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Flow interaction of three-dimensional
self-propelled flexible plates in tandem
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Tandem configurations of two self-propelled flexible flappers of finite span are explored
by means of numerical simulations. The same sinusoidal vertical motion is imposed on
the leading edge of both flappers, but with a phase shift (φ). In addition, a vertical offset,
H, is prescribed between the flappers. The configurations that emerge are characterized
in terms of their hydrodynamic performance and topology. The flappers reach a stable
configuration with a constant mean propulsive speed and a mean equilibrium horizontal
distance. Depending on H and φ, two different tandem configurations are observed,
namely compact and regular configurations. The performance of the upstream flapper
(i.e. the leader) is virtually equal to the performance of an isolated flapper, except in
the compact configuration, where the close interaction with the downstream flapper (i.e.
the follower) results in higher power requirements and propulsive speed than an isolated
flapper. Conversely, the follower’s performance is significantly affected by the wake of the
leader in both regular and compact configurations. The analysis of the flow shows that
the follower’s performance is influenced by the interaction with the vertical jet induced
by the vortex rings shed by the leader. This interaction can be beneficial or detrimental
for the follower’s performance, depending on the alignment of the jet velocity with
the follower’s vertical motion. Finally, a qualitative prediction of the performance of a
hypothetical follower is presented. The model is semi-empirical, and it uses the flow field
of an isolated flapper.
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1. Introduction

Nature provides a host of examples of interacting bodies through a fluid with surprising
behaviours. These range from a single, passive body like an auto-rotating maple seed
(Lentink et al. 2009) to a large number of synchronized, active bodies which interact with
the surrounding fluid, like fish schooling or bird flocks (Weihs 1973; Mora et al. 2016).
The latter is particularly interesting since, due to the presence of more than one body,
each individual has to interact with an ambient fluid which is disturbed by the surrounding
individuals. These interactions can be exploited by the individual to extract energy from
the fluid and move in a more efficient manner than if it were in isolation. Although the main
reason why animals form schools or flocks may not be entirely clear yet, it is well known
that animals benefit from collective motion in terms of flow interaction (Weimerskirch
et al. 2001; Becker et al. 2015).

This beneficial interaction is not restricted to a large number of bodies, but it is also
observed at its minimal expression for two-body configurations. For example, Liao et al.
(2003) observed that a trout behind the wake of a cylinder adapted its body kinematics to
extract energy from the vortices of the cylinder’s wake. They attributed this phenomenon
to a beneficial interaction with the oncoming vortices, which they denoted as Kármán
gait. Even more stunning are the results from Beal et al. (2006), who observed that a
dead fish can overcome its own drag in the wake of a cylinder provided its resonant
frequency matches that of the von Kármán vortex sheet. It can be argued that the beneficial
flow interaction in the previous examples is merely due to the lower average streamwise
velocity of the von Kármán vortex sheet wake. However, several studies have shown that
swimmers are less efficient when isolated (i.e. in a clean free stream) than when swimming
in reverse von Kármán streets, like those produced by thrust-producing, oscillating foils
in a free stream (Platzer et al. 2008) or self-propelling oscillating bodies (Alben &
Shelley 2005). In particular, Boschitsch, Dewey & Smits (2014), Muscutt, Weymouth &
Ganapathisubramani (2017) and Kurt & Moored (2018) found that, for an inline tandem
configuration of two oscillating foils, the distance and phase shift between the motion of
the foils can always be adjusted such that the follower foil interacts with the oncoming
vortices extracting energy from the flow, thus confirming the Kármán gait hypothesis
proposed in Liao et al. (2003) and Streitlien, Triantafyllou & Triantafyllou (1996).

However, in the aforementioned examples the bodies were immersed in a free stream
with their horizontal position held fixed. Consequently, the configuration of the collective
motion is not determined by the fluid interaction. Conversely, when the bodies self-propel,
the configuration cannot be imposed but is the one that results from the equilibrium of the
hydrodynamic forces due to flow-mediated interactions. Ramananarivo et al. (2016) and
Newbolt, Zhang & Ristroph (2019) experimentally studied the case of two airfoils in an
inline tandem configuration which self-propelled due to an imposed heaving motion with a
varying phase shift. They found that, for a given phase shift, stable configurations emerged
at quantized equilibrium distances; and that this distance was linearly proportional to
the phase shift. However, no measurements of the efficiency were provided, leaving
open-ended the question of whether tandem configurations of self-propelled bodies can
benefit from flow interactions. In this regard, numerical simulations have proven to be
very useful, since they can provide quantitative data of the flow field, but also of the
forces and moments acting on the bodies. Lin et al. (2019) numerically simulated two
self-propelling two-dimensional (2-D) foils undergoing a heaving and pitching motion,
finding that the follower always benefits from the flow interaction, whereas the lead foil
can benefit only if both foils are close. Similar studies are found in the literature where the
bodies are modelled as flexible foils and self-propulsion is achieved by way of a passive
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Flow interaction of 3-D self-propelled flexible plates

flexion of the body (Zhu, He & Zhang 2014; Peng, Huang & Lu 2018a; Ryu et al. 2020),
or where the deflection of the body is fully prescribed (Maertens, Gao & Triantafyllou
2017). In all these cases, similar qualitative conclusions are extracted from these works,
suggesting that the same main flow mechanism interaction is present in all these examples
of self-propelled collective locomotion.

Additional studies have focused on the effect of the size of the bodies (Peng, Huang
& Lu 2018b); the kinematics of the prescribed degrees of freedom (namely plunging
or pitching motion) (Heydari & Kanso 2020; Lin et al. 2021); or the stable schooling
configurations with multiple individuals (Dai et al. 2018; Park & Sung 2018; Peng,
Huang & Lu 2018c; Lin et al. 2020). However, very few works are found in the
literature which consider a three-dimensional (3-D) flow, all the previous examples being
restricted to 2-D configurations. Some examples of 3-D analyses include Daghooghi &
Borazjani (2015), who numerically investigated the performance of an ‘infinite’ school
of mackerel with a rectangular pattern; and Li et al. (2019), who analysed the energetic
benefit of a two-fish-school configuration where the kinematics of both fish was that of
self-propulsion, but their relative distance was fixed. However – to our knowledge – the
only 3-D study where the bodies self-propel and their dynamics are determined from
the fluid–structure interaction is that of Verma, Novati & Koumoutsakos (2018). They
performed numerical simulations of a pair of 3-D zebrafish-like swimmers, where the
undulation of the body of one of the swimmers (follower) is controlled to keep a relative
position with respect to the other swimmer (leader). The controller is based on a deep
reinforcement algorithm developed for a 2-D model of the same pair of zebrafish-like
swimmers. In that study, the relative position between the leader and the follower is
defined a priori with the objective of testing the developed control law. The chosen a
priori location is expected to produce a beneficial fluid interaction between the swimmers.
However, a systematic analysis of the performance of the swimmers at different relative
positions is not performed.

This lack of 3-D studies may be explained by the computational cost. However, it
is known that the wake pattern of a self-propelled body significantly differs from two
to three dimensions (Gazzola et al. 2011): from a reverse von Kármán vortex street
in two dimensions to a diverging wake of vortex rings (VRs) in three dimensions.
This could lead to significant differences of 3-D stable positions of the collective and
of their associated performance when compared to 2-D counterparts. First of all, the
stable quantized positions observed by Ramananarivo et al. (2016) and Newbolt et al.
(2019) on a von Kármán vortex street may no longer emerge on a 3-D bifurcating wake.
Secondly, on a 2-D vortex street the only dissipation mechanism is viscosity; however,
3-D mechanisms can lead to vortex breakdown at much shorter distances. Hence, different
vortical interactions might be expected in three dimensions with respect to two, which
could alter the performance of the bodies. In summary, it is not clear if the main
conclusions of tandem self-propelled bodies obtained from 2-D studies are applicable to
3-D scenarios.

