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Abstract
We study higher uniformity properties of the Möbius function 𝜇, the von Mangoldt function Λ, and the divisor
functions 𝑑𝑘 on short intervals (𝑋, 𝑋 + 𝐻] with 𝑋 𝜃+𝜀 ≤ 𝐻 ≤ 𝑋1−𝜀 for a fixed constant 0 ≤ 𝜃 < 1 and any 𝜀 > 0.
More precisely, letting Λ♯ and 𝑑

♯
𝑘

be suitable approximants of Λ and 𝑑𝑘 and 𝜇♯ = 0, we show for instance that, for
any nilsequence 𝐹 (𝑔(𝑛)Γ), we have∑

𝑋<𝑛≤𝑋+𝐻
( 𝑓 (𝑛) − 𝑓 ♯ (𝑛))𝐹 (𝑔(𝑛)Γ) � 𝐻 log−𝐴 𝑋

when 𝜃 = 5/8 and 𝑓 ∈ {Λ, 𝜇, 𝑑𝑘 } or 𝜃 = 1/3 and 𝑓 = 𝑑2.
As a consequence, we show that the short interval Gowers norms ‖ 𝑓 − 𝑓 ♯ ‖𝑈 𝑠 (𝑋,𝑋+𝐻 ] are also asymptotically

small for any fixed s for these choices of 𝑓 , 𝜃. As applications, we prove an asymptotic formula for the number of
solutions to linear equations in primes in short intervals and show that multiple ergodic averages along primes in
short intervals converge in 𝐿2.

Our innovations include the use of multiparameter nilsequence equidistribution theorems to control type 𝐼 𝐼 sums
and an elementary decomposition of the neighborhood of a hyperbola into arithmetic progressions to control type
𝐼2 sums.
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1. Introduction

In this paper, we shall study correlations of arithmetic functions 𝑓 : N→ C with arbitrary nilsequences
𝑛 ↦→ 𝐹 (𝑔(𝑛)Γ) in short intervals. For simplicity, we will restrict attention to the following model
examples of functions f :
• The Möbius function 𝜇(𝑛), defined to equal (−1) 𝑗 when n is the product of j distinct primes, and 0

otherwise.
• The von Mangoldt function Λ(𝑛), defined to equal log 𝑝 when n is a power 𝑝 𝑗 of a prime p for some

𝑗 ≥ 1, and 0 otherwise.
• The 𝑘 th divisor function 𝑑𝑘 (𝑛), defined to equal the number of representations of n as the product

𝑛 = 𝑛1 · · · 𝑛𝑘 of k natural numbers, where 𝑘 ≥ 2 is fixed. (In particular, all implied constants in our
asymptotic notation are understood to depend on k.)

By a ‘nilsequence’, we mean a function of the form 𝑛 ↦→ 𝐹 (𝑔(𝑛)Γ), where 𝐺/Γ is a filtered nilmanifold
and 𝐹 : 𝐺/Γ → C is a Lipschitz function. The precise definitions of these terms will be given in Section
2.3, but a simple example of a nilsequence to keep in mind for now is 𝐹 (𝑔(𝑛)Γ) = 𝑒(𝛼𝑛𝑑) for some real
number 𝛼, some natural number 𝑑 ≥ 0 and with 𝑒(𝜃) � 𝑒2𝜋𝑖𝜃 .

When f is nonnegative and 𝐹 (𝑔(𝑛)Γ) is a ‘major arc’ in some sense (e.g., if 𝐹 (𝑔(𝑛)Γ) = 𝑒(𝛼𝑛𝑠)
with 𝛼 very close to a rational 𝑎/𝑞 with small denominator q), there is actually correlation between
f and 𝐹 (𝑔(𝑛)Γ), but we shall deal with this by first subtracting off a suitable approximation 𝑓 ♯ from
f. In the case of the Möbius function 𝜇, we may set 𝜇♯ = 0. On the other hand, the functions Λ, 𝑑𝑘
are nonnegative and one therefore needs to construct nontrivial approximants Λ♯, 𝑑♯𝑘 to such functions
before one can expect to obtain discorrelation; we shall choose

