cambridge University Press

https://doi.org/10.1023/A:1020905322129


of linear forms if ðnþ 1Þd5 ðnþ 3Þðnþ 2Þðnþ 1Þ=6 except when n ¼ 4 and d ¼ 7.

The Waring problem in turn connects ([P], [T]) to the study of the variety of

secant ðd� 1Þ-planes to the Veronese variety vmðP
n
Þ 	 jOPnðmÞj. (The reader

should consult [G] and [IK] for very readable and detailed descriptions of these

phenomena together with ample bibliographies on the activity in this area over

the last few centuries.)

We present here an elementary proof of Theorem 1. The weighty techniques of

blowing up and degeneration given in [AH3] are avoided. Instead we develop a direct

method extendible to the study of linear systems describing higher order vanishing

on a general collection of points, particularly in the (difficult) situations of low

degrees.

Among the cases of the Alexander–Hirschowitz interpolation theorem, that of

degree 3 is the most subtle. Each of the lines between pairs of points lies in the

base locus of the linear system of cubics singular on a set of points. Hence

the standard method (as described below) of specialising to a hyperplane has

the complication that a line must meet a hyperplane. A key feature of the tech-

nique employed here is that the obstruction given by such lines is turned into an

advantage.

This shows promise towards generalisation to the study of higher order singulari-

ties on a general collection of points. Specifically, Alexander and Hirschowitz (see

[AH5]) show that the dimension of a linear system describing forms of given degree

vanishing to specified orders at most k on a collection of points of Pn may be

obtained inductively using the méthode d’Horace différentielle in sufficiently large

degree (unspecified, and dependent on n and k). But in degree at most 2k� 1 the

method is hindered, again, by linear constraints. Results verifying instances of a con-

jecture of R. Fröberg and A. Iarrobino in [I] in the case of degree kþ 1 are obtained

in [C2], as here, by specialising to a codimension k plane (and bypassing blow-ups!).

In [C4], we proceed on the case of multiplicity k ¼ 3 in the lower degrees by a

method analogous to that presented here, thereby finding the codimension in

H0ðPn;OPn ðmÞÞ of sections vanishing to specified orders at most 3 on a general

collection of points in degrees m5 7. Sharper results may be achieved, as here, by

taking advantage of linear obstructions.

Let us start by rewording the problem in terms of schemes:

DEFINITION 1. Let p 2 Pn. The double point at p in Pn is the scheme given by the

square of the ideal (sheaf) of p.

A d� dot is a subscheme of degree d of a double point. (Hence a double point in Pn

is an ðnþ 1Þ-dot.)

If F 	 Pn we denote by F2 the union of the double points supported on F.

Hence, a form vanishes on F2 exactly if it is singular along F.
To prove that a general collection of d points of Pn verifies the theorem, we start

by choosing a codimension 2 plane Pn�2
	 Pn and construct a collection X of d
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double points for which the base locus of cubics through X contains Pn�2. First, a

maximal number a of double points of X are specialised onto Pn�2 so that

X \ Pn�2 imposes independent conditions on jOPn�2ð3Þj. Of the remaining d� a
points we may further specialise by forming pairs so that the line between each pair

doesmeet Pn�2. This may be done (by induction together with numerics) so that Pn�2

is in the base locus of the system of cubics passing through X.

Hence the theorem is proved by a general statement in Lemma 2 regarding

schemes X 	 Pn consisting of double points, some of which lie on Pn�2 and some

of which occur in, say, g pairs so that the line between each pair meets Pn�2. The

lemma gives criteria under which the union of such a scheme X with Pn�2 imposes

the expected number degX� degðX \ Pn�2
Þ � g of conditions on the linear system

of cubics of Pn passing through Pn�2.

