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Abstract. By the end of the last decade, robotic telescopes were established as effective alter-
natives to the traditional role of astronomer in planning, conducting and reducing time-domain
observations. By the end of this decade, machines will play a much more central role in the dis-
covery and classification of time-domain events observed by such robots. While this abstraction
of humans away from the real-time loop (and the nightly slog of the nominal scientific process)
is inevitable, just how we will get there as a community is uncertain. I discuss the importance
of machine learning in astronomy today, and project where we might consider heading in the
future. I will also touch on the role of people and organisations in shaping and maximising the
scientific returns of the coming data deluge.
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1. Introduction
Though the scientific interests in this conference were bewilderingly diverse, we were

brought to Oxford with a common interest in understanding objects and events that
change with time. To be sure, all astrophysical entities change with time—in brightness,
in position on the sky, in physical size, in colour—but our perceptions of such changes
have only just begun to broaden, as modern instrumentation techniques have matured.
Indeed, we learned of the ambitions in the stellar variability community in studies at the
micro-magnitude level (enabled so elegantly by Kepler and CoRoT), and at time-scales
ranging from seconds to centuries. Explorations of (intrinsically) faint and fast (<week)
transients at optical wavebands (enabled by projects like PTF) have revealed new classes
of events (e.g. Kasliwal 2011). Likewise, the radio community has been in hot pursuit of
new classes of variability at sub-second time-scales.

One of most exciting endeavours for time-domain astronomers (and, frankly, for most
of the maverick-minded) is the discovery of the unknown. However, given the rising com-
plexity and expense of new surveys, blind exploration as a singular goal is a dangerous
impetus. As Tom Prince claimed over a particularly engrossing dinner, “If it’s not worth
doing, it’s not worth doing well.” In other words, the significant technical and observa-
tional challenges of pulling off a successful synoptic survey are only worth tackling when
the science is compelling. That said, it is indeed tempting to look at the Kasliwal or
Cordes phase-space plot in time-scale and peak luminosity and wonder what else might
be lurking in the white-space. But there is, I claim, no serendipity without bread and but-
ter science. And it is precisely the bread and butter science that provides the important
technical challenges which, when met, will enable new (unexpected) discoveries.

Aside from presenting Time as the the unifying thematic approach, we were also struck
by the similarity of challenges imposed by the sheer volume of the data now collected
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(and to be collected by the behemoth synoptic surveys envisaged over the next decade).
The proverbial “data deluge” has indeed inundated the astronomical community. It is
this enormity of high-quality digital data that forces us to address a sea-change in the
way we conduct ourselves as scientists going forward. Yes, there are interesting technical
hurdles in the acquisition, movement, management and access of those data, but the real
paradigm change comes in the need for fundamentally different approaches to discov-
ery and inference regarding those data. The eight-hundred million light curves updated
almost daily by LSST cannot all be scrutinised by astronomers, nor by their spectro-
graphs. Yet some small fraction, perhaps just a few rapidly-evolving events per night,
will need the full involvement of the world’s largest and most precious telescopes to ex-
tract the most science. In this context, the crucial question for time-domain science is
this: “How do we do discovery, follow-up and inference when the data rates (and requisite
time-scales) necessarily preclude human involvement?”

2. The Autonomous Data-Driven Workflow
In this modern data-driven workflow, where people are abstracted from the real-time

loop, I distinguish the acts of finding, discovery and classification of astrophysical events.
“Finding” might be considered the process of the extraction of candidate events from
raw data into a more abstract (and compact) form. In the optical domain, an example
would involve the reduction and subtraction of two frames, the identification of significant
changes in the subtraction image, and the recording of metadata about each candidate
into a database. “Discovery” would be the recognition that a candidate is indeed of some
astrophysically varying source (and not an artefact) that might be of interest for further
scrutiny. “Classification” would be the act of understanding and quantifying what that
event is likely to resemble among the classes of known (and hypothesised) events. In that
sense, Galileo was the first to find Neptune (Kowal & Drake 1980). But since he recorded
it in his notebook as an uninteresting source (at least as compared to Jupiter)†, he is
credited with neither its discovery nor classification. Just think how famous Galileo could
have been!