Λ♯ (𝑛) � 𝑃(𝑅)
𝜑(𝑃(𝑅)) 1(𝑛,𝑃 (𝑅))=1, where 𝑃(𝑤) �

∏
𝑝<𝑤

𝑝, 𝑅 � exp((log 𝑋)1/10) (1.1)
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and

𝑑♯𝑘 (𝑛) �
∑

𝑚≤𝑅2𝑘−2
𝑘

𝑚 |𝑛

𝑃𝑚(log 𝑛), where 𝑅𝑘 � 𝑋 𝜂 and 𝜂 = 1
10𝑘 (1.2)

and the polynomials 𝑃𝑚 (𝑡) (which have degree 𝑘 − 1) are given by the formula

𝑃𝑚 (𝑡) �
𝑘−1∑
𝑗=0

(
𝑘

𝑗

) ∑
𝑛1 ,...,𝑛 𝑗 ≤𝑅𝑘<𝑛 𝑗+1 ,...,𝑛𝑘−1≤𝑅2

𝑘
𝑛1 · · ·𝑛𝑘−1=𝑚

(
𝑡 − log(𝑛1 · · · 𝑛 𝑗𝑅

𝑘− 𝑗
𝑘 )
) 𝑘− 𝑗−1

(𝑘 − 𝑗 − 1)! log𝑘− 𝑗−1 𝑅𝑘

. (1.3)

We will discuss these choices of approximants more in Section 3.1 (which can be read independently
of the rest of the paper), but let us already here note that the approximants lead to type I sums and are
thus easier to handle than the original functions and that the choice of the parameter R in Λ♯ allows for
an arbitrary power of log saving in equation (1.6) below. Moreover, the approximants are nonnegative,
which is helpful for some applications (in particular in the proof of Theorem 1.5 below). For future use,
we record the fact that our correlation estimates for 𝑑𝑘 − 𝑑♯𝑘 work for 𝑑♯𝑘 defined as in equation (1.2)
with any fixed 0 < 𝜂 ≤ 1

10𝑘 , as long as we allow implied constants to depend on 𝜂.
For technical reasons, it can be beneficial to consider ‘maximal discorrelation’ estimates. Loosely

following Robert and Sargos [58] we adopt the convention1 that, for an interval I,����� ∑
𝑛∈𝐼∩Z

𝑓 (𝑛)

�����∗ � sup
𝑃⊂𝐼∩Z

�����∑
𝑛∈𝑃

𝑓 (𝑛)

����� , (1.4)

where P ranges over all arithmetic progressions in 𝐼 ∩ Z.
Now, we are ready to state our main theorem.2

Theorem 1.1 (Discorrelation estimate). Let 𝑋 ≥ 3, 𝑋 𝜃+𝜀 ≤ 𝐻 ≤ 𝑋1−𝜀 for some 0 < 𝜃 < 1 and 𝜀 > 0,
and let 𝛿 ∈ (0, 1). Let 𝐺/Γ be a filtered nilmanifold of some degree d and dimension D and complexity
at most 1/𝛿, and let 𝐹 : 𝐺/Γ → C be a Lipschitz function of norm at most 1/𝛿.
(i) If 𝜃 = 5/8, then for all 𝐴 > 0,

sup
𝑔∈Poly(Z→𝐺)

����� ∑
𝑋<𝑛≤𝑋+𝐻

𝜇(𝑛)𝐹 (𝑔(𝑛)Γ)

�����∗ �𝐴,𝜀,𝑑,𝐷 𝛿−𝑂𝑑,𝐷 (1)𝐻 log−𝐴 𝑋 (1.5)

(ii) If 𝜃 = 5/8, then for all 𝐴 > 0,

sup
𝑔∈Poly(Z→𝐺)

����� ∑
𝑋<𝑛≤𝑋+𝐻

(Λ(𝑛) − Λ♯ (𝑛))𝐹 (𝑔(𝑛)Γ)

�����∗ �𝐴,𝜀,𝑑,𝐷 𝛿−𝑂𝑑,𝐷 (1)𝐻 log−𝐴 𝑋. (1.6)