The proof of Lemma 2 proceeds by induction on dimension, using the standard

Castelnuovo exact sequence (1). We choose a hyperplane H along with its own codi-

mension 2 plane H \ Pn�2. A scheme X is constructed so that all but one (say fpg2) of

the double points that are not on Pn�2 are specialised ontoH and all but a certain

number a04 n� 1 of the double points on Pn�2 are further specialised onto

Pn�2
\H. So by induction ðX [ Pn�2

Þ \H imposes conditions on cubics of H as

desired. In the base locus of cubics through X lies the union of a0 lines between the
point p and Pn�2. These meet H in a further a0 points, whose union with X \H

may be viewed as general points on a hyperplane of H containing Pn�2
\H. Hence

their union with ðX [ Pn�2
Þ \H is easily seen (with appropriate choice of numbers),

not to lie on a cubic of H. So each of the a0 double points on Pn�2
� ðPn�2

\HÞ is

‘split in half’. (Whereas, specialising all of the doubles ontoH would cause parity pro-

blems. Indeed, we do profit from the initial cases’ having odd values.) The result

required from lower degree is then simply that the union of one double point with

Pn�2, a0 double points on Pn�2, and n� a0 general points does not lie on a quadric.
Let us review the basic techniques used here and in [AH3].

DEFINITION/NOTATION 1. Given a hyperplane H 	 Pn, the residual of X with

respect to H is the scheme ~X described by the ideal sheaf I ~X ¼ IX : OPn ð�HÞ.

Then the Castelnuovo exact sequence is given by

0! I ~Xð�1Þ ! IX ! IX\H;H ! 0: ð1Þ

Generally, to construct a scheme X 	 Pn of double points imposing the expected

number of conditions in a given degree m, one may proceed by induction on n

and m as follows: Specialise points of X onto a hyperplane H, and apply the exact

sequence (1). (Here ~X is the union of the simple points on H with the remaining dou-

ble points of X.) Then by induction on dimension, HiðH; IX\H;HðmÞÞ should vanish

for i ¼ 0 or 1 and by induction on degree HjðPn; I ~Xðm� 1ÞÞ should vanish for j ¼ 0

or 1. If one can arrange the specialisation so that i ¼ j then X is the desired scheme. If

not (which happens often, strictly as a matter of numerics) one applies a more subtle

variation on the exact sequence estimate such as that of Horace différentielle.
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A difficulty in applying such methods to cubics is that a set X of at least 2 dou-

ble points does not impose deg X conditions on quadrics (because, for example, a

quadric singular at one point and vanishing at another must vanish on the line

joining them). However (as in [A], [C3], and [AH4]) standard Horace may be used

to find a set X 	 Pn of double points that does impose the expected number pro-

vided that deg X is not too close to nþ3
3

� �
, and this is enough to carry the induction

to degree 4. Specifically, in this case if X is supported on a set F then cubics van-
ishing on X vanish on the union, Sec F, of lines joining points of F. Hence by
applying standard Castelnuovo to schemes of the form ðSec G \ Pn

Þ [ S2, a weak
result on cubics is obtained by specialisation and induction. However, the Horace

differential technique does not apply well to cubics (witness the case of dimension

6 below!).

In [AH3] the complete degree 3 result is proved by blowing up. The relevant

scheme X is constructed by specialising points onto a codimension c plane, c > 1

so that the union of lines between pairs of the remaining points does not meet this

plane. Further the codimension c ¼ 3 or 5 is chosen depending on n (in fact, on

nðmod 3ÞÞ so that just enough double points may be specialised to the plane so that

it is in the base locus of cubics through X. Of course Pn�c isn’t a divisor, which is

taken to warrant blowing it up. Then the main effort of the proof goes toward the

specialisation to the exceptional divisor E ~¼ Pn�c
� Pc�1 on the blowup, where

Horace différentielle is applied.

By contrast we do not use Horace differential nor Horace blowup methods.

Although the devout blower-up may view the argument as using the blowup Bn of

Pn with respect to a codimension 2 plane, a key difference (in blowup parlance) is

that we work only with a divisor Bn�1 rather than the exceptional one. Hence we

avoid starting from scratch on the exceptional divisor Pn�2
� P1. We can imagine

that the exceptional divisor analysis would become onerous in the study of points

of higher order.

