A theorem on diophantine approximations

Kurt Mahler

Dedicated to Th. Schneider
If S is a set of positive integers which contains $1,2, \ldots, n-1$, but not n or any multiple of n, where $n \geq 2$, then
$\sup \inf \|s \alpha\|=1 / n$.
$\alpha \in R \quad s \in S$
Here R is the field of real numbers, and $\|\alpha\|$ denotes the distance of α from the nearest integer.

Let R be the field of real numbers. For $\alpha \in R$, denote as usual by $\|\alpha\|$ the distance of α from the nearest integer; thus always

$$
0 \leq\|\alpha\| \leq 1 / 2 .
$$

Further let n be any integer not less than 2 .
THEOREM. Let S be a finite or infinite set of positive integers with the following two properties:
$\left(P_{1}\right) S$ contains the integers $1,2, \ldots, n-1$;
$\left(\mathrm{P}_{2}\right) \quad S$ does not contain any of the integers $n, 2 n, 3 n, \ldots$.
Then

$$
\sup _{\alpha \in R} \inf _{s \in S}\|s \alpha\|=1 / n .
$$

Proof. Put

[^0]$$
f(\alpha \mid S)=\inf _{s \in S}\|s \alpha\|, \quad F(S)=\sup _{\alpha \in \mathrm{R}} f(\alpha \mid S)
$$

We have to show that $F(S)=1 / n$.
If S and T are any two sets such that $S \supseteq T$, then evidently

$$
f(\alpha \mid S) \leq f(\alpha \mid T) \quad \text { for every } \quad \alpha \in R .
$$

Thus, on putting

$$
T=\{1,2, \ldots, n-1\},
$$

certainly $f(\alpha \mid S) \leq f(\alpha \mid T)$ if S has the property (P_{1}) as we are assuming. We therefore begin by proving that $f(\alpha \mid T) \leq 1 / n$ for all α.

The two linear forms $\alpha x-y$ and x in x and y have the determinant 1 . It follows then from Minkowski's theorem on linear forms that the pair of inequalities

$$
\begin{equation*}
|\alpha x-y| \leq 1 / n, \quad|x|<n \tag{1}
\end{equation*}
$$

has a solution in integers x, y not both zero. If $x=0$, then y does not vanish, and the first inequality (I) gives a contradiction; hence $x \neq 0$. Without loss of generality x is positive, hence by (1) is one of the integers $1,2, \ldots, n-1$. Further $1 / n \leq 1 / 2$ by hypothesis. Hence for $s=x$,

$$
\|s \alpha\|=|\alpha x-y| \leq 1 / n,
$$

which implies that $f(\alpha \mid T) \leq 1 / n$ for all $\alpha \in R$ and therefore that both

$$
F(T) \leq 1 / n \quad \text { and } \quad F(S) \leq 1 / n
$$

In the other direction, we shall deduce from the assumption $\left(P_{2}\right)$ that $F(S) \geq 1 / n$. It suffices to prove that

$$
\|s .1 / n\| \geq 1 / n \text { for all } s \in S \text {. }
$$

This is obvious because s is not a multiple of n and hence the distance of $s .1 / n$ from the nearest integer is not 0 , but is an integral multiple of $1 / n$.

As an application, denote by T the set of all primes and put $S=T \cup\{1\}$. It is clear that S has both the properties $\left(\mathrm{P}_{1}\right)$ and $\left(\mathrm{P}_{2}\right)$ with $n=4$; hence

$$
F(S)=1 / 4
$$

We assert that also

$$
\begin{equation*}
F(T)=\sup _{\alpha \in \mathrm{R}} \inf _{p}\|p \alpha\|=1 / 4, \tag{2}
\end{equation*}
$$

where in the lower bound p runs over all primes.
If this assertion is false, then necessarily $F(T)>F(S)=1 / 4$. There is then a number α, say in the interval from 0 to 1 , such that

$$
\|\alpha\|>1 / 4 \text { and }\|p \alpha\|>1 / 4 \text { for all primes } p \text {. }
$$

The first inequality allows us to assume that α lies between $1 / 4$ and $3 / 4$, hence by symmetry between $1 / 4$ and $1 / 2$. But it is easily verified that

$$
\begin{aligned}
& \|3 \alpha\| \leq 1-3 \alpha \leq 1 / 4 \text { if } 1 / 4 \leq \alpha \leq 1 / 3, \\
& \|3 \alpha\| \leq 3 \alpha-1 \leq 1 / 4 \text { if } 1 / 3 \leq \alpha \leq 2 / 5, \\
& \|2 \alpha\| \leq 1-2 \alpha \leq 1 / 5 \text { if } 2 / 5 \leq \alpha \leq 1 / 2 .
\end{aligned}
$$

Therefore $f(\alpha \mid T)$ cannot be greater than $1 / 4$ when α lies between $1 / 4$ and $3 / 4$ and so is never greater than $1 / 4$. Therefore also $F(T) \leq 1 / 4$, and hence $F(T)=1 / 4$ because of $F(T) \geq F(S)$.

Note added in proof [26 March 1976]. A study of the proof of the theorem has led me to the following conjecture:

CONJECTURE. Let m and n be two positive integers such that $2 m \leq n$. Let S be a finite or infinite set of positive integers with the following two properties:
$\left(Q_{1}\right) S$ contains the integers $m, m+1, m+2, \ldots, n-m$;
$\left(Q_{2}\right)$ every element of S satisfies the inequality

$$
\|s / n\| \geq m / n .
$$

Then

$$
\sup _{\alpha \in \mathbb{R}} \inf _{s \in S}\|s \alpha\|=m / n .
$$

For $m=l$ this conjecture is identical with the theorem.

Department of Mathematics, Institute of Advanced Studies, Australian National University, Canberra, ACT.

[^0]: Received 11 March 1976. The author is indebted to B.H. Neumann for suggesting a generalisation of his original theorem.

