A theorem on diophantine approximations

Kurt Mahler

Dedicated to Th. Schneider

If S is a set of positive integers which contains 1, 2, ..., n-1, but not n or any multiple of n, where $n \ge 2$, then

 $\sup_{\alpha \in \mathbb{R}} \inf_{s \in S} \|s\alpha\| = 1/n .$

Here R is the field of real numbers, and $\|\alpha\|$ denotes the distance of α from the nearest integer.

Let R be the field of real numbers. For $\alpha \in R$, denote as usual by $\|\alpha\|$ the distance of α from the nearest integer; thus always

 $0 \leq \|\alpha\| \leq 1/2$.

Further let n be any integer not less than 2.

THEOREM. Let 5 be a finite or infinite set of positive integers with the following two properties:

 (P_1) S contains the integers 1, 2, ..., n-1;

 (P_2) S does not contain any of the integers n, 2n, 3n,

Then

 $\sup \inf ||s\alpha|| = 1/n .$ $\alpha \in \mathbb{R} \ s \in S$

Proof. Put

Received 11 March 1976. The author is indebted to B.H. Neumann for suggesting a generalisation of his original theorem.

$$f(\alpha|S) = \inf \|s\alpha\|, \quad F(S) = \sup f(\alpha|S) .$$

s \varepsilon S \v

We have to show that F(S) = 1/n.

If S and T are any two sets such that $S \supseteq T$, then evidently

$$f(\alpha|S) \leq f(\alpha|T)$$
 for every $\alpha \in \mathbb{R}$.

Thus, on putting

 $T = \{1, 2, \ldots, n-1\}$,

certainly $f(\alpha|S) \leq f(\alpha|T)$ if S has the property (P₁) as we are assuming. We therefore begin by proving that $f(\alpha|T) \leq 1/n$ for all α .

The two linear forms $\alpha x - y$ and x in x and y have the determinant 1. It follows then from Minkowski's theorem on linear forms that the pair of inequalities

$$|\alpha x - y| \leq 1/n , |x| < r$$

has a solution in integers x, y not both zero. If x = 0, then y does not vanish, and the first inequality (1) gives a contradiction; hence $x \neq 0$. Without loss of generality x is positive, hence by (1) is one of the integers 1, 2, ..., n-1. Further $1/n \leq 1/2$ by hypothesis. Hence for s = x,

 $\|s\alpha\| = |\alpha x - y| \leq 1/n ,$

which implies that $f(\alpha|T) \leq 1/n$ for all $\alpha \in \mathbb{R}$ and therefore that both

 $F(T) \leq 1/n$ and $F(S) \leq 1/n$.

In the other direction, we shall deduce from the assumption (P_2) that $F(S) \ge 1/n$. It suffices to prove that

 $||s.1/n|| \ge 1/n$ for all $s \in S$.

This is obvious because s is not a multiple of n and hence the distance of s.1/n from the nearest integer is not 0, but is an integral multiple of 1/n.

As an application, denote by T the set of all primes and put $S = T \cup \{1\}$. It is clear that S has both the properties (P₁) and (P₂) with n = 4; hence

$$F(S) = 1/4$$
.

464

We assert that also

(2)
$$F(T) = \sup \inf ||p\alpha|| = 1/4,$$
$$\alpha \in \mathbb{R} \quad p$$

where in the lower bound p runs over all primes.

If this assertion is false, then necessarily F(T) > F(S) = 1/4. There is then a number α , say in the interval from 0 to 1, such that

 $\|\alpha\| > 1/4$ and $\|p\alpha\| > 1/4$ for all primes p.

The first inequality allows us to assume that α lies between 1/4 and 3/4, hence by symmetry between 1/4 and 1/2. But it is easily verified that

$$\begin{split} \|3\alpha\| &\leq 1 - 3\alpha \leq 1/4 \quad \text{if} \quad 1/4 \leq \alpha \leq 1/3 \ , \\ \|3\alpha\| &\leq 3\alpha - 1 \leq 1/4 \quad \text{if} \quad 1/3 \leq \alpha \leq 2/5 \ , \\ \|2\alpha\| &\leq 1 - 2\alpha \leq 1/5 \quad \text{if} \quad 2/5 \leq \alpha \leq 1/2 \ . \end{split}$$

Therefore $f(\alpha|T)$ cannot be greater than 1/4 when α lies between 1/4and 3/4 and so is never greater than 1/4. Therefore also $F(T) \leq 1/4$, and hence F(T) = 1/4 because of $F(T) \geq F(S)$.

Note added in proof [26 March 1976]. A study of the proof of the theorem has led me to the following conjecture:

CONJECTURE. Let m and n be two positive integers such that $2m \le n$. Let S be a finite or infinite set of positive integers with the following two properties:

 (Q_1) S contains the integers m, m+1, m+2, ..., n-m;

 (Q_2) every element of S satisfies the inequality

 $||s/n|| \geq m/n$.

Then

 $\sup_{\alpha \in \mathbf{R}} \inf_{s \in S} \|s\alpha\| = m/n .$

For m = 1 this conjecture is identical with the theorem.

Department of Mathematics, Institute of Advanced Studies, Australian National University, Canberra, ACT.