2. Main Argument

To verify Theorem 1 in Pn we shall form a collection X of double points that yields a

Pn�2 in its cubic base locus. This is done by specialising points onto Pn�2 and pairs of

points onto hyperplanes containing Pn�2. Then the problem is reduced to studying

cubics through X [ Pn�2.

Lemma 2 gives a statement on cubics through X [ Pn�2 where X is any general

union of double points, some on Pn�2 and some in pairs whose line meets Pn�2.

(In particular, X itself need not inflict Pn�2 in the base locus of cubics.)

Let us categorise such schemes X.

DEFINITION 2. Fix Pn�2
	Pn. Given nonnegative integers m; g; a; d so that

m5 2g, d4 nþ 1 we define a ðm; g; a; dÞ-subscheme of Pn with respect to Pn�2 as a

union of:
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. m� 2g double points

. g pairs of double points for which the line between each pair meets Pn�2.

. a double points lying on a Pn�2, and

. a d-dot.

Notice that a ðm; g; a; dÞ-scheme X imposes at most

degX� degðX \ Pn�2
Þ � g4 ðnþ 1Þm� gþ 2aþ d

conditions on the linear system of cubics of Pn through Pn�2.

Let us abbreviate the description of conditions imposed by subschemes of Pn with

respect to a codimension 2 plane:

DEFINITION 3. Take Pn�2
	 Pn. We will say that a ðm; g; a; dÞ-scheme X is

3-agreeable with respect to Pn�2 if X imposes minððnþ 1Þm� gþ 2aþ d; ðnþ 1Þ2Þ
conditions on the linear system of cubics of Pn through Pn�2. For any subscheme

Z 	 Pn we will say that Z is m-maximal with respect to Pn�2 if Z [ Pn�2 does not lie

on an m-ic.

We obtain the main tool in the proof of Theorem 1:

LEMMA 2. Choose Pn�2
	 Pn. Let m; g; a; d be nonnegative integers satisfying:

. m5 minð3; nþ 1Þ,

. if g > 0 then m5 minð5; nþ 1Þ and m5 2g, and

. 04d4 nþ 1.

Let X 	 Pn be a generic ðm; g; a; dÞ-scheme with respect to Pn�2. Then X is 3-

agreeable.

Proof. Observe that the result holds when n ¼ 1 (or, for that matter, n ¼ 0). Now

assume by induction that it holds in dimension n� 1.

Choose a hyperplane H 	 Pn.

Let us start with a few hypotheses to simplify the numerics.

We may assume that m4 nþ 2 (and m4 nþ 1 if g ¼ 0) since if equality holds
then

ðnþ 1Þm� g5 ðnþ 1Þ2:

Next, we observe that any case having d5 2 may be deduced from cases in which

d4 1: choose a ðm; g; a; 0Þ-scheme X along with a point p so that each of X, X [ fpg,

and X [ fpg2 are 3-agreeable (according to the cases ðm; g; a; 0Þ; ðm; g; a; 1Þ, and
ðmþ 1; g; a; 0Þ). It follows that there is a d-dot supported at p whose union with X

is 3-agreeable. Hence we assume that d4 1.
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Further, we may assume that

ðnþ 1Þm� gþ 2aþ d5 ðnþ 1Þ2:

To see this, given m; g; a; d, if

ðnþ 1Þm� gþ 2aþ d < ðnþ 1Þ2

we may solve

ðnþ 1Þm� gþ 2a0 þ d0 ¼ ðnþ 1Þ2

with d0 4 1. If a ðm; g; a0; d0Þ-scheme is 3-agreeable, so is a ðm; g; a; 0Þ-scheme (since it is
a subscheme) and hence so is a ðm; g; a; dÞ-scheme (choosing a general point if d ¼ 1).

We divide into 3 cases:

. n5 3, m ¼ 3; g ¼ 0;

. n5 5, m ¼ 5, g > 0; and

. the general case.

General case: Assume that m5 minð4; nþ 1Þ and if g > 0 then m5 minð6; nþ 1Þ.

