Canad. Math. Bull. Vol. 15 (1), 1972

MATHEMATICAL NOTES

Manuscripts for this Department should be sent to R. D. Bercov and A. Meir, Editors-inChief, Canadian Mathematical Bulletin, Department of Mathematics, University of Alberta, Edmonton 7, Alberta.

SOME REMARKS ON WEIGHTS OF PERMUTATIONS

BY
 PETER FANTHAM

This note concerns the smallest number $w(\sigma)$ of transpositions of which a permutation σ may be written as a product. The discussion is mainly concerned with the value of this number on the product of two permutations.

1. If σ is a finite permutation, by a minimal expression for σ, we mean the expression of σ as the product of a minimal number of transpositions. $w(\sigma)$, the weight of σ, refers to the number of transpositions involved in a minimal expression. For example, if s is a cycle of length h, it is easy to see that $w(s)=h-1$. We observe that $w\left(\sigma^{-1}\right)=w(\sigma)$ and that $w\left(\tau^{-1} \sigma \tau\right)=w(\sigma)$.
We describe $\sigma=s_{1} \ldots s_{n}$ as a disjoint presentation if s_{1}, \ldots, s_{n} are disjoint cycles. For disjoint presentations $\sigma=s_{1} \ldots s_{n}, \tau=s_{1}^{\prime} \ldots s_{m}^{\prime}$, we introduce letters A_{1}, \ldots, A_{n}; B_{1}, \ldots, B_{m} corresponding to $s_{1}, \ldots, s_{n} ; s_{1}^{\prime}, \ldots, s_{m}^{\prime}$ and we construct the matching for which A_{i}, B_{j} are joined by a segment labelled k when s_{i}, s_{j}^{\prime} have the symbol k in common. We note that, in general, two letters may be joined by more than one segment. When no two letters are joined by more than one segment, we say that σ, τ are simply matched. To avoid confusion, the word cycle is reserved for permutation terminology, whereas a cycle in the connectivity sense will be termed a closed chain.
A sequence $\left(\sigma_{1}, \ldots, \sigma_{h}\right)$ of permutations is called concurrent if $w\left(\sigma_{1} \ldots \sigma_{h}\right)$ $=w\left(\sigma_{1}\right)+\cdots+w\left(\sigma_{h}\right) ; \sigma_{1} \ldots \sigma_{h}$ is called the product of the sequence. For example, a sequence of disjoint cycles may be readily seen to be concurrent. It is not difficult to see that, by the procedure of commuting disjoint permutations, any minimal expression assumes the form of a juxtaposition of minimal expressions for the disjoint cycles of a disjoint presentation. As another example, useful in the computations below, the sequence of three cycles

$$
\begin{equation*}
\left\{\left(a_{1} a_{2} \ldots a_{i}\right), \quad\left(a_{i+1} a_{i+2} \ldots a_{n}\right), \quad\left(a_{i} a_{n}\right)\right\} \tag{A}
\end{equation*}
$$

is concurrent with product $\left(a_{1} a_{2} \ldots a_{n}\right)$. Clearly, if a sequence is concurrent, so also is any subsequence formed from a consecutive subset.

As a further example, if two cycles s_{1}, s_{2} have a single symbol in common, (s_{1}, s_{2}) is concurrent. An easy deduction from this shows that if the matching
between permutations σ, τ contains no closed chains, then (σ, τ) is concurrent. We assert that the converse is also true (Assertion 1).
2. We say that ρ is a middle term for σ, τ if there are permutations σ_{1}, τ_{1} where $\left(\sigma_{1}, \rho\right),\left(\rho^{-1}, \tau_{1}\right)$ are concurrent with products σ, τ. By treating the case where ρ is a transposition, we may easily see, via (A), that simply matched permutations possess no nontrivial middle term. (A simple example of simply matched nonconcurrent permutations is given by $\sigma=(12)(34), \tau=(13)(24)$.)

Conversely, if σ, τ, with disjoint presentations $s_{1} \ldots s_{n}, s_{1}^{\prime} \ldots s_{m}^{\prime}$, are not simply matched, choose a pair of symbols i, j both occurring in two of the cycles in question. On applying (A) and its dual, we find concurrent pairs ($\sigma^{\prime},(i j)$), ($\left.(i j), \tau^{\prime}\right)$ with products σ, τ. By repeating this procedure on $\sigma^{\prime}, \tau^{\prime}$ and so on, we find concurrent pairs $\left(\sigma_{1}, \rho\right),\left(\rho^{-1}, \tau_{1}\right)$ with products σ, τ and with σ_{1}, τ_{1} simply matched.