(iii) Let 𝑘 ≥ 2. Set 𝜃 = 1/3 for 𝑘 = 2, 𝜃 = 5/9 for 𝑘 = 3, and 𝜃 = 5/8 for 𝑘 ≥ 4. Then

sup
𝑔∈Poly(Z→𝐺)

����� ∑
𝑋<𝑛≤𝑋+𝐻

(𝑑𝑘 (𝑛) − 𝑑♯𝑘 (𝑛))𝐹 (𝑔(𝑛)Γ)

�����∗ �𝜀,𝑑,𝐷 𝛿−𝑂𝑑,𝐷 (1)𝐻𝑋−𝑐𝑘,𝑑,𝐷 𝜀 (1.7)

for some constant 𝑐𝑘,𝑑,𝐷 > 0 depending only on 𝑘, 𝑑, 𝐷.

1Strictly speaking, this is an abuse of notation since the expression |
∑
𝑛∈𝐼∩Z 𝑓 (𝑛) |∗ depends not only on the value of the sum∑

𝑛∈𝐼∩Z 𝑓 (𝑛) but also on the individual summands 𝑓 (𝑛) and the range 𝐼 ∩ Z. In particular, we caution that
∑
𝑛∈𝐼∩Z 𝑓 (𝑛) =∑

𝑚∈𝐽∩Z 𝑔 (𝑚) does not necessarily imply that |
∑
𝑛∈𝐼∩Z 𝑓 (𝑛) |∗ = |

∑
𝑚∈𝐽∩Z 𝑔 (𝑚) |∗.

2For definitions of undefined terms such as ‘filtered nilmanifold’ and Poly(Z→ 𝐺) , see Definitions 2.6 and 2.5 below. For our
conventions for asymptotic notation such as �, see Section 1.4.
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(iv) If 𝜃 = 3/5, then

sup
𝑔∈Poly(Z→𝐺)

����� ∑
𝑋<𝑛≤𝑋+𝐻

𝜇(𝑛)𝐹 (𝑔(𝑛)Γ)

�����∗ �𝜀,𝑑,𝐷 𝛿−𝑂𝑑,𝐷 (1)𝐻 log−1/4 𝑋. (1.8)

(v) Let 𝑘 ≥ 4. If 𝜃 = 3/5, then

sup
𝑔∈Poly(Z→𝐺)

����� ∑
𝑋<𝑛≤𝑋+𝐻

(𝑑𝑘 (𝑛) − 𝑑♯𝑘 (𝑛))𝐹 (𝑔(𝑛)Γ)

�����∗ �𝜀,𝑑,𝐷 𝛿−𝑂𝑑,𝐷 (1)𝐻 log
3
4 𝑘−1 𝑋. (1.9)

The dependency of the implied constants on A in equations (1.5) and (1.6) is ineffective due to the
possible existence of Siegel zeros. All the other implied constants are effective.

Remark 1.2. One could extend the theorem to cover the range 𝑋1−𝜀 ≤ 𝐻 ≤ 𝑋 without difficulty;
however, this is not the most interesting regime and there are some places in the proof where the restriction
to 𝐻 ≤ 𝑋1−𝜀 is convenient. In the cases of equations (1.5), (1.8), the result for 𝑋 𝜃+𝜀 ≤ 𝐻 ≤ 𝑋1−𝜀

directly implies the result for 𝑋1−𝜀 ≤ 𝐻 ≤ 𝑋 by splitting long sums into shorter ones. In the cases of
equations (1.6), (1.7), (1.9), it turns out that there is some flexibility in the choice of the approximant
(one can certainly vary R in equation (1.1) or 𝑅𝑘 in equation (1.2) by a multiplicative factor � 1), and
then one can make a similar splitting argument. We leave the details to the interested reader.

In applications 𝑑, 𝐷, 𝛿 will often be fixed; however, the fact that the constants here depend in a
polynomial fashion on 𝛿 will be useful for induction purposes.