We start by selecting a subscheme Z of Pn supported on H according to the fol-

lowing numerical specifications:

g0 ¼
1; if g > 0,

0; otherwise,

�

a0 ¼
nþ 1þ g0 � m; if a > 0,

0; if a > 0,

�

(note that 04a04a)

d0 ¼
1; if g ¼ 1; a ¼ 0; and m ¼ nþ 1,

0; otherwise,

�

and

ðm1; g1; a1; d1Þ ¼ ðm� 1; g� g0; a� a0; d� d0Þ

so that

nm1 � g1 þ 2a1 þ d1 þ a05 n2 ð2Þ

and

m1 þ a0 þ d0 � g0 ¼ n: ð3Þ

Let Z be a ðm1; g1; a1; d1Þ-subscheme of P
n supported on H. Then m1 ¼ m� 1 satis-

fies m15 minð3; nÞ and if g1 > 0 then m15 minð5; nÞ. Hence, by induction we may

choose Z so that Z \H is 3-agreeable with respect to Pn�3
¼ Pn�2

\H.

Now we take p 2 Pn
�H. If g ¼ 0 we choose a general such point. Otherwise

(since m1 > 2g1) we may take one of the unpaired points, say q, of Z and choose p

on a general line between q and Pn�2.
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Consider the union F of a0 points on Pn�2, to be chosen, and

X ¼ fpg2 [ F2 [ Z. Then X is a ðm; g; a; dÞ-scheme. We wish to find F so that X

is 3-maximal.

Let JðFÞ be the union of the a0 lines joining each point of F to p. Then any cubic

passing through fpg2 [ F2 must vanish on JðFÞ, hence it is equivalent to see that
X [ JðFÞ is 3-maximal.
First we show that F may be chosen so that ðX [ JðFÞÞ \H is 3-maximal with

respect to Pn�2
\H.

Let us abbreviate Z1 ¼ Z \H, Pn�3
¼ Pn�2

\H.

Let K ¼ spanðp;Pn�2
Þ \H. (Note that K ¼ spanðq;Pn�3

Þ if g > 0.)
We start by observing that ðX [ JðFÞÞ \H is 3-maximal for general F provided

that Z1 [ K does not lie on a cubic.

To see this, imagine that Z1 [ K does not lie on a cubic. According to (2) along

with the induction hypothesis, Z1 imposes at least n
2 � a0 conditions on the system

of cubics through Pn�3. It follows that there is a collection C 	 K of a0 points so that
Z1 [C [ Pn�3 is not on a cubic. Hence, if F 	 Pn�2

� Pn�3 is given by the union of

a0 points on P
n�2, each given by the intersection of Pn�2 with a line between p and a

point of C we have JðFÞ \H ¼ C. So ðX [ JðFÞ [ Pn�2
Þ \H does not lie on a cubic

hypersurface of H.

Now we show that Z1 [ K does not lie on a cubic of H; equivalently, that the resi-

dual ~Z1 of Z1 with respect to K does not lie on a quadric of H. To see this, we divide

into the two cases: g ¼ 0 or g > 0.
If g ¼ 0 then ~Z1 consists of m1 double points, a d1-dot, and a1 points on Pn�3. We

have

nm1 þ 2a1 þ d1 þ ðn� m1Þ5 n2

so by Lemma 6 (substituting ðm1; a1; d1Þ for ðm; a; EÞ) we have

nm1
m1
2

� �
þ a1 þ d15

nþ 1

2

� �
:

Hence, by Lemma 3, ~Z1 does not lie on a quadric.

Now suppose g > 0. Since q 2 K, ~Z1 consists of m1 � 1 double points, a d1-dot, a1
points on Pn�3, and the (reduced) point q on K. We have:

nm1 þ 2a1 þ d1 þ a0 � g15 n2; so

nm1 þ 2a1 þ d1 þ 1þ ðn� m1Þ5 n2

Then by substituting ðm1; a1; d1 þ 1Þ in lemma 6 we obtain

nðm1 � 1Þ �
m1 � 1
2

� �
þ a1 þ d1 þ 15

nþ 1

2

� �
:

Again by lemma 3, ~Z1 does not lie on a quadric.