3. Discovery
Each wavelength domain (and spectrum, for that matter) presents its own set of diffi-

culties when trying to automate discovery. High-energy missions like Fermi are working
at the Poisson noise limit, gravity-wave astronomers are working in the low signal-to-noise
regime where template matching algorithms increase the number of effective statistical
trials, and radio surveys contend with complex radio frequency interference (RFI) that
can mimic the signal of interest. My group has focused its effort in automating discovery
at optical wavebands, on candidates found in image differences. While image differencing
is an improvement over catalogue-based discovery (such as minimising bias against dis-
covery in crowded fields or around galaxies), the number of spurious (“bogus”) candidates
vastly outnumbers the bona fide (“real”) astrophysical sources. In the Palomar Transient
Factory (PTF) there about 1000 bogus for each single real candidate. We have developed
a framework that uses a training set—based either on the aggregation of expert opinion
(Bloom et al. 2011) or on retrospective samples with ground truth (e.g. from spectroscopic
confirmation)—that allows us to identify rapidly and automatically the most promising
real candidates during real-time runs of PTF. We use the labels to train a random for-
est (RF) classifier that allows us to identify astrophysical candidates reasonably (Bloom

† He did, however, note its apparent motion.
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Figure 1. Machine-learned on-the-fly purity vs. efficiency in determining whether a new source
from the PTF is a transient (i.e. an explosive event) as opposed to a variable star. The dashed
(dashed-dotted) line shows this trade-off for sources within (outside) the SDSS footprint. The
solid line shows the aggregate results for all PTF sources in the training sample.

et al. 2011). Just one month before this Symposium our real/bogus framework promoted
a candidate event in M101 to the top of the scanning list of “local-universe” events,
leading to the discovery of the very nearby Type Ia supernova SN2011fe (Nugent et al.
2011). Future surveys, dealing with many more candidates per night than the 1.5 million
found in PTF, will need to employ a similar approach to discovery.

4. Classification
Once a source makes it through the discovery hoop of being “astrophysical†”, follow-

up decisions must be made. Generating a probabilistic classification based upon all (but
still limited) available data is used to inform follow-up decisions. One generic approach to
classification is to map the available data, however heterogenous, into an m-dimensional
real-number set; this is called “feature space”, and once the data are coerced into this
space we can apply existing machine-learned frameworks for classifying new sources.
There are modern techniques (e.g. Stekhoven & Bühlmann 2011) for imputing missing
values into feature space by predicting what those values would have been if they were
available and not censored.

4.1. On the Fly
In the limit of only little data, context (the location of an event on the sky and what
other sources it is physically associated with) becomes an important discriminator of
class. Almost all of the initial classification in PTF, built upon another machine-learned
trained set, relies on contextual information coerced into a set of well-defined features.
Some of those data are available locally, within the same databases as those that house
the candidates, but many of the data are distributed throughout the Web. The quality
and information content in those ancillary datasets is critical for making accurate clas-
sification statements. This is illustrated in Fig. 1, where the lack of a rich set of SDSS
information clearly diminishes the classification accuracy of new events.

† In PTF, so as to avoid asteroid discovery, we actually require two astrometrically coincident
candidates to be of high real/bogus value as the criteria for discovery.
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Since we rely heavily on Simbad, USNO-B1.0, NED and SDSS for contextual data, the
main bottleneck in making rapid classification statements about a new event is in the
speed and reliability of foreign Web-services. One clear lesson for future surveys is that
having physically co-located and unrestricted access to information from other surveys
and at other wavebands is crucial. That statement is somewhat contrary to the current
push to standardised access protocols for remotely-managed data.

4.2. In Retrospect
As a survey continues to accumulate data on the same varying source, eventually the time-
series data outweigh the importance placed on context data. For example, a source near
the outskirts of a galaxy might rightfully be called a supernova or nova based on context,
but if the source is found to be varying periodically with a period around 0.5 days with a
certain peak-to-peak amplitude then we will eventually gain confidence in classifying the
source as an RR Lyrae star. Much of the body of work on time-domain classification has
focused on a retrospective classification of completed or nearly completed time-domain
surveys (see Bloom & Richards 2011 for a review). On a set of thousands of Hipparcos

and OGLE variable stars across 26 different classes, for instance, we found a classification
error rate of about 22% using 53 periodic and aperiodic features (Richards et al. 2011b).
Adding more features and dealing better with missing data reduces the error rate to
∼15%. It is interesting that, when the taxonomy of variable stars is accounted for, the
overall mis-classification rate across three broad classes (pulsating, eruptive and multi-
star) plummets to about 5%. In other words, the machine-learned frameworks are better
at distinguishing between grossly different physical processes even if the feature set was
not specifically encoded to capture those physical processes.