In the present study, we analyse the problem of two self-propelled finite-aspect-ratio
plates in tandem configuration. Particularly, the plates have chordwise flexibility (similar
to the studies of Quinn, Lauder & Smits (2014, 2015), Yeh & Alexeev (2014) and Hoover
et al. (2018)) and self-propel due to an imposed heaving motion of their leading edge.
The main focus of the study is to identify which are the equilibrium positions in this 3-D
scenario, and to characterize the performance of the system at these equilibrium positions.
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Zl (t)

Zf (t)

D (t)

H

Figure 1. Side view of the schooling configuration. Each flapper has a prescribed heaving motion about a fixed
vertical pivoting position (represented as a red dot). The vertical offset between the follower’s and leader’s
pivoting position is denoted as H. Distance D(t) is the instantaneous horizontal distance between the flappers’
leading edges.

Additionally, the main similarities to/differences from the 2-D configurations found in the
literature are also highlighted.

The paper is structured as follows: § 2 describes the problem and the numerical
methodology; in § 3 the main results are discussed; and finally the main conclusions of
the study are gathered in § 4.

2. Methodology

2.1. Problem description
Two self-propelling plates in tandem configuration immersed in an otherwise undisturbed
fluid are considered. The plates have a rectangular planform of chord C and span b;
thickness e; uniform density ρs; and they are flexible along the chordwise direction. Under
the tandem arrangements considered, one of the flappers swims downstream of the other.
We denote the flapper swimming downstream as follower and the upstream flapper as
leader. Hence, variables related to the follower and leader are indicated hereafter with the
subscripts f and l, respectively.

The vertical motion of the leading edge of the flappers is prescribed as sinusoidal
functions, namely

Zl(t) = Al cos (2πft), Zf (t) = H + Af cos (2πft − φ), (2.1a,b)

where Ai is the heaving amplitude of the i flapper, f is the frequency of oscillation, φ is the
phase offset and H is the mean vertical offset between the flappers. These magnitudes are
sketched in figure 1, alongside the instantaneous horizontal distance, D(t) = Xf (t) − Xl(t),
where Xi is the horizontal position of the leading edge of the i flapper.

The flappers share the same fixed plane of symmetry along the spanwise (y) direction
(i.e. they are aligned), and their leading edge is always parallel to the y axis. Hence,
while the vertical motion of the leading edge of the flappers is prescribed, their horizontal
motion results from the fluid–structure interaction. Note that in this configuration, the
only external forces acting on the plates are the hydrodynamic forces and the driving
force that imposes the vertical motion of the leading edge of the flappers. In particular,
no gravitational force is considered in this study.
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Heaving offset, H [0, 0.3, 0.6]C
Phase offset, φ [0◦–360◦]
Flapper span, b 0.5C
Flapper thickness, e 0.02C
Heaving amplitude, A 0.5C
Reynolds number, Re 200
Density ratio, � 10
Natural frequency, ω∗ 2.17

Table 1. Parameters of the problem under study.

The fluid surrounding the flappers is governed by the Navier–Stokes equations of
incompressible flow for a Newtonian fluid, namely

∇ · u = 0, (2.2a)

∂u
∂t

+ (u · ∇)u = − 1
ρ

∇p + ν∇2u, (2.2b)

where u is the flow velocity, p is the fluid pressure, ρ is the fluid density and ν is the fluid
kinematic viscosity.

One of the objectives of the present study is to find stable equilibrium positions of the
flappers in the H–φ plane. The rest of the parameters that define the problem are kept fixed:
the aspect ratio of the flappers, b/C, and their non-dimensional thickness, e/C; the heaving
amplitude is set equal for both flappers, Al ≡ Af = A; the Reynolds number, Re = VC/ν,
where V = 2πAf is the maximum vertical velocity of the leading edge of the flappers;
the density ratio, � = ρs/ρ; and the non-dimensional natural frequency, ω∗ = ωn/(2πf ),
where ωn is the first natural frequency of the flapper’s elastic response in vacuum. The
values of these parameters are presented in table 1.

To select the elastic properties of the flapper (i.e. its natural frequency), two different
simulations of self-propelled isolated flappers with finite aspect ratio (i.e. 3-D simulations)
were performed with ω∗ = 2.17 and 4.59, choosing for the present study the case yielding
maximum propulsive speed. The range for values of ω∗ used in the prospective 3-D
simulations was selected after performing a finer parametric study of the equivalent 2-D
problem, similar to that presented in Arora et al. (2018).

2.2. Computational set-up
To simulate the chordwise flexibility of a flapper the lumped-torsional flexibility model
of Arora et al. (2018) is used. Under this approach, a flapper is discretized into NB rigid
bodies linked to each other by means of torsional springs. The stiffness of these torsional
springs is computed to match ω∗. A sketch of the multi-body model of a flapper is provided
in figure 2. For a given flapper, its rigid bodies are labelled as j = 1, . . . , NB. Each body is
a rectangular prism of span b, length c and thickness e, separated a distance d = e/2
from the torsional spring that connects it to the consecutive body. Consequently, the
relative attitude of body j with respect to its predecessor j − 1 is given by the angle θj
(see figure 2b).

Under the previous model, each flapper has 2 + NB degrees of freedom, namely
horizontal (X) and vertical (Z) translation of the leading edge and NB relative rotations
of the bodies. Therefore, it is possible to express the equations that govern the dynamics
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Torsional
springs

(a) (b)

body j
θj

x

z

y

b

c

d body j – 1

Figure 2. (a) A 3-D representation of the multi-body model of a flapper. (b) Side view (x–z plane) of the
multi-body model. Blue spirals are the torsional springs and θj is the relative deflection angle of body j with
respect to body j − 1, similar to Arora et al. (2018).

of the flappers in the general form (Featherstone 2014)

H(q)q̈ = ξ − c(q, q̇) + ξh, (2.3)

where q is the vector of generalized coordinates (i.e. the degrees of freedom of the system),
H is the generalized inertia matrix, c is the generalized bias force vector, ξ is the vector
of the generalized forces (accounting for the torsional springs) and ξh is the vector of the
generalized hydrodynamic forces. Although in (2.3) only the dependence on q and (q, q̇)

is made explicit for H and c, respectively, they both implicitly depend on the geometric
and inertia properties of the flappers.

The vector of generalized coordinates is defined as q = [qu, qp]�, where qu =
[Xl, θl,1, . . . , θl,NB, Xf , θf ,1, . . . , θf ,NB]� is the vector of unknown generalized positions,
and qp = [Zl, Zf ]� is the vector which contains the prescribed generalized positions, given
by (2.1a,b). Likewise, ξ = [ξu, ξp], where ξu = −K[0, θl,1, . . . , θl,NB, 0, θf ,1, . . . , θf ,NB]�,
and ξp = [Fp,l, Fp,f ]� contains the unknown reaction vertical forces acting on the leading
edge. In the present implementation, a reduced system of (2.3) is solved to compute qu,
q̇u and q̈u, as detailed in Arranz (2021). After that, one can solve for the reactive forces
acting on the leading edge. For the present study, NB = 5, based on the work of Arora
et al. (2018).

Equations (2.2) and (2.3) are solved together using an in-house code, TUCANMB
(Arranz 2021). In particular, the flow is solved by means of direct numerical simulations,
where the presence of the body in the fluid is modelled using the immersed boundary
method proposed by Uhlmann (2005). On the other hand, H and c of (2.3) are computed
using the robotic algorithm presented in Felis (2017). The coupling between the fluid and
the dynamic equations along time is done in a staggered way, usually referred to as weak
coupling. Interested readers can find more details of the algorithm in Arranz (2021).