Residual toH we have the union ~X of the double point at p, m� 1 simple points on

H a0 double points on Pn�2, and d0 general points. (If g > 0 note that any quadric
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through the double point at p and Pn�2 must vanish at q, so that q ‘disappears’ from

the residual calculation.) By Lemma 4 ~X is 2-maximal (with appropriate choice of F).
Hence X is 3-maximal.

Case m ¼ 3, g ¼ 0: We have seen this case for n ¼ 2, hence we may take n5 3. We

may take a as (the integer!) a ¼ ðnþ 1Þðn� 2Þ=2, so that 3ðnþ 1Þ þ 2a ¼ ðnþ 1Þ2. Set

a0 ¼ n� 1, a1 ¼ a� a05 0. Let X be the union of: three double points onH, a1 dou-
ble points on Pn�3

¼ Pn�2
\H, a0 general double points on Pn�2. Then X \H is

3-maximal by induction, and ~X is 2-maximal by Lemma 5.

Case m ¼ 5, g > 0: The case n ¼ 4 is already complete so we may assume n5 5.

Take a0 ¼ n� 24a, a1 ¼ a� a0. Let X be the union of five double points on H,

d points on H, a1 double points on P
n�2

\H, a0 general double points of P
n�2. Then

X \H is 3-maximal by induction and ~X is 2-maximal by Lemma 5.

It remains to complete the lemmas on quadrics and the calculation used here. &

LEMMA 3. If dðnþ 1Þ � ðd2Þ þ s5 ðnþ22 Þ then a general union of d double points and s

simple points does not lie on a quadric of Pn. If d5 c we may take the s points to lie on

a codimension c plane.

Proof. If n ¼ 0 or d ¼ 0 there is nothing to prove. Otherwise, specialize d� 1

double points along with the s simple points to a hyperplane, apply induction, and

observe that a hyperplane does not contain a double point of Pn. &

LEMMA 4. Choose Pn�2
	 Pn�1

	 Pn. Suppose aþ b ¼ n, b5 1. Then the generic

union of Pn�2 with a double points on Pn�2, b points on Pn�1, and a double point does

not lie on a quadric.

Proof. Let F 	 Pn�2 and S 	 Pn�1 be collections of a; b points so that Pn�1 is

spanned by S [ F. Let p 2 Pn
� Pn�1.

Then for X ¼ F2 [ S [ fpg2 the residual ~X with respect to Pn�1 contains fpg2 which

does not lie on a hyperplane. Hence it suffices to show that S [ F [ Pn�2 is not on a

quadric of Pn�1, i.e. that S [ F is not on a hyperplane of Pn�1. But this is just how F
and S were chosen. &

LEMMA 5. Choose Pn�2
	 Pn. Let a; b; g be nonnegative integers satisfying 2aþ

bþ 2g ¼ 2nþ 1. Assume that either b ¼ 3 and g ¼ 0 or bþ 2g ¼ 5. Let Z be the

generic union of a double points of Pn lying on Pn�2 and bþ 2g points, 2g of these

points lying ðin pairsÞ on the union of g lines that meet Pn�2. Then Z [ Pn�2 does

not lie on a quadric.

Proof. The case of b ¼ 3, a ¼ n� 1 is straightforward.

Now suppose that bþ 2g ¼ 5. We may assume that g ¼ 2. Observe that any
quadric passing through Pn�2 and two general points of a line meeting Pn�2 must go

through that line. Further, a quadric through Pn�2 and two general lines that meet a
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point q 2 Pn�2 vanishes on fqg2 and two general points, one on each line. We reduce

then to the case b ¼ 3; a ¼ n� 1. &

LEMMA 6. Let n; m; a; E be nonnegative integers. Suppose that

nmþ n� mþ 2aþ E5 n2:

If m ¼ n or 24m4 n� 1 then

nm�
m
2

� �
þ aþ E5

nþ 1

2

� �
:

Further, suppose E5 1. If m ¼ n or 44m4 n� 1 then

nðm� 1Þ �
m� 1

2

� �
þ aþ E5

nþ 1

2

� �
:

Proof. Fix n. Fix E5 0 and let

PðtÞ ¼ nt� tðt� 1Þ=2þ ðn2 � nt� nþ tþ EÞ=2�
nþ 1

2

� �
:

We show that PðtÞ5 0 if t ¼ n or 24 t4 n� 1. Observe that PðtÞ ¼ Pðnþ 2� tÞ,

and, as a function of t, PðtÞ is concave down. Hence, it suffices to check the endpoints

PðnÞ ¼ Pð2Þ ¼ E=25 0.