For permutations σ, τ, we have, in general, $w(\sigma \tau)=w(\sigma)+w(\tau)-2 k$, say; we describe $2 k$ as the depletion of the pair. We wish to explain how the depletion $2 k$ occurs. A very simple case, for example, is offered when $\left(\sigma_{1}, \rho\right),\left(\rho^{-1}, \tau_{1}\right)$ are concurrent with products σ, τ and where (σ_{1}, τ_{1}) is concurrent. It is clear from the above remarks that this does not explain all cases of depletion although it could be used to reduce the explanation to that of simply matched permutations. Another case, which we shall refer to as the basic case, occurs when

$$
\begin{aligned}
\sigma & =\left(a_{1} a_{2}\right)\left(a_{3} a_{4}\right) \ldots\left(a_{2 n-1} a_{2 n}\right)=H, \text { say }, \\
\tau & =\left(a_{3} a_{2}\right)\left(a_{5} a_{4}\right) \ldots\left(a_{1} a_{2 n}\right)=K, \text { say },
\end{aligned}
$$

where the symbols $a_{1}, \ldots, a_{2 n}$ are distinct. The depletion is, of course, 2.
We say that $\left(\sigma_{1}, \ldots, \sigma_{h}\right)$ is simply depleted if $w\left(\sigma_{1}, \ldots, \sigma_{p}, \sigma_{p+1}\right)=w\left(\sigma_{1} \ldots \sigma_{p}\right)$ $+w\left(\sigma_{p+1}\right)-2$ for each p with $1 \leq p<h$. The third example of depletion of σ, τ occurs when there is a concurrent sequence ($\rho_{1}, \ldots, \rho_{k}, \tau_{1}$) with product τ such that ($s, \rho_{1}^{-1}, \ldots, \rho_{k}^{-1}$) is simply depleted and (σ, τ_{1}) is concurrent. The depletion is $2 k$ and we assert, conversely, that all cases of depletion $2 k$ occur in this form for a suitable choice of $\rho_{1}, \ldots, \rho_{k}$ (Assertion 2). We further assert that every simple depletion occurs in the following special way: for every pair σ, τ with depletion 2 , there are permutations $\sigma_{1}, \tau, \phi, \psi$ where $\left(\sigma_{1}, \phi\right)$ and $\left(\psi, \tau_{1}\right)$ are concurrent with products σ, τ, respectively, and where ϕ, ψ constitute a basic case (Assertion 3).
3. Let $\sigma=s_{1} \ldots s_{r}, \tau=s_{1}^{\prime} \ldots s_{m}^{\prime}$ be disjoint presentations. Choose a closed chain of the matching defined by σ and τ that is minimal in the sense that no proper subset of the vertices carried by the closed chain is carried by a closed chain. Write this closed chain as $S=\left[a_{1} a_{2} \ldots a_{2 n}\right]$, where each of $\left(a_{1}, a_{2}\right),\left(a_{3}, a_{4}\right), \ldots,\left(a_{2 n-1}, a_{2 n}\right)$ is a pair of symbols occurring in a cycle s_{i} and each of $\left(a_{2}, a_{3}\right),\left(a_{4}, a_{5}\right), \ldots,\left(a_{2 n}, a_{1}\right)$ is a pair of symbols occurring in a cycle s_{j}^{\prime}. Minimality ensures that each of the cycles for σ or τ, whose associated letter A_{i} or B_{j} occurs in the closed chain S contains exactly one pair $\left(a_{i}, a_{i+1}\right)$ (i.e. $\bmod 2 n$). For $i=1,2, \ldots, n$, denote by c_{i} the cycle for
σ containing ($a_{2 i-1,2 i}$) and by c_{i}^{\prime} the cycle for τ containing $\left(a_{2 i}, a_{2 i+1}\right)$. One sees that minimality also ensures that any symbol in common between c_{i}, c_{j}^{\prime} occurs among $a_{1}, \ldots, a_{2 n}$. Indeed, if b were a common symbol and $i \leq j$ then S could be replaced by the smaller $\left[a_{2 i-1} a_{2 i} \ldots a_{2 j} b\right]$; the case $j \geq i$ is dealt with similarly. It then follows, by an easy computation, that $c_{1} \ldots c_{n} c_{1}^{\prime} \ldots c_{n}^{\prime}$ is a product of two disjoint cycles together involving all N symbols, say, occurring in c_{1}, \ldots, c_{n} and all M symbols occurring in $c_{1}^{\prime}, \ldots, c_{n}^{\prime}$. Hence the weight of the product is $N+M-2 n-2$ and we conclude that

$$
w\left(c_{1} \ldots c_{n}, c_{1}^{\prime} \ldots c_{n}^{\prime}\right)=w\left(c_{1}\right)+\cdots+w\left(c_{n}\right)+w\left(c_{1}^{\prime}\right)+\cdots+w\left(c_{n}^{\prime}\right)-2
$$

Assertion 1 follows immediately.
With H, K as in $\S 2$, application of (A) shows that there are permutations $\sigma_{1}^{\prime}, \tau_{1}$ such that $\left(\sigma_{1}^{\prime}, H\right),\left(K, \tau_{1}\right)$ are concurrent with products σ, τ. Assertion 3 then follows. Since $H K=\left(a_{1} a_{3} \ldots a_{2 n-1}\right)^{-1}\left(a_{2} a_{4} \ldots a_{2 n}\right)$, the converse of Assertion 1 shows that $\left(\sigma_{1}^{\prime}, H K\right)$ is concurrent with product σ_{1}, say, and hence that (σ, K) is simply depleted. We repeat the construction with σ, τ replaced by σ_{1}, τ_{1} and so on and Assertion 2 follows.

Indiana University, Bloomington, Indiana
University of Toronto, Toronto, Ontario