The computational fluid domain is a rectangular prism of size 16C × 6C × 8C along
the streamwise, spanwise and vertical directions, respectively. Note that the same
computational fluid domain was used in Yeh & Alexeev (2014) for similar simulations
of an isolated 3-D self-propelled flexible plate. The flappers are located inside a refined
region with uniform grid size, 	r, extended from [−0.5C, 0.5C] along the y axis,
[−C, C + H] along the z axis and [−6.5C, Lx] (where Lx ranged from −2C to 4C,
depending on D̄) along the x axis. Note that those distances are given with respect to
the cuboid centroid. Moreover, for cases with H = 0.6C the total domain is also enlarged
0.6C in the positive z direction. Outside this uniformly refined region, the mesh has a
constant stretching of 0.8 % in all directions.
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The grid size, 	r, is determined after performing a grid sensitivity analysis, leading to
the conclusion that 	r = C/50 accurately captures the dynamics of the problem, whereas
with 	r = C/80 the flow details and temporal evolution of the forces are accurately
represented. Consequently, the simulations are performed with 	r = C/50. Only for those
configurations in which flow visualizations and temporal histories of force and power
are presented, the simulations are performed with 	r = C/80. Likewise, the time step
is selected to be 	t/T = 5 × 10−4 and 4 × 10−4, where T = 1/f is the flapping period,
for 	r = C/50 and C/80, respectively, ensuring CFL = Umax	t/	r < 0.2 (where Umax
is the maximum flow velocity in the domain). Interested readers can find more details of
the grid sensitivity analysis in the Appendix.

A constant horizontal velocity, U∞, is imposed at the inflow boundary; an advective
boundary condition is imposed at the outflow boundary; and free-slip boundary conditions
are imposed at the lateral boundaries. With the present set-up, the flappers could reach the
inflow or outflow boundaries if their mean advance velocity (denoted as propulsive speed,
Ūp, in the following sections) is higher or lower than U∞, respectively. Therefore, the
inflow velocity must be set equal to U∞ ≡ Ūp so that the flappers remain in the refined
region of the computational domain. Since Ūp is unknown a priori, simulations are started
with an initial guess of U∞, denoted as U0

i , which is updated every kth time step, by means
of the relaxation equation:

Uk
i = (1 − β)Uk−1

i + βẊk−1
l , (2.4)

where β is a small parameter set to 	t/T and superscripts indicate the time step where
the variable is evaluated. After a transient, the horizontal position of the flappers oscillates
around a fixed value, as well as Ui. It turns out that the average value of Ui over a complete
oscillation is a good estimate of the mean propulsive velocity. Therefore, U∞ is set to this
average value, and the simulation is continued with this constant inflow velocity. Only the
results of this last phase of the simulations are reported in this paper, after discarding the
initial transient.

Finally, it should be pointed out that our simulations do not include any mechanism to
prevent the two flexible plates from touching. Indeed, this occurs for some simulations with
φ < 0 and D0/C = 1.5, which have been discarded. The two flappers of all simulations
presented in this work have been checked to not overlap at any time.

2.3. Performance indicators
After an initial transient, the flappers self-arrange into a stable configuration, with a
constant mean separation distance, D̄, and mean propulsive speed, Ūp, over a cycle. These
magnitudes are computed as

D̄ = 1
T

∫ T∗

T∗−T
D(t) dt, Ūp = U∞ − 1

T

∫ T∗

T∗−T
Ẋl dt, (2.5a,b)

where T∗ is the last computed full cycle of the simulation.
The performance of a self-propelled flapper is computed in terms of its average power

consumption over a flapping cycle, namely

P̄i = 1
T

∫ T∗

T∗−T
max (Pi, 0) dt, (2.6)

where Pi = Fp,i · Żi, Fp,i being the vertical component of the reaction force acting on the
leading edge of the i flapper. Neglecting the negative power contribution in (2.6) entails
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that the elastic storage of power is not considered. This approach is similar to the one
adopted in Berman & Wang (2007) and Vejdani et al. (2018). In the following discussion
the performance of a given flapper in tandem configuration is assessed in terms of a
comparison with the same flapper in isolation. To that purpose the power ratio of the i
flapper is defined as Πi = P̄i/P̄s, where P̄s is the averaged power of the isolated flapper.

As an additional measure of performance, the propulsive efficiency η is defined as the
ratio between the total useful kinetic energy and the total power consumption:

η = mŪ2
p

T(P̄l + P̄f )
, (2.7)

where m is the mass of each flapper. The equivalent propulsive efficiency that the tandem
system would have if no interaction between flappers occurred is also defined:

ηs = mŪ2
p,s

2TP̄s
. (2.8)

3. Results

3.1. Emergent patterns and overall dynamics
For reference, the case of the isolated flapper is presented first. The flapper self-propels
at a mean speed, Ūp,s = 0.88V , shedding a VR during each stroke. The VRs move away
from the flapper with an oblique trajectory due to their own induced velocity, leading to a
bifurcating wake (Kurt, Eslam & Moored 2020). These vortices are visible in figure 3(a),
which shows a visualization of the flow around the isolated flapper at mid-downstroke. The
deflection of the flapper during a cycle is depicted in figure 3(b). Note that the upstroke and
the downstroke deflection patterns are symmetric. At the beginning of a stroke, the flapper
is almost horizontal, whereas the largest deflection occurs at mid-stroke. Consequently,
there is a phase offset of ∼ π/2 between the heaving motion and the deflection. Such a
phase offset is characteristic of oscillating foils with low mass ratios (≡ ρse/ρC = 0.2, in
the present study) and is linked to an increase of the fluid forces during the mid-stroke,
which dominate over inertia for low mass ratios (Dai, Luo & Doyle 2012; Arora et al.
2018). Yeh & Alexeev (2014) found a similar phase offset for a flexible self-propelling
plate of finite span when its plunging frequency was adjusted to yield maximum propulsive
speed.

Figure 4 depicts the streamwise, 〈u〉, and vertical, 〈w〉, velocities of the fluid averaged
over a cycle and along the flapper’s span y/C = [−0.25, 0.25]. Note that, for the averaging,
a Galilean reference frame moving at a constant horizontal speed, Ūp,s, was used. The
averaged wake left by the VRs results in a bifurcating momentum jet. Note that this wake
pattern is not restricted to flexible, 3-D self-propelling flappers, but is general to oscillating
bodies, like rigid wings, immersed in a free stream within the typical range of Strouhal
for propulsion, namely 0.15 ≤ St ≤ 0.5 (Taylor, Nudds & Thomas 2003). In particular,
the diverging wake pattern made of shed VR is the common trace of low-aspect-ratio
oscillating wings (Dong, Mittal & Najjar 2006; Buchholz & Smits 2008). This wake
pattern clearly differs from the reverse von Kármán wake observed in 2-D self-propelled
plates (Alben & Shelley 2005; Hua, Zhu & Lu 2013).

We now turn our attention to the emergent dynamics found in the tandem simulations.
A total of 24 tandem configurations were simulated. They are characterized by the
follower’s vertical offset, H, the phase shift, φ, and the ensuing equilibrium distance, D̄.
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(a) (b)

(c) (d)

Figure 3. (a) Flow visualization around the isolated, self-propelled, flapper at mid-downstroke. Flow is
visualized in terms of iso-surfaces of the Q-criterion for Q/f 2 = 0.1. (b) Bending pattern of the flapper’s
chordline during the downstroke (solid) and upstroke (dashed). Dotted line corresponds to the trajectory of the
leading edge. (c,d) Flow visualization around the flappers in tandem formation. Flow is visualized in terms of
iso-surfaces of the Q-criterion for Q/f 2 = 0.5: (c) H = 0.6C, φ = 180◦ and (d) H = 0, φ = 0◦.
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Figure 4. Velocity field of the isolated self-propelled flapper, averaged over one cycle and over y/C =
[−0.25, 0.25]. (a) Horizontal component of the velocity, (〈u〉 − Ūp,s)/Ūp,s, and (b) vertical component of
the velocity, 〈w〉/Ūp,s. The black line corresponds to the mean position of the flapper.