Now suppose E5 1. Call

QðtÞ ¼ nðt� 1Þ � ðt� 1Þðt� 2Þ=2þ ðn2 � nt� nþ tþ EÞ=2�
nþ 1

2

� �

so that

dQðmÞe4 nðm� 1Þ �
m� 1

2

� �
þ aþ E�

nþ 1

2

� �

(since the right-hand side is an integer!). Analogous to the function PðtÞ,

QðtÞ ¼ Qðnþ 4� tÞ, Q is concave down, and now we simply check: QðnÞ ¼

Qð4Þ ¼ �1þ E=25 � 1=2. Thus if m ¼ n or 44m4 n� 1 we have dQðmÞe5
d�1=2e ¼ 0.

This completes the proof of Lemma 2. &

3. Proof of Theorem

For each n write

nþ 3

3

� �
¼ ðnþ 1Þan þ bn; 04 bn 4 n:
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It is easy to see that

bn ¼
nþ1
3 ; if 3jnþ 1;

0; otherwise

�

and

an � an�2 ¼
2nþ 4

3

� �
:

We show that the general union of an double points and a bn-dot in P
n imposes the

expected number nþ3
3

� �
of conditions on cubics except when n ¼ 4. (Since any collec-

tion of double points has a subscheme or is a subscheme of such a scheme it follows

that for any d there is a collection of d double points imposing min ðnþ 1Þd; nþ3
3

� �� �

conditions on cubics.)

For n ¼ 2, a2 ¼ 3, b2 ¼ 1, the result is immediate from applying Lemma 2 to a

(3,0,0,0)-scheme with respect to a point.

Induction Step. Now suppose that n5 3. Assume that the conclusion of Theorem 1

holds in dimension n� 2 (so n 6¼ 6, say).

We construct a union X of an double points and a bn-dot that does not lie on a

cubic. First, we may specialise an�2 of the double points to a P
n�2, so that by induc-

tion Pn�2 lies in the base locus of cubics through X unless bn�2 6¼ 0. In that case, we

shall make the further specialisation: of the remaining an � an�2 points of X, since

an � an�2 > 2bn�2, we may take bn�2 pairs of points of P
n
� Pn�2 so that the line

spanned by each of the pairs meets Pn�2. Now, with a general choice of pairs,

Pn�2 is in the base locus of cubics through X.

Thus, we take

ðm; g; a; dÞ ¼ ðan � an�2; bn�2; an�2; bnÞ

for the application of Lemma 2.

We have

m ¼
2nþ 4

3

� �
5 3; and m ¼

2nþ 4

3

� �
>
2ðn� 1Þ

3
5 2g:

Suppose g > 0. If n ¼ 4 then m ¼ 4, so that Lemma 2 does not apply. However, for

n 6¼ 4 (since n � 1 (mod 3)) we have n5 7 so m5 5.

Then by Lemma 2 there is a ðm; g; a; dÞ-scheme that is 3-maximal. We obtain,
therefore, a collection of an double points and a bn-dot whose union does not lie

on a cubic.

Hence, the cases n4 3 and all odd values of n are complete, and for even n5 4 we

are done once the cases n ¼ 4 and n ¼ 6 are established.

Dimension 4. Let us observe that the case of seven double points in P4 is excep-

tional: although 5� 7 ¼ 7
3

� �
, given a (general) set of seven points in P4 there is a
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cubic that is singular on all 7. Since such a collection lies on a rational normal curve,

described by the 2� 2 minors of, say,

X0 X1 X2 X3
X1 X2 X3 X4

� 	
;

then the determinant of

X0 X1 X2
X1 X2 X3
X2 X3 X4

" #

vanishes on the double curve and, hence is a cubic singular on the seven points.