Note that polynomial phases 𝐹 (𝑔(𝑛)Γ) = 𝑒(𝑃(𝑛)), with 𝑃 : Z→ R a polynomial of degree d, are a
special case of nilsequences – in this case the filtered nilmanifold is the unit circle R/Z (with R = (R, +)
being the filtered nilpotent group with R𝑖 = R for 𝑖 ≤ 𝑑 and R𝑖 = {0} for 𝑖 > 𝑑) and 𝐹 (𝛼) = 𝑒(𝛼) for all
𝛼 ∈ R/Z. In particular, the results of Theorem 1.1 hold for polynomial phases, that is, with 𝐺/Γ = R/Z,
𝐷 = 1, and with 𝐹 (𝑔(𝑛)Γ) replaced with 𝑒(𝑃(𝑛)). Before moving on, let us for the convenience of the
reader state the following corollary of our theorem in the polynomial phase case.

Corollary 1.3 (Discorrelation of 𝜇 and Λ with polynomial phases in short intervals). Let 𝑋 ≥ 3, and
let 𝑋 𝜃+𝜀 ≤ 𝐻 ≤ 𝑋1−𝜀 for some 0 < 𝜃 < 1 and 𝜀 > 0. Let 𝑑 ≥ 1, and let 𝑃 : Z→ R be any polynomial
of degree d.

(i) If 𝜃 = 5/8, then, for all 𝐴 > 0,����� ∑
𝑋<𝑛≤𝑋+𝐻

𝜇(𝑛)𝑒(𝑃(𝑛))

����� �𝑑,𝐴,𝜀
𝐻

log𝐴 𝑋
.

(ii) If 𝜃 = 5/8 and 𝐴 > 0, we have ����� ∑
𝑋<𝑛≤𝑋+𝐻

Λ(𝑛)𝑒(𝑃(𝑛))

����� ≤ 𝐻

log𝐴 𝑋
,

unless there exists 1 ≤ 𝑞 ≤ (log 𝑋)𝑂𝑑,𝐴,𝜀 (1) such that one has the ‘major arc’ property

max
1≤ 𝑗≤𝑑

𝐻 𝑗 ‖𝑞𝛼 𝑗 ‖R/Z ≤ (log 𝑋)𝑂𝑑,𝐴,𝜀 (1) , (1.10)

where 𝛼 𝑗 is the degree j coefficient of the polynomial 𝑛 ↦→ 𝑃(𝑛 + 𝑋) and ‖𝑦‖R/Z denotes the
distance from y to the nearest integer(s).
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(iii) If 𝜃 = 3/5, then ����� ∑
𝑋<𝑛≤𝑋+𝐻

𝜇(𝑛)𝑒(𝑃(𝑛))

����� �𝑑,𝜀
𝐻

log1/10 𝑋
.

The claims (i) and (iii) are immediate from Theorem 1.1, but (ii) requires a short argument, provided
in Section 10. One could state an analogous result in the case of 𝑑𝑘 (with the same exponents as in
Theorem 1.1).

Let us now discuss the literature on the topic, starting with results concerning the Möbius function.
A discorrelation estimate such as Theorem 1.1(i) with arbitrary 𝐹 (𝑔(𝑛)Γ) was previously only known
in case of long intervals due to the work of Green and the third author [18, Theorem 1.1]. Namely, they
have shown that

sup
𝑔∈Poly(Z→𝐺)

�����∑
𝑛≤𝑋

𝜇(𝑛)𝐹 (𝑔(𝑛)Γ)

����� �𝐴,𝐺/Γ,𝐹 𝑋 log−𝐴 𝑋 (1.11)

for any 𝑋 ≥ 2, 𝐴 > 0, filtered nilmanifold 𝐺/Γ and Lipschitz function 𝐹 : 𝐺/Γ → C. This result of
Green and the third author is a vast generalization of a classical result of Davenport [6], which states that

sup
𝛼∈R

�����∑
𝑛≤𝑋

𝜇(𝑛)𝑒(−𝛼𝑛)

����� �𝐴 𝑋 log−𝐴 𝑋, (1.12)

and of the Siegel–Walfisz theorem (see, e.g., [37, Corollary 5.29]), which states that

max
𝑎,𝑞∈N

��� ∑
𝑛≤𝑋

𝑛=𝑎 (𝑞)

𝜇(𝑛)
��� �𝐴 𝑋 log−𝐴 𝑋. (1.13)

As is well-known, the bounds of 𝑂𝐴(𝑋 log−𝐴 𝑋) here cannot be improved unconditionally with current
technology, due to the possible existence of Siegel zeroes (unless one subtracts a correction term to
account for the contribution of such zero; see [61, Theorem 2.7]).