Under the initial separation distances considered (i.e. D0/C = [1.5–3]), a single D̄ was
found for each φ. The only exception is case φ = 0◦, for which two equilibrium distances
coexisted (D̄/C ≈ 1 and D̄/C ≈ 3.4), depending on D0. In order to differentiate them, we
assign φ = 0◦ to those configurations for which D̄/C ≈ 1 (obtained with D0/C = 1.5),

931 A5-9

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

91
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.918


G. Arranz, O. Flores and M. García-Villalba

(a) (b)

(c) (d)

U– p/U
– p,

s

η
/η

s

0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
0

0.1

0.2

0.3

0.4

0.5

0.6
H

/C

0.950

0.975

1.000

1.025

1.050

1.075

1.100

0°
90°

135°

180°

270°
360°

compact

aligned

0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
0

0.1

0.2

0.3

0.4

0.5

0.6

H
/C

0.950

0.975

1.000

1.025

1.050

1.075

1.100

0°
90°

135°

180°

270°
360°

0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
D–/C

0.94

0.96

0.98

1.00

1.02

0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
D–/C

0.85

0.90

0.95

1.00

1.05

Figure 5. (a) Input power ratio of the leader (Πl), (b) input power ratio of the follower (Πf ) and (c) propulsive
speed ratio (Ūp/Ūp,s) for all the configurations explored. (d) Ratio of propulsive efficiency, η/ηs. In (a,b) the
symbols stand for the resolution of the simulation: (�) 	x = C/80; (◦) 	x = C/50. In (c,d) the symbols stand
for the vertical offset: (•, dark blue) H/C = 0; (�, red) H/C = 0.3; (�, orange) H/C = 0.6.

whereas φ = 360◦ is used for the tandem configurations where D̄/C ≈ 3.4 (obtained with
D0/C = 3).

For illustration, figure 3 displays flow visualizations of two of the cases. Figure 3(c)
displays the flow corresponding to the case H = 0.6C and φ = 180◦, leading to D̄/C = 2.2
(i.e. the horizontal gap between the trailing edge of the leader and the leading edge of the
follower is approximately equal to 1.2C). It can be appreciated that the flow surrounding
the leader is virtually unaffected by the follower, whereas the follower is swimming across
the leader’s wake vortices. Downstream of the follower, the wakes of the flappers interact
yielding a different wake structure from that for the isolated flapper. Figure 3(d) depicts
the case H = 0 and φ = 0◦. In this case, the equilibrium distance is D̄/C = 1.01 (i.e. the
trailing edge of the leader and the leading edge of the follower are almost touching). Due
to the proximity between the flappers, there is no clear distinction between the wakes of
each plate. Instead, they appear to be merged. These two cases can be understood as the
3-D counterparts of the regular and compact configurations reported by Zhu et al. (2014)
for 2-D tandem plates.

The performance of all the simulated configurations is summarized in figure 5. The
data are presented in the form of ratios relating metrics of the performance in the tandem
configuration to the corresponding metric of the isolated flapper. For all vertical offsets,
simulations with phase shifts φ = [0◦, 90◦, 135◦, 180◦, 270◦, 360◦] have been performed.
Additional simulations have been performed with φ = 225◦, 250◦, 280◦ and 310◦ for
H/C = 0.6; φ = 195◦ and 210◦ for H/C = 0.3; and φ = 30◦ for H/C = 0.
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Flow interaction of 3-D self-propelled flexible plates

Figures 5(a) and 5(b) display the input power required by the leader and the follower,
respectively, as compared to that required by the isolated flapper. Note that dashed lines
are used to link configurations with the same phase shift, φ. In this regard, it can be
appreciated that D̄ monotonically increases with φ, and, surprisingly, the influence of H on
D̄ is marginal, except for φ = 0◦. The relation between D̄ and φ is later discussed in § 3.3.
Figure 5(a) shows that, for configurations where D̄/C ≥ 1.25, the energy expenditure
of the leader is virtually equal to that of the isolated flapper; whereas for the compact
configurations (i.e. φ = 0◦ and H ≤ 0.3C), a slightly higher mean power is required by
the leader as compared to that in isolation. For H = 0.6C and φ = 0◦, the leading edges of
follower and leader are almost aligned, with D̄ = 0.2C, and the required power is roughly
equal for both flappers and slightly less than for the isolated flapper. The particularity of
this aligned mode is briefly discussed at the end of this subsection.

In any case, the effect of the tandem configuration on the leader’s power requirement
is almost negligible, even for the compact configurations, as compared to the effect on
the follower: figure 5(a) shows that the power requirements for the leader vary within
±1 % of the value obtained for the isolated flapper, while figure 5(b) shows that the power
requirements for the follower vary up to ±10 %, depending on H and φ. In particular,
depending on H there exists a φ above which the follower is able to take advantage from
the fluid interaction such that the required energy is lower than that in isolation. From the
performed simulations, it is found that this transition occurs roughly at φ > 30◦, 135◦ and
180◦ for H = 0, 0.3C and 0.6C, respectively. On the other hand, the power spent by the
follower in the compact configurations considerably exceeds that of the isolated flapper
(up to 10 %).

For all cases with D̄/C ≥ 1.6, figure 5(c) shows that the propulsive speed is virtually
equal (i.e. the difference is less than 1 %) to that of the isolated flapper, irrespective
of H. This is consistent with the regular configurations from previous 2-D simulations
(Zhu et al. 2014; Lin et al. 2019; Ryu et al. 2020). For configurations with H/C ≤ 0.3
and D̄/C < 1.6, the propulsive speed of the tandem configuration is slightly higher than
Ūp,s, up to 3 % higher for case H/C = 0.3, φ = 0◦. While the result is consistent with
2-D simulations in the compact range and for H = 0, the increment in propulsive speed
of the 3-D cases is more modest: Lin et al. (2019) report propulsive speeds up to 50 %
higher than in isolation for heaving and pitching rigid 2-D foils in compact configurations
at Re = 200. Likewise, Ryu et al. (2020) find an increase of 40 % in Ūp for flexible
plates at Re = 100, whereas Peng et al. (2018a) report a more modest increase of 10 %
for flexible plates at Re = 200 in compact configurations. Lin et al. (2019) observe two
different interaction modes in compact configuration: a merging mode, in which the foils
behave as a single larger foil, and a broken interaction mode, in which gaps open and close
periodically between the leader’s trailing edge and the follower’s leading edge. They report
the highest increase in the propulsive speed in the broken interaction mode. The present
3-D simulations are qualitatively consistent with this broken interaction mode (i.e. the
flow visualizations shown in figure 3d resemble those in figure 4d of Peng et al. (2018a)),
although the propulsive speed of the present 3-D cases is lower than that of their 2-D cases.

According to Peng et al. (2018a), the increase of Ūp in 2-D compact configurations is
enough to counteract the higher required power, leading to a higher overall efficiency
of the compact configurations compared to isolated configurations (i.e. η/ηs > 1).
However, in our case the compact configuration with H/C = 0.3 has η/ηs > 1, while
the configuration with H/C = 0 yields η/ηs < 1. For regular configurations, figure 5(d)
shows that the maximum efficiency occurs at larger D̄ as H increases. Note that, for regular
configurations, since Pl � Ps and Ūp � Ūp,s, (2.7) and (2.8) can be combined to yield
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η/ηs ≈ 2/(1 + Πf ). Thus, discussing η/ηs and Πf is equivalent, and the diagonal region
in figure 5(b) where Πf < 1 corresponds to η/ηs > 1. For this reason, in the following we
limit our discussion to the follower’s power ratio.

The aforementioned transition from compact to aligned for the cases with φ = 0◦ when
H varies is also observed in two dimensions. In particular, Peng et al. (2018a) found that
for 2-D flexible plates with φ = 0◦, the stable position of the follower is D̄/C ≈ 1 when
H is small enough (i.e. compact), but D̄/C ≈ 0 when H/C ≥ 0.6 (i.e. the 2-D flappers
become aligned). In this aligned case, the required average power of each plate is equal
and lower than that of the isolated plate. However, Ūp significantly decreases, leading to a
loss of efficiency. In this regard, the same behaviour is observed in the present study for the
aligned mode, although the dynamics of the flappers seem to differ between two and three
dimensions: in the 2-D case, the performance of both plates is symmetric with respect
to each stroke and there is no leader or follower; on the contrary, in three dimensions,
the follower is affected by the interaction of its trailing edge with the vortices shed by
the leader. As a consequence, the leading edges of both plates do not become aligned but
D̄ ≈ 0.2C; thereby the performance of the follower and the leader is not the same.