However, the cubic singular on seven general points is unique. (One may see this

from the argument of Lemma 2, but that is not the easiest way!) Take X to be seven

double points, exactly five of which lie on P3. We may arrange (as we have just seen)

that X \ P3 does not lie on a cubic and (by Lemma 3) that ~X lies on a unique quadric.

So by Castelnuovo, the cubic through X is unique. In particular, there is no cubic

singular on d5 8 general points of P4 and a general collection of d4 6 double points

imposes 5d conditions on cubics (specialise minð5; dÞ onto a hyperplane).

(See [CH] or [C1] for alternative proofs.)

Dimension 6. We find 12 double points of P6 that do not lie on a cubic.

The idea is to specialise, as in higher degree cases, to a hyperplane, but deal with

the consequences of the lines in the base locus.

An optimistic first step in producing such a scheme would be to take a set

S 	 P6 � P5 of three (noncollinear) points, together with a set of a5 ¼ 9 points in

P5. Then any cubic singular on S must vanish on Sec S, in particular, on the set
C ¼ Sec S \ P5 of three collinear points. (Of course, any set of three collinear points

may be obtained in this manner.) Then, as we see in Lemma 7, nine double points of

P5 may be chosen whose union with C doesn’t lie on a cubic of P5. The residual of
the scheme (consisting of the three double points on S with nine points on P5) lies on
a unique quadric of P6, ‘due to’ to the numerics of the situation, and indeed the con-

figuration lies on a unique cubic.

A natural remedy would appear to be in studying in P5 the union of eight double

points, the set C, with a point p 2 P5. This, again by Lemma 7, is 3-independent

and (by numbers) yields a degree 2 scheme L supported at p in the base locus. Then
‘normal’ Horace différentielle would say that it suffices to verify that ~X [ L is 2-inde-
pendent. Unfortunately, one may have little idea of how L depends on X; in parti-

cular, unlike in the usual Horace differential situation, L may well depend on the set
S of points lying outside H.
Hence, we construct a subscheme as above in which the base locus scheme L at p

may be identified; in fact, so that it does visibly depend on S. Indeed, the scheme
~X [ L turns out not to be 2-independent, so that Horace différentielle does not quite
apply. Instead, a degeneration argument appears to save the day.
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We abbreviate the accounting as follows:

DEFINITION/NOTATION 2. Given a scheme X 	 Pn we denote by hPn ðX;mÞ the

Hilbert function of X, namely,

hPn ðX;mÞ ¼ dimH0ðOPn ðmÞ � dimH0ðIXðmÞÞ;

that is, the number of conditions that X imposes on m-ics.

From the Castelnuovo exact sequence comes a basic estimate of the Hilbert func-

tion of a scheme X 	 Pn:

hPn ðX;mÞ5 hPn ð ~X;m� 1Þ þ hHðX \H;mÞ:

Let us start with the required results from dimension 5:

LEMMA 7. Choose a line L 	 P5. There is a set C 	 L of three points, a collection

F [ fyg 	 P5 of eight points, and a point x 2 ðy;LÞ so that:

. hP5 ðC [ F2 [ fx; yg2; 3Þ ¼ 56,

. hP5 ðC [ F2 [ fxg [ fyg2; 3Þ ¼ 52, and hence

. the base locus of cubics through C [ F2 [ fxg [ fyg2 meets fxg2 in precisely

fxg2 \ spanðx; yÞ.

Proof. Choose a general collection F [ fyg of eight points in P5.

Suppose that L is any line, C 	 L is a set of three points, and x 2 spanðy;LÞ.

Assume that spanðx; yÞ \C ¼ ;. Then any cubic through fx; yg2 [C must vanish

on L. Therefore we start by choosing L and x 2 spanðy;LÞ for which

L [ F2 [ fx; yg2 is not on a cubic.