On the other hand, for short intervals there has been a lot of activity in the special case of polynomial
phase twists.

Theorem 1.1(i) was previously only known in the linear phase case when 𝐹 (𝑔(𝑛)Γ) = 𝑒(𝛼𝑛) for any
𝛼 ∈ R by work of Zhan [64]. More precisely, Zhan [64, Theorem 5] established that

sup
𝛼∈R

����� ∑
𝑋<𝑛≤𝑋+𝐻

𝜇(𝑛)𝑒(−𝛼𝑛)

����� �𝐴,𝜀 𝐻 log−𝐴 𝑋 (1.14)

whenever 𝑋5/8+𝜀 ≤ 𝐻 ≤ 𝑋 and 𝐴 ≥ 1. Hence, Theorem 1.1(i) can be seen as a vast extension of Zhan’s
work.

Concerning higher degree polynomials, the most recent result is due to the first two authors [49,
Theorem 1.4] giving, for any polynomial 𝑃(𝑛) of degree ≤ 𝑑,∑

𝑋<𝑛≤𝑋+𝐻
𝜇(𝑛)𝑒(−𝑃(𝑛)) �𝐴,𝑑,𝜀 𝐻 log−𝐴 𝑋 (1.15)

for all 𝐴 > 0 and 𝑋2/3+𝜀 ≤ 𝐻 ≤ 𝑋 . In particular a special case of Theorem 1.1(i) (recorded here as
Corollary 1.3(i)) supersedes this result by showing it with the exponent 2/3 lowered to 5/8.

All the previous results mentioned so far for the Möbius function exist also for the von Mangoldt
function as long as 𝐹 (𝑔(𝑛)Γ) or 𝑒(−𝑃(𝑛)) is a ‘minor arc’ in a certain sense (for results corresponding
to equations (1.11), (1.12), (1.13), (1.14) and (1.15), see, respectively, [18, Section 7], [37, Theorem
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13.6], [37, Corollary 5.29], [64, Theorems 2–3] and [49, Theorem 1.1]). It is very likely that with our
choice of approximant these arguments also extend to cover major arc cases and maximal correlations,
although we will not detail this here as such claims follow in any case from Theorem 1.1.

Theorem 1.1(iv) generalizes (albeit with a slightly weaker logarithmic saving) a result of the first and
fourth authors [50, Theorem 1.5] that gave, for 0 < 𝐴 < 1/3,

sup
𝛼∈R

����� ∑
𝑋<𝑛≤𝑋+𝐻

𝜇(𝑛)𝑒(−𝛼𝑛)

����� �𝐴,𝜀 𝐻 log−𝐴 𝑋 (1.16)

in the regime 𝑋 ≥ 𝐻 ≥ 𝑋3/5+𝜀 (actually [50, Remark 5.2] allows one to enlarge the range of A to
0 < 𝐴 < 1).

The literature on correlations between 𝑑𝑘 and Fourier or higher-order phases is sparse. A variant of
the long interval case (1.11) (with a weaker error term) follows from work of Matthiesen [51, Theorem
6.1].

Furthermore, it should be possible to adapt the existing results on polynomial correlations of Λ(𝑛)
also to the case of 𝑑𝑘 (𝑛) but with power savings. More precisely, one should be able to follow the
approach of Zhan [64] to obtain discorrelation with linear phases 𝑒(𝛼𝑛) for 𝑋 ≥ 𝐻 ≥ 𝑋5/8+𝜀 (for 𝑘 = 2
one can replace 5/8 by 1/2 and for 𝑘 = 3 one can replace 5/8 by 3/5) and the work of the first two authors
[49] to obtain discorrelation with polynomial phases for 𝑋 ≥ 𝐻 ≥ 𝑋2/3+𝜀 (for 𝑘 = 2 one can replace
2/3 by 1/2). We omit the details of these extensions of [64, 49] as they follow from our Theorem 1.1.