Finally, it is worth noting that the power ratios obtained by Peng et al. (2018a) (denoted
herein as Πi,2D) in the 2-D compact configurations (namely H/C < 0.6) behave differently
from in the present 3-D study. In both two and three dimensions, the flappers require more
energy in the tandem configuration than if isolated (i.e. Πl,2D, Πf ,2D > 1), entailing that
the interaction is detrimental for both flappers. However, while Peng et al. (2018a) report
that this interaction is more detrimental for the leader (namely Πl,2D > Πf ,2D), our present
3-D results show the opposite (namely Πl < Πf ) as seen in figures 5(a) and 5(b).

3.2. Flow interaction mechanisms
From the previous section it is clear that the follower is more affected by the collective
behaviour than the leader, even for compact configurations. In order to understand the
dependence of Πf on H and φ, the temporal evolution of Pf is depicted in figure 6 for
a few representative cases. In figure 6(a) the evolution for cases with constant H/C = 0
and different phase offset is shown, whereas figure 6(b) shows Pf for a constant offset,
φ = 180◦, and different H. Note that, to allow a comparison with the isolated flapper
(grey dashed line in figure 6a,b), we define the variable t̂ = t − φ/(2πf ) to shift the time
reference of the follower so that its downstroke is synchronized with that of the isolated
flapper. Qualitatively the required power behaves as a squared sine function over a cycle,
P being approximately 0 at the beginning of the downstroke and upstroke, and maximum
at mid-stroke. For H = 0 and φ = 0◦, the power ratio Πf > 1 observed in figure 5(b) is
due to an increase of the maximum required power at mid-stroke, as shown in figure 6(a).
However, for the optimum case, H = 0 and φ = 135◦, the power reduction is not due
to a lower maximum required power at mid-stroke, but to a decrease of Pf after each
mid-stroke. This can be better appreciated in figure 6(c), which displays the difference
(Pf − Ps). In all cases, the follower spends more energy during the first half of the stroke
than the isolated flapper. However, for the optimal case, this is largely counteracted during
the second half of the stroke, yielding a total reduction of the required energy. Overall, it is
observed that the average difference (Pf − Ps) monotonically decreases with increasing D̄
(i.e. increasing φ) during the first half of a stroke. However, the power difference (Pf − Ps)
during the second half of a stroke does not follow the same behaviour: it decreases when
φ varies from 0◦ to 135◦, but it increases again when φ varies from 135◦ to 360◦. As a
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Figure 6. (a,b) Temporal evolution of the input power of the follower during a cycle and (c,d) temporal
evolution of the difference of the input power of the follower and the isolated flapper. (a,c) H = 0 and
(——, light blue) φ = 0◦ (D̄ = 1.01C); (——, blue) φ = 135◦ (D̄ = 1.75C); and (——, dark blue) φ = 360◦
(D̄ = 3.51C). (b,d) φ = 180◦ and (——, brown) H = 0 (D̄ = 2.04C); (——, maroon) H = 0.3C (D̄ = 2.13C);
and (——, orange) H = 0.6C (D̄ = 2.20C). In (a,b), (- - -, grey) corresponds to the power of the isolated
flapper. Note that the time is shifted in each case so that 0 corresponds to the beginning of the downstroke for
each flapper. For reference, the downstroke is indicated with a grey background.

consequence, for φ greater than optimal, Πf increases towards 1, as illustrated by case
φ = 360◦ in figure 6(c).

Figure 6(b) allows an analysis of the effect of H on the transition from Πf < 1 to Πf > 1
for a fixed φ. Note that D̄/C is similar for the cases displayed, as shown in figure 5. In
figure 6(b) it is observed that for H/C > 0, Pf is not equal during the downstroke and the
upstroke. In particular, the peak of the required power is higher during the downstroke and
increases with H, whereas the peak during the upstroke remains approximately constant
and equal to that of Ps. The larger power consumption during the downstroke is not
compensated during the upstroke for H/C = 0.6, as shown in figure 6(d); whereas the
lower peak for H/C = 0.3 during its downstroke, and a larger power reduction during the
upstroke, allows this follower to outperform the isolated flapper.

To summarize, the results from figures 6(c) and 6(d) suggest that, irrespective of the
final power ratio, the follower always requires more power than the isolated flapper during
the first half of the stroke, and less during part of the second half of the stroke. This is
true for all the cases presented in this paper. The instantaneous power required by the
follower, Pf , depends on the hydrodynamic forces and on the inertia and elasticity of the
flapper. However, due to the choice of parameters of the present simulations (table 1), the
influence of the hydrodynamic forces is dominant, and it should be possible to explain
the behaviour of Pf in terms of the flow interactions. Moreover, since the inertia/elastic
properties of the flapper and its prescribed kinematics are the same for both the follower
and the isolated flapper, the difference (Pf − Ps) must be ascribed to interactions of the
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Figure 7. Flow visualization: (a,b) isolated flapper; (c,d) tandem case with H = 0 and φ = 135◦; (e, f ) tandem
case with H = 0 and φ = 0◦. The time instants are (a,c,e) t̂/T ≈ 0.1 and (b,d, f ) t̂/T ≈ 0.3. For each panel,
contour on the left corresponds to the pressure field at y = 0 plane around the flappers. Black arrow indicates
the vertical velocity of the flapper. Contour on the right displays the pressure in the x = Xf + 0.25C plane
(shaded line on the left contour), and the instantaneous streamlines of the in-plane velocity. The streamlines
are coloured with the local velocity magnitude. An inset is added to each panel displaying the iso-surfaces of
the Q-criterion for Q/f 2 = 0.5 of the corresponding case. Red lines stand for the intersection of the iso-surfaces
with the x = Xf + 0.25C plane.

follower with the leader’s wake. Thus, we now proceed to analyse the flow surrounding
the follower at different time instants.

Figures 7(c) and 7(e) depict the pressure field and the velocity field near the follower
at the beginning of the downstroke (t̂/T ≈ 0.1) for cases with H = 0 and φ = 135◦ and
0◦, respectively. For reference the case of the isolated flapper is also shown (figure 7a).
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Flow interaction of 3-D self-propelled flexible plates

Note that for the time instants considered Żf < 0, and the instantaneous required power of
the follower exceeds that of the isolated flapper for both cases. The follower is interacting
with the VR shed during the leader’s upstroke and, consequently, the VR circulation
induces an upwards velocity jet. Due to the phase offset, the VR is located above the
follower when φ = 135◦ (figure 7c,d) and below the follower for φ = 0◦ (figure 7e, f ).
However, in both cases, the VR is convecting fluid against the flapper motion. This results
in a flow pattern with a saddle point on the suction (pressure) side of the follower for
φ = 135◦ (φ = 0◦). Note that this saddle point does not occur in the case of the isolated
flapper (figure 7a).

Figure 7(b,d, f ) displays the flow after the mid-downstroke (t̂/T ≈ 0.3), when the
follower requires less power than the isolated flapper for φ = 135◦, but requires higher
power for φ = 0◦. Figure 7(d) (φ = 135◦) shows that the VR shed during the leader’s
upstroke has travelled downstream while the VR shed during its downstroke (with opposite
circulation) starts interacting with the follower. Since both the follower’s wing tip vortices
and the VR have the same circulation, they seem to merge near the leading edge, and no
saddle point is observed. This yields a downwards, high-velocity jet, which decreases the
pressure on the follower’s lower surface, thus explaining the lower Pf required with respect
to Ps observed in figure 6(c). This interaction is in agreement with the recently published
work of Li et al. (2020), who reported that a following fish in tandem saved energy when
its tail motion matches the direction of the induced velocity of the wake’s VRs.