Write F ¼ F5 [ F3, where F3 consists of 4 points. Take P
3
¼ spanðF3Þ. Then by

Lemma 2 we may choose L 	 P3 so that F23 [ L does not lie on a cubic of P3.

Now we choose x 2 spanðy;LÞ and apply Lemma 2 with m ¼ 5; g ¼ 1; a ¼ 4. Since

6� 5� 1þ 2 � 4 > 36, there is no cubic through F2 [ fx; yg2 [ P3 and, hence, none

through F2 [ fx; yg2 [C.
Next, consider X ¼ F2 [ fyg2 [ fx0g [C, where fx0g ¼ spanðx; yÞ \ L. Again L

and, hence, P3 are in the base locus of cubics through X. Applying Lemma 2 (with

m ¼ 4; g ¼ 0; a ¼ 4) we see that the scheme imposes 6� 4þ 2� 4þ 20 ¼ 52 condi-

tions on cubics.

Hence we may find x 2 spanðx0; yÞ satisfying the first two stated properties. These

together imply that the intersection of fxg2 with the base locus of cubics through

C [ F2 [ fxg [ fyg2 has degree 2. &

Now choose a hyperplane P5 	 P6. Suppose that S 	 P6 � P5 is a set of three

(noncollinear) points. Let C ¼ Sec S \ P5. We may choose F 	 P5 (seven points)

and x; y 2 P5 so thatx 2 spanðy;SÞ \ P5. Then
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hP6ðS
2 [ F2 [ fx; yg2; 3Þ

¼ hP6ðS
2 [ SecS [ F2 [ fx; yg2; 3Þ

5 hP6 ðS
2 [ F [ fx; yg; 2Þ þ hP5ðC [ F2 [ fx; yg2; 3Þ

¼ 27þ 56 ¼ 83:

In particular, if L 	 fx; yg2 is curvilinear then by Lemma 7

hP6 ðS
2 [ F2 [ L; 3Þ ¼ 70þ degL

except when L ¼ fx; yg2 \ span ðx; yÞ.

Now choose points p; q 2 P6 so that p 2 spanðq;SÞ ¼ P3 (and they are five general

points of this P3). Call M ¼ spanðp; qÞ. Then there is a collection F 	 P6 consisting

of seven points so that

hP6 ðS
2 [ F2 [ fp; qg2; 3Þ5 83:

Indeed, for L curvilinear with support on fp; qg we have

hP6 ðS
2 [ F2 [ L; 3Þ ¼ 70þ degL

with the possible exception of the subscheme L ¼ fp; qg2 \M.

Therefore, by Lemma 4 of [C3] (e.g.), we are done once we produce a collection

G 	 P6 of 10 points so that S 	 G and

hP6 ðG
2 [ L; 3Þ ¼ 74

for L ¼ fp; qg2 \M; or equivalently

hP6 ðG
2 [M; 3Þ ¼ 74:

Choose a set G3 of four points in P
3
¼ spanðq;SÞ so that S 	 G3. We may assume

that M [ ðG23 \ P3Þ is not on a cubic of P3 by Lemma 2 (m ¼ 4; g ¼ 0).
Then choose a hyperplane H of P6 containing P3. Take a set G5 	 H of four

points and a point r 2 H for which

hP5 ðfrg [ G25 [ G23 [ P3; 3Þ ¼ 54

(applying Lemma 2 with m ¼ 4; g ¼ 0; a ¼ 4; d ¼ 1).

Now choose a pair of points G6 	 P6 � P5 satisfying Sec G6 \ P5 ¼ frg and

hP6 ðG
2
6 [ G5 [ G3; 2Þ ¼ 20:

Hence for G ¼ G6 [ G5 [ G3 we have

hP6ðG
2 [M; 3Þ

¼ hP6ðG
2
6 [ SecðG6Þ [ G25 [ G23 [M; 3Þ

5 hP6 ðG
2
6 [ G5 [ G3; 2Þ þ hP5ðfrg [ G25 [ G23 [M; 3Þ

¼ 20þ 54 ¼ 74:

This completes the proof. &
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