We note that in the case 𝑘 = 2 the exponent 1/3 in Theorem 1.1(iii) matches the classical Voronoi
exponent for the error term in long sums of the divisor function without any twist, and the result seems
to be new even in the case of linear phases.

In the most major arc case 𝐹 (𝑔(𝑛)Γ) = 1, shorter intervals can be reached than in Theorem 1.1; see
Theorem 3.1 below. Furthermore, if one only wants discorrelation in almost all intervals, for instance
by seeking to bound ∫ 2𝑋

𝑋
sup

𝑔∈Poly(Z→𝐺)

����� ∑
𝑥<𝑛≤𝑥+𝐻

( 𝑓 (𝑛) − 𝑓 ♯ (𝑛))𝐹 (𝑔(𝑛)Γ)

�����∗𝑑𝑥,

much shorter intervals can be reached with aid of additional ideas. We will return to this question and
its applications in a follow-up paper [46].
Remark 1.4. It should be clear to experts from an inspection of our arguments that the methods used in
this paper could also treat other arithmetic functions with similar structure to 𝜇, Λ or 𝑑𝑘 . For instance,
all of the results for the Möbius function 𝜇 here have counterparts for the Liouville function 𝜆; the
results for the von Mangoldt function Λ have counterparts (with somewhat different normalizations)
for the indicator function 1P of the primes P, and the results for 𝑑2 have counterparts for the function
𝑟2 (𝑛) �

∑
𝑎,𝑏∈Z:𝑎2+𝑏2=𝑛 1 counting the number of representations of n as the sum of two squares. We

sketch the modifications needed to establish these variants in Appendix A. We also conjecture that the
methods can be extended to treat the indicator function 1𝑆 of the set 𝑆 � {𝑎2 + 𝑏2 : 𝑎, 𝑏 ∈ Z} of sums
of two squares or the indicator 1𝑆𝜂 of 𝑋 𝜂-smooth numbers, although in those two cases a technical
difficulty arises that the construction of a sufficiently accurate approximant to these indicator functions
is nontrivial. Again, see Appendix A for further discussion.

On the other hand, our arguments do not seem to easily extend to the Fourier coefficients 𝜆 𝑓 (𝑛) of
holomorphic cusp forms. The coefficients 𝜆 𝑓 (𝑛) are analogous to 𝑑2 (𝑛) in many ways (though with
vanishing approximant 𝜆♯𝑓 = 0), and it is reasonable to conjecture parallel results for these two functions.
For instance, in [10] it was established that

sup
𝛼

����� ∑
𝑋<𝑛≤𝑋+𝐻

𝜆 𝑓 (𝑛)𝑒(𝛼𝑛)

����� � 𝐻𝑋−𝑐𝜀
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for 𝑋2/5+𝜀 ≤ 𝐻 ≤ 𝑋 . See also [25] for a result with general nilsequences but long intervals. Unfor-
tunately, the methods we use in this paper rely heavily on the convolution structure of the functions
involved and do not obviously extend to give results for 𝜆 𝑓 .

1.1. Gowers uniformity in short intervals

Just as discorrelation estimates with polynomial phases are important for applications of the circle
method, discorrelation estimates with nilsequences are important in higher-order Fourier analysis due
to the connection with the Gowers uniformity norms that we next discuss.

For any nonnegative integer 𝑠 ≥ 1 and any function 𝑓 : Z → C with finite support, define the
(unnormalized) Gowers uniformity norm

‖ 𝑓 ‖𝑈 𝑠 (Z) �
��
∑

𝑥,ℎ1 ,...,ℎ𝑠 ∈Z

∏
𝜔∈{0,1}𝑠

C |𝜔 | 𝑓 (𝑥 + 𝜔1ℎ1 + · · · + 𝜔𝑠ℎ𝑠)
���

1/2𝑠

,

where 𝜔 = (𝜔1, . . . , 𝜔𝑠), |𝜔| � 𝜔1 + · · · +𝜔𝑠 , and C : 𝑧 ↦→ 𝑧 is the complex conjugation map. Then for
any interval (𝑋, 𝑋 + 𝐻] with 𝐻 ≥ 1 and any 𝑓 : Z → C (not necessarily of finite support), define the
Gowers uniformity norm over (𝑋, 𝑋 + 𝐻] by