On the contrary, figure 7( f ) (φ = 0◦) shows that the VR shed during leader’s
downstroke is still above the follower. Consequently, the VR is still inducing an upwards
jet, whose overall result is a lower pressure on the upper surface. This leads to an increase
of required power as compared to the isolated flapper. Note that the saddle point is still
present. Although not shown, for t̂/T ≥ 0.36, the VR is no longer affecting the flow
above the follower’s surface, and it starts interacting with the next VR, leading to a
flow configuration similar to that of φ = 135◦. However, this beneficial interaction occurs
during a shorter period of time, leading to an overall lower performance. Due to symmetry,
an analogous behaviour is observed during the follower’s upstroke.

Note also that, although only two cases have been presented here for the sake of brevity,
the same qualitative behaviour is observed for the other cases (see animations provided in
the supplementary movies available at https://doi.org/10.1017/jfm.2021.918). For H > 0,
due to the lack of symmetry, the distance between the follower and the VRs during the
upstroke and the downstroke is not the same, modulating the intensity of the interaction.
But the nature of the interaction of the follower with the VR in the wake of the leader
remains qualitatively the same.

Based on the results of figure 7, it is tempting to seek an estimate of the performance
of the follower in the analysis of the wake of an isolated flapper. The key assumption is
that the wake structure between the leader and the follower is governed by the flapping
motion of the leader, with a weak effect of the follower. Therefore, the performance of the
latter might be estimated superimposing its trajectory on the wake of an isolated flapper
(Zhu et al. 2014; Peng et al. 2018b). This is done in figure 8, which displays the vertical
velocity (w) in the wake of the isolated flapper at a vertical line with coordinates y = 0 and
x(t) = Xs(t) + D(t) (i.e. at the midspan of the leading edge of a hypothetical follower),
where D(t) is the instantaneous distance between the leader and the follower obtained
from the actual tandem simulation. Note that we are implicitly assuming that Xl(t) ≈ Xs(t),
which is a reasonable assumption given the values of Ūp/Ūp,s reported in figure 5(c). Thus,
the figure provides an estimation of the vertical velocity of the fluid just upstream of the
leading edge of a hypothetical follower. Each panel in figure 8 corresponds to a different
equilibrium position of the hypothetical follower, specified in terms of the values of H
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Figure 8. Vertical velocity field at y = 0 seen by the leading edge of the follower’s flapper as if it were in the
undisturbed wake of the isolated flapper. Black line denotes the vertical position of the follower’s leading edge
as a function of time, where t̂ = 0 is the beginning of the follower’s downstroke. Dashed black lines are the
contours for w = 0.

and φ. The corresponding trajectory of the hypothetical follower is also shown in each
panel, with a black solid line. Note that the follower travels from right to left in the figure,
implying that the rightmost position (t̂ = 0) corresponds to the beginning of the follower’s
downstroke.

Figure 8(a–c) shows the same cases presented in figure 6(a,c). Figure 8(a) shows that,
for the case with H = 0 and φ = 0, during roughly the first half of each stroke, the
hypothetical follower encounters flow that opposes its motion: positive w during the first
half of the downstroke, negative w during the first half of the upstroke. However, for cases
φ = 135◦ and φ = 360◦ (figures 8b and 8c, respectively) the sign of w coincides better
with the direction of the stroke of the follower. The difference between these two cases is
the intensity of the vertical velocity fluctuations at the leading edge of the follower, larger
for the case with φ = 135◦, which might explain its larger energy savings (as discussed for
figure 6c).

Figures 8(d) and 8(e) display the configurations analysed in figures 6(b) and 6(d), with
φ = 180◦ and H/C = 0.3 and 0.6, respectively. Since H > 0, the flow encountered by
the hypothetical follower during the downstroke and upstroke is no longer symmetric. The
fraction of the stroke when the sign of the velocity of flapper and wake coincide is larger for
the case with H/C = 0.3 than for the case with H/C = 0.6, especially during the upstroke
(note that the transition from positive to negative vertical velocity is indicated with dashed
contour lines in figure 8). Additionally, whenever the signs of the velocities coincide, the
value of w at the leading edge of the follower is higher for H/C = 0.3 than for H/C = 0.6.
Both observations are in line with the behaviour of the required power in figure 6(d), with
larger power savings with respect to the isolated flapper in case H/C = 0.3 than in case
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Figure 9. As for figure 8 but for the pressure field.

H/C = 0.6. Finally, figure 8( f ) depicts the case H = 0.6C and φ = 360◦. A comparison
of figure 8 (e) and 8 ( f ) shows that, by increasing D̄, the hypothetical follower is now
swimming through a region where the flow velocity is better aligned with the leading
edge’s vertical motion.

Thus, a larger value of the power ratio Πf is expected for the case with φ = 360◦ than
for the case with φ = 180◦, a result that is confirmed in the actual simulation (see results
in figure 5b).

For reference, figure 9 shows the pressure fluctuation field seen by the hypothetical
follower, obtained in the same fashion as the vertical velocity field in figure 8. These
pressure fluctuation fields are analogous to those reported by other authors for 2-D flows
(Zhu et al. 2014; Peng et al. 2018b), and can be used to estimate the relative position of the
VR (i.e. a low-pressure region, in blue in the figure) with respect to the trajectory of the
hypothetical follower (black line). However, this representation is not ideal since it does
not show the direction of the jet induced by the VR, which is important in determining
if a vortical interaction is beneficial or not, as discussed with figure 7. Overall, figure 9
seems to suggest that the tandem configurations where the follower outperforms the
isolated flapper correspond to cases where the VRs pass above the leading edge during
its downstroke. As discussed in this section, this is an oversimplification since not only the
position, but also the sign of the circulation of the VR matters.

3.3. Modelling the follower’s performance
The results discussed in the previous sections have shown that the nature of the interaction
of the follower with the leader’s wake is qualitatively the same for all cases, including the
compact configurations. Our results support the existing literature on the topic, confirming
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Figure 10. (a) Input power ratio of the follower, Πf , as a function of D̄. Note that the vertical axis is reversed,
such that maximums corresponds to cases where the follower outperforms the isolated flapper. (b) Relationship
between φ and D̄ for all cases. (c) Follower’s power ratio, Πf , as a function of 〈wLE,f Żf 〉 for all cases. Symbols
stand for the vertical offset: (•, dark blue) H/C = 0; (�, red) H/C = 0.3; (�, orange) H/C = 0.6. In (b),
dashed black line is the linear regression.

that the differences in the performance of the follower are linked to the different timing of
the interaction of the follower with the VRs shed by the leader, which determines if the
interaction is beneficial (in terms of power requirements) or not. In this section, a more
quantitative analysis of the results is presented.

Figure 10(a) shows Πf as a function of D̄, for the three values of H (note that the vertical
axis is reversed). Although the data presented in this figure are reported in figure 5(b),
this alternative representation highlights that for each H there is a D̄ (and consequently
a phase shift φ) for which the follower is able to extract the most energy from the flow
interaction. This distance increases with H, due to the diverging pattern of the leader’s
wake. The optimum values are Πf = 0.917, 0.960 and 0.957 for H/C = 0, 0.3 and 0.6,
respectively. It is clear that the global optimum is obtained for H = 0 because the positive
flow interaction occurs during both the upstroke and the downstroke. Also, it is clearly
appreciated in figure 10(a) that Πf is most sensitive to φ when the vertical offset is H = 0,
with broader peaks for H/C = 0.3 and 0.6.

It is also noticeable (at least for H/C = 0 and 0.3) that Πf tends to 1 relatively quickly
as D̄ increases, especially when compared to similar studies in two dimensions (Park &
Sung 2018; Lin et al. 2019, 2020; Ryu et al. 2020). This is due to the diverging pattern of
the wake in three dimensions: in the previous section, figure 9(c) shows that the follower of
case H = 0, φ = 360◦ (D̄/C ≈ 3.5) is not directly interacting with the VRs, since the VRs
are passing the follower too far away. In a 2-D configuration with a reversed von Kármán
vortex street, in which the vortices are advected in the streamwise direction with no wake
bifurcation, a very similar interaction would be obtained for φ = 0◦ and for φ = 360◦.