The generation of features can be a non-negligible expense both in time (for Web-
based features) and computationally (e.g. for periodogram analysis). However, what are
even more costly are traditional fitting routines, such as those for eclipsing binaries,
microlensing events and supernovæ. In that context, my suspicion is that the best retro-
spective classifiers will use a hybrid of generic classification tools on computed features
and science-specific fitting routines on sources that are likely to belong to certain fami-
lies of sources. Just how—from a perspective of classification, accuracy and expense—to
architect optimally such a system is an open question.

4.3. On People vs. Machine
Despite (or perhaps because of) the enormity of the data, there is considerable interest in
using coordinated, collaborative public input to aid classification. Such crowdsourcing†
has been carried out in earnest with static-sky images, and is now being used in some
time-domain applications (e.g. Smith et al. 2011). Though the outreach aspect of that
effort may be incredibly important, it remains to be seen whether truly novel science will
flow from astronomy crowdsourcing at a sustained level. One worry on the time-domain
front is that, unlike software and hardware, expert opinions do not scale easily. To get
increasingly refined classification statements on more and more data, for example, the
number of those capable and willing to give opinions cannot keep pace with the data
growth. Another concern I have is that, unlike algorithms, people do not behave in
deterministic ways; I can re-run my code on all previous data and get back the same

† A note for future generations: “crowdsourcing,” a blend of the words crowd and outsourcing,
is a vernacular term used to describe the act of public collaboration in a project to create and
annotate content. As of late 2011, the term had not yet been added to the Oxford-English
Dictionary.
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Figure 2. Supernova Zoo versus random-forest supernova discovery. We trained a classifier
based on human labelling of PTF sources to predict which sources would turn out to be spec-
troscopically-typed SNe. By changing the SN discovery threshold from the random forest model,
we trade a lower missed detection rate (MDF) for a higher false-positive rate (FPR). For a sam-
ple of 345 known PTF SNe, employing the RF score to select objects is uniformly better, in terms
of MDF and FPR, than using the SN Zoo score. At 10% FPR, the RF criterion (threshold =
0.035) attains a 14.5% MDR compared to 34.2% MDR for SN Zoo (threshold = 0.4). From
Richards et al. (2012).

result. That lack of determinism also means that the science-sacred concept of repeating
and evolving experiments, notwithstanding the large “human cost”, is lost in crowd-
sourcing‡.

The John Henrys of this world have learned that we should never do with people what
can be done as well (or nearly as well for a fraction of the cost) with machines. That
is not to say that crowdsourcing might not have its useful role in time-domain science,
but that great care must be placed on experimental design both from the perspective
of “human subjects” and in the uniqueness of the expected result. One crucial role that
humans will continue to play in enabling the automated real-time loop is that of label
experts. Just as we did in the real/bogus exercise, trained humans can label a small
subset of the data so that supervised learning algorithms can be performed on the data
and applied in real time. At this Symposium we presented the results of machine-learned
discovery/classification of PTF sources that are likely to be supernovæ. We used the
Supernova Zoo (Smith et al. 2011) mark-up of tens of thousands of candidate events
(collected through a specialised DB query at the end of each PTF night) to construct
a classifier capable of discovering supernovæ efficiently. The results of that exercise are
depicted in Fig. 2 showing that the classifier outperforms the human labelling.

‡ Peng (2011) provides a recent and useful discourse on repeatability in modern science.
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5. Parting Thoughts
As the automated discovery and classification business matures, a number of interesting

lines of inquiry will need to be studied. For example:

• How do we bootstrap the machine-learning process from one time-domain survey to
the next, given the inherent differences in the ways that those surveys are conducted?
Active learning (using expert opinions at optimised moments in the learning process)
looks promising (e.g. Richards et al. 2011a).
• How do we detect and quantify real time-domain outliers—novel events that are

not part of the established taxonomy? Clustering and semi-supervised learning seems an
appropriate start (Protopapas et al. 2006; Rebbapragada et al. 2009). My view is that the
way we get good at finding needles in a haystack is by getting really good at identifying
hay.
• How can we imbue domain knowledge (and physics) into the learning process without

having to use traditional domain-specific fitting routines?

No discovery or classifier engine will ever be perfect, in a sense of making statements
precisely about the underlying origin of the observed variability. The best we can hope
for are well-calibrated probabilities that can allow us to make informed decisions about
moving to the next stage of the scientific process (see, e.g., Morgan et al. 2012). Viewed
that way, classification is a maximisation tool: science in the time-domain will increasingly
be conducted with major resource limitations—in the computational power available
for discovery and classification, in follow-up telescope availability, in people’s time and,
ultimately, in capital cost.
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