‖ 𝑓 ‖𝑈 𝑠 (𝑋,𝑋+𝐻 ] � ‖ 𝑓 1(𝑋,𝑋+𝐻 ] ‖𝑈 𝑠 (Z) /‖1(𝑋,𝑋+𝐻 ] ‖𝑈 𝑠 (Z) , (1.17)

where 1(𝑋,𝑋+𝐻 ] : Z→ C is the indicator function of (𝑋, 𝑋 + 𝐻].
Using the inverse theorem for Gowers norms (see Proposition 9.4) we can deduce the following

theorem from Theorem 1.1 and a construction of pseudorandom majorants in Section 9.

Theorem 1.5 (Gowers uniformity estimate). Let 𝑋 𝜃+𝜀 ≤ 𝐻 ≤ 𝑋1−𝜀 for some fixed 0 < 𝜃 < 1 and
𝜀 > 0. Let 𝑠 ≥ 1 be a fixed integer. Also, denote Λ𝑤 (𝑛) := 𝑊

𝜑 (𝑊 ) 1(𝑛,𝑊 )=1, where 𝑊 :=
∏

𝑝≤𝑤 𝑝 and X
is large enough in terms of w.

(i) If 𝜃 = 5/8, then

‖Λ − Λ𝑤 ‖𝑈 𝑠 (𝑋,𝑋+𝐻 ] = 𝑜𝑤→∞(1), (1.18)

and for any 1 ≤ 𝑎 ≤ 𝑊 with (𝑎, 𝑊) = 1 we have����𝜑(𝑊)
𝑊

Λ(𝑊 · +𝑎) − 1
����
𝑈 𝑠 (𝑋,𝑋+𝐻 ]

= 𝑜𝑤→∞(1). (1.19)

(ii) Let 𝑘 ≥ 2. Set 𝜃 = 1/3 for 𝑘 = 2, 𝜃 = 5/9 for 𝑘 = 3, and 𝜃 = 3/5 for 𝑘 ≥ 4. Then

‖𝑑𝑘 − 𝑑♯𝑘 ‖𝑈 𝑠 (𝑋,𝑋+𝐻 ] = 𝑜(log𝑘−1 𝑋), (1.20)

and for any 𝑊 ′ satisfying 𝑊 | 𝑊 ′ | 𝑊 �𝑤 � and for any 1 ≤ 𝑎 ≤ 𝑊 ′ with (𝑎, 𝑊 ′) = 1 we have

‖𝑑𝑘 (𝑊 ′ · +𝑎) − 𝑑♯𝑘 (𝑊
′ · +𝑎)‖𝑈 𝑠 (𝑋,𝑋+𝐻 ] = 𝑜𝑤→∞

((
𝜑(𝑊 ′)

𝑊 ′

) 𝑘−1
log𝑘−1 𝑋

)
. (1.21)

(iii) If 𝜃 = 3/5, then

‖𝜇‖𝑈 𝑠 (𝑋,𝑋+𝐻 ] = 𝑜(1). (1.22)

In all these estimates, the 𝑜(1) notation is with respect to the limit 𝑋 →∞ (holding 𝑠, 𝜀, 𝑘 fixed).
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Remarks.

• The model Λ𝑤 with w fixed is simple to work with and arises in various applications of Gowers
uniformity (e.g., to ergodic theory). This also motivates our choice of the Λ♯ model in equation (1.1)
(although that is defined with a larger value of w to produce better error terms).

• Since the bounds in this theorem (unlike in Theorem 1.1) are qualitative in nature, it should be
possible to use Heath-Brown’s trick from [29] to extend the range of H from 𝑋 𝜃+𝜀 ≤ 𝐻 ≤ 𝑋1−𝜀 to
𝑋 𝜃 ≤ 𝐻 ≤ 𝑋1−𝜀 . Also, the range 𝑋1−𝜀 ≤ 𝐻 ≤ 𝑋 could be covered, as in Remark 1.2. We leave the
details to the interested reader.