Figure 10(b) shows D̄ versus φ for the different vertical offsets. Although figure 5
revealed that D̄ depended on both φ and H, it is clear from figure 10(b) that its main
dependence is on φ. Particularly, D̄ shows a linear dependency on φ for all cases except
for the aligned mode case (i.e. the data point in the lower left corner of the panel). This
trend is also observed for 2-D schooling configurations (Lin et al. 2019; Newbolt et al.
2019; Ryu et al. 2020), and can be linked to the wavelength of the leader’s wake, λl, as
postulated in Portugal et al. (2014). This wavelength is defined as λl ≡ Uλ/f , where f is
the frequency of the flapping motion and Uλ is the horizontal advective velocity of the
leader’s wake.
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Indeed, Newbolt et al. (2019) propose

φ = 2πS + φ0, (3.1)

where φ0 is an unknown constant and S is the schooling number (Ramananarivo et al.
2016), defined as the ratio of the horizontal distance between the leader’s trailing edge and
the follower’s leading edge and λl. That is, S ≡ (D̄ − C)/λl, which yields

φ = 2π

(
D̄
C

− 1
)

Cf
Uλ

+ φ0. (3.2)

A linear regression on the data shown in figure 10(b), excluding the aligned mode case,
yields φ0 = 0.12 and Uλ = 0.78V = 0.89Ūp,s. Note that φ0 ≈ 0 entails that, for φ = 0, the
equilibrium distance is D̄/C = 1 (i.e. S = 0). This is of course consistent with the present
results, and also with the literature: Ramananarivo et al. (2016), Peng et al. (2018a), Lin
et al. (2019) and Newbolt et al. (2019), all of them finding S ≈ 0 for φ = 0. On the other
hand, these authors report Uλ ≈ Ūp for 2-D configurations, somewhat larger than the value
obtained here for 3-D configurations. The origin of this discrepancy is unclear, but one
possible source could be the different flow topology of the 2-D and 3-D wakes. Indeed,
similar discrepancies for Uλ have been reported between 2-D and 3-D configurations with
imposed gap distances and fixed free-stream velocities: Uλ ≈ 1.2U∞ for two dimensions
(Boschitsch et al. 2014), larger than Uλ ≈ 1.02U∞ in three dimensions (Kurt & Moored
2018).

In § 3.2 we observed a relation between the vertical induced velocity of the VR and the
required power of the follower. Motivated by figure 8, we hypothesize that the effect of
the VR can be estimated from the averaged vertical velocity seen by the leading edge of a
hypothetical follower swimming in the wake of an isolated flapper. This quantity is defined
as

wLE,f (t) =
∫ b/2

−b/2
w(Xf (t), y, Zf (t); t) dy. (3.3)

The discussion in § 3.2 suggests that higher power is required when the induced flow
velocity is opposed to the direction of the follower’s leading edge (Żf ), and vice versa.
Thus, to estimate the goodness of a given configuration we define

〈wLE,f Żf 〉 = 1
T

∫ T

0
wLE,f (t)Żf (t) dt, (3.4)

expecting large values of 〈wLE,f Żf 〉 to be linked to high-performance cases (i.e. Πf < 1)
and low or negative values to be associated with low-performing cases (Πf > 1). Indeed,
figure 10(c) displays 〈wLE,f Żf 〉 vs Πf for all cases, showing a good correlation between
these two variables (i.e. a linear regression yields R2 = 0.95). Note that, in the plot,
〈wLE,f Żf 〉 is normalized with the integral over a cycle of Ż2

f , namely 2πf 2A2.
The correlation between 〈wLE,f Żf 〉 and Πf indicates a route to the estimation of the

performance of any given tandem configuration, by using 〈wLE,f Żf 〉 as a surrogate model
of Πf . Note that the computation of 〈wLE,f Żf 〉 only requires the flow field of the isolated
case and the position of the follower’s leading edge, xf = (Xf , Zf ). In order to estimate
xf (without having to run a simulation for the tandem configuration), we assume Xf (t) ≈
Xs(t) + D̄, which requires that the velocity of the leader is approximately equal to that of
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Figure 11. Contour of 〈wLE,f Żf 〉/(2πf 2A2) for a follower’s leading-edge trajectory computed with (3.5).
Values of xf are computed assuming (a) Uλ = 0.78V , φ0 = −0.12 and (b) Uλ = Ūp,s, φ0 = 0. The simulated
cases are superimposed, coloured with Πf , as in figure 5(b).

the isolated flapper (see figure 5c) and that D(t) ≈ D̄. The latter assumption is reasonable
for the present cases, with |D(t) − D̄| � 0.17C for all cases reported here. Using these
estimations, together with (3.2) and (2.1a,b), the position of the follower’s leading edge
can be modelled as

xf (t, H, φ) =
(

Xs(t) + Uλ
2πf

(φ − φ0) + C, Zf (t, H, φ)

)
, (3.5)

where the dependence of Zf on H, φ and t has been made explicit.
Figure 11(a) displays a map of 〈wLE,f Żf 〉 as a function of the mean separation D̄

and the height H. This map is computed using Uλ = 0.78V and φ0 = 0.12 in (3.5) (i.e.
with the values calculated from the linear regression in figure 10b), and shows good
agreement between 〈wLE,f Żf 〉 and the values of Πf obtained from the actual simulations
(which are also included in the figure). The map of 〈wLE,f Żf 〉 predicts a range of
good-performing configurations along a diagonal band, with a maximum occurring for
H = 0. For configurations below this diagonal band, 〈wLE,f Żf 〉 decreases slowly, consistent
with the slow drift of Πf → 1 as φ increases beyond the optimum value. Recall that this
decrease in performance is associated to the loss of the beneficial interactions with the
VR, and hence the performance of the follower tends monotonically to the performance of
the isolated flapper. On the contrary, configurations above the optimal diagonal band show
a sharp decrease of 〈wLE,f Żf 〉, consistent with the sudden degradation of the follower’s
performance as the interactions with the VR become damaging (Πf > 1). Likewise, the
map of 〈wLE,f Żf 〉 also predicts the sharp transition in performance for H = 0 previously
discussed for figure 10(a), when D̄/C decreases from the optimum value (i.e. D̄/C ≈ 1.6)
to D̄/C ≈ 1. It is interesting to note that the map of 〈wLE,f Żf 〉 predicts good performance
for cases with D̄/C ≈ 1 and H/C ≈ [0.4, 0.6]. Note, however, that figure 11(a) provides
no information about the stability of a given configuration (i.e. a duplet D̄–H). That
is, there is no guarantee that equilibrium, self-propelled, tandem configurations can be
obtained for the whole phase space D̄–H plotted in figure 11(a). Hence, it could be the
case that configurations around this region are not stable, but develop into an aligned
mode configuration (i.e. with D̄ → 0).

Even though the previous model yields good predictive results, the values obtained do
not only depend on data of the isolated flapper. In addition, a large number of tandem
simulations have been required to estimate the values of Uλ and φ0, via the linear
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regression in figure 10(b). Therefore, it is interesting to explore what predictions can be
made using only data of the isolated flapper simulation. This can be done by assuming in
(3.5) the values of Uλ = Ūp,s, and φ0 = 0, which are reasonable estimations according to
the literature (Peng et al. 2018a; Lin et al. 2019; Newbolt et al. 2019). The results of this
alternative model are presented in figure 11(b). The agreement with the actual data of the
tandem simulations is reduced, but nevertheless, the main features of the configuration
space are satisfactorily predicted, at least in a qualitative way. Namely, the maximum
performance follows a diagonal line with a clear maximum at H = 0; configurations above
this line have a lower performance; and there exists a sharp transition at H = 0 from the
optimum case to poorly performing configurations as D̄/C → 1 (i.e. φ → 0). Finally, this
model also predicts the good-performance region for D̄/C = 1 and H/C ≈ 0.6 discussed
in the previous paragraph.

4. Conclusions

In this work, the tandem configurations of two self-propelled flexible plates of finite
span are explored by means of numerical simulations. The flappers self-propel due
to an imposed vertical motion of their leading edges. We explore the stable tandem
configurations that emerge in the parametric space of phase shift between the motion
of each leading edge (φ ∈ [0◦ − 360◦]) and vertical offset between the mean vertical
position of the flappers (H/C ∈ [0 − 0.6]). To the authors’ knowledge, this is the first
study characterizing the effect of both φ and H in self-propelled flappers of finite span in
tandem configuration. For all the cases, the flappers self-propel at a mean constant speed
and a mean equilibrium distance between the leader and the follower.

Two main patterns are found: compact and regular configurations, in agreement with
similar 2-D configurations (Zhu et al. 2014). In compact configurations the equilibrium is
such that the leading edge of the follower and the trailing edge of the leader are almost
touching. The propulsive speed of the compact configurations is slightly higher than that
of the isolated flapper, but at the expense of a higher required power, for both leader and
follower. On the other hand, regular configurations are characterized by larger equilibrium
distances, propelling at the same speed as that of the isolated flapper. In this mode, the
leader is virtually unaffected by the follower, such that it performs as an isolated flapper;
on the contrary, the follower is affected by the leader’s wake and its performance depends
on both H and φ. For some values of these parameters the follower’s required power
is reduced compared to the isolated flapper. In terms of propulsive speed, a maximum
increase of 3 % is found in compact configurations as compared to the case of the isolated
flapper. This contrasts with its 2-D counterpart, which can be as high as 50 % for rigid
foils, as reported in the literature. In terms of required power of the follower, a maximum
reduction of ≈ 10 %, compared to the same flapper in isolation, is obtained for regular
configurations. These gains are more modest than those found in two dimensions (Park
& Sung 2018; Peng et al. 2018a; Lin et al. 2019; Ryu et al. 2020), a fact that could
be attributed to the higher effective diffusion and the diverging character of the 3-D
wake. This reduced energy harvesting from two to three dimensions is also reported in
Verma et al. (2018). The equilibrium distance (or equivalently, the phase shift) at which
the follower’s required power is minimized increases with H, leading to a diagonal of
maximum efficiency in the H–D̄ plane. This phenomenon is attributed to the diverging
pattern of the wake. Interestingly, the global minimum (within the explored parametric
space) of the required power occurs for H/C = 0 and it is due to the fact that the follower
has a beneficial interaction with the VR from both branches of the leader’s wake.
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To understand the effect of φ and H on the performance of the follower, the
instantaneous required power of the latter is compared with that of the isolated flapper. It is
found that, irrespective of the overall performance, the follower requires more power than
the isolated flapper during the first half of each stroke. Good-performing cases outperform
the isolated flapper during the second half, thus counteracting the previous excess of
required power, and leading to a lower averaged required power for the follower than for
the isolated case. These changes in the temporal evolution of the power are linked to the
flow interaction of the follower with VRs in the leader’s wake. The analysis of the flow
field at different time instants reveals that the follower saves energy when it is moving
(vertically) in the same direction as the jet induced by the VRs interacting with the follower
(i.e. beneficial interactions). Conversely, detrimental interactions are found when the jet
induced by the VR points in the opposite direction to the motion of the follower, yielding
larger energy requirements than in the isolated case. For the cases where the VR is too far
away from the follower, the power requirements of the latter tend to those of the isolated
flapper (i.e. no interactions).

Regarding the dependence of φ and H on the final equilibrium distance, D̄, it is found
that the effect of H is marginal and D̄ varies linearly with φ, following the relation
proposed by Newbolt et al. (2019). However, the constant Uλ, which is reported to be
≈ Ūp,s in 2-D configurations, is found to be ≈ 0.9Ūp,s in the present 3-D cases. This
discrepancy may be attributed to the differences between 2-D and 3-D wakes and deserves
to be analysed in detail in future studies.

A predictive model of the performance (in terms of required power) of the follower is
presented, based on the flow field of the wake of the isolated flapper. Two versions of
the model are explored, one which makes use of data (i.e. Uλ and φ0) extracted from
the tandem simulations, and another which uses theoretical values for these quantities
(Uλ = Ūp,s and φ0 = 0). Although the first version of the model shows better agreement
with the actual data from the simulations (as expected), the second version is still able to
capture the main characteristics of the φ–H phase space, at least from a qualitative point
of view.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2021.918.
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Appendix. Grid sensitivity analysis

In order to determine the grid spacing to be employed in the simulations, a grid sensitivity
study is performed. As a benchmark case, the simulation of a single flapper with an
imposed vertical motion of its leading edge equal to that of the leader in (2.1a,b) and
fixed along the horizontal direction is considered. The properties of the flapper and of the
fluid are those gathered in table 1, and U∞ = 0.83V .
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Figure 12. Grid sensitivity analysis on the (a) horizontal force, (b) vertical force and (c) tip deflection angle
(α) of an isolated flapper with a prescribed motion of its leading edge. Note that S = bC is the planform area of
the flapper. The lines represent: (——, black) 	x = C/50; (——, red) 	x = C/80; (——, blue) 	x = C/120.

	r F∗
x rms(F∗

x ) F∗
z rms(F∗

z ) αmax (deg.)

C/50 −0.033 0.305 1.479 1.626 31.61
C/80 −0.042 0.302 1.430 1.575 30.84
C/120 −0.044 0.296 1.401 1.544 30.38

Table 2. Statistics of the forces for an isolated flapper with imposed motion as a function of the grid size.

	r Ūp/V P∗
s D̄/C P∗

l P∗
f Πl Πf

C/50 0.874 0.648 3.383 0.649 0.627 1.001 0.967
C/80 0.879 0.624 3.386 0.625 0.603 1.001 0.966

Table 3. Statistics of the tandem configuration, H/C = 0.6, φ = 360◦, for different grid sizes.

Three different 	r are considered: C/50, C/80 and C/120. The bodies are discretized
using layers of Lagrangian points, with a spacing between the points defined following
the recommendations given in Uhlmann (2005). A validation of such an approach for
the simulations of thin plates can be found in Moriche et al. (2021). For each simulation
	t/T = 0.025	r/C, ensuring CFL = Umax	t/	r < 0.2 (where Umax is the maximum
flow velocity in the domain). The grid sensitivity on the horizontal, Fx, and vertical force,
Fz, is depicted in figure 12, as well as on the tip deflection angle, α (defined as the angle
between the horizontal plane and the plane that joins the leading edge and the trailing edge;
Arora et al. 2018). It can be observed that the dynamics of the flapper is well captured with
all employed grids. Table 2 gathers the variation with the grid spacing of the mean forces,
their root mean square and the maximum value of the tip deflection angle over a cycle,
T = 1/f . Note that F∗ = 2F/ρV2S (where S = bc), and an overbar stands for the average
over a cycle. Relative errors below 6 % are obtained between the forces computed with
	r = C/50 and 	r = C/120; whereas this difference is reduced to 2 % if the results from
	r = C/80 and 	r = C/120 are compared.

Table 3 shows, for illustration, the effect of the grid spacing on the performance of
a tandem case with H/C = 0.6 and φ = 360◦. The difference in the propulsive speed
from 	r = C/50 to 	r = C/80 is less than 1 % and the difference in the equilibrium
distance is 0.003C, implying that the same tandem configuration is obtained for both grid
spacings. The difference in the average power (P∗

i ≡ 2Pi/ρV3S) is below 4 %; however,
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when comparing the power ratio, the difference is lower than 0.2 %. Similar results are
obtained for the other tandem simulations presented herein.

In view of the results from tables 2 and 3, the simulations are performed with 	r =
C/50. Only for those configurations where flow visualizations and temporal histories of
force and power are presented are the simulations performed with 	r = C/80.
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