• In the case 𝑠 = 2, we obtain significantly stronger estimates thanks to the polynomial nature of the
𝑈2 inverse theorem. Specifically, when 𝜃 = 5/8 + 𝜀, we have

‖𝜇‖𝑈2 (𝑋,𝑋+𝑋 𝜃 ] , ‖Λ − Λ♯‖𝑈2 (𝑋,𝑋+𝑋 𝜃 ] �𝐴,𝜀 log−𝐴 𝑋

for all 𝐴 > 0 and

‖𝑑𝑘 ‖𝑈2 (𝑋,𝑋+𝑋 𝜃 ] �𝜀 𝑋−𝑐𝑘 𝜀 (1.23)

for some 𝑐𝑘 > 0, with equation (1.23) also holding when (𝑘, 𝜃) = (3, 5/9), (2, 1/3) and finally

‖𝜇‖𝑈2 (𝑋,𝑋+𝑋 𝜃 ] �𝜀 log−1/20 𝑋

when 𝜃 = 3/5. All of these follow directly by combining Theorem 1.1 for 𝑑 = 1 (that is, for Fourier
phases in place of nilsequences) with the polynomial form of the 𝑈2 inverse theorem, which states that
if 𝑓 : [𝑁] → C is 1-bounded and ‖ 𝑓 ‖𝑈2 [𝑁 ] ≥ 𝛿 for some 𝛿 > 0, then |

∑
𝑛≤𝑁 𝑓 (𝑛)𝑒(𝛼𝑛) |∗ � 𝛿4𝑁

for some 𝛼 ∈ R. This form of the inverse theorem follows directly from the Fourier representation of
the 𝑈2 [𝑁] norm and Parseval’s theorem, where the Gowers norm 𝑈2 [𝑁] is defined analogously as
in equation (1.17).

1.2. Applications

1.2.1. Polynomial phases
We already stated Corollary 1.3 concerning polynomial phases. But let us here mention that in a
recent work of Kanigowski–Lemańczyk–Radziwiłł [39] on the prime number theorem for analytic skew
products, a key analytic input ([39, Theorem 9.1]) was that Corollary 1.3(ii) holds for 𝐻 = 𝑋2/3−𝜂 (with
a weaker error term of 𝑜𝜂→0 (𝐻)), thus going just beyond the range of validity of [49, Theorem 1.1].
Corollary 1.3 allows taking 𝜂 < 1/24 with strongly logarithmic savings for the error terms. Similar
remarks apply to the recent work of Kanigowski [38].

1.2.2. An application to ergodic theory
In a seminal work, Host and Kra [32] showed that, for any measure-preserving system (𝑋,X , 𝜇, 𝑇), any
bounded functions 𝑓1, . . . , 𝑓𝑘 : 𝑋 → C and any intervals 𝐼𝑁 whose lengths tend to infinity as 𝑁 → ∞,
the multiple ergodic averages

1
|𝐼𝑁 |
∑
𝑛∈𝐼𝑁

𝑓1(𝑇𝑛𝑥) · · · 𝑓𝑘 (𝑇 𝑘𝑛𝑥)

converge in 𝐿2 (𝜇) as 𝑁 →∞. Since this work, it has therefore become a natural and active question to
determine for which sequences of intervals (𝐼𝑁 )𝑁 and weights 𝑤 : N→ C we have the 𝐿2-convergence
of

1
|𝐼𝑁 |
∑
𝑛∈𝐼𝑁

𝑤(𝑛) 𝑓1(𝑇𝑛𝑥) · · · 𝑓𝑘 (𝑇 𝑘𝑛𝑥)
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as 𝑁 → ∞. The case of 𝐼𝑁 = [1, 𝑁] and with the weight being the primes, that is 𝑤(𝑛) = 1P (𝑛),
was settled in the works of Frantzikinakis–Host–Kra [13] and Wooley–Ziegler [63] (the results of
[13] in the cases 𝑘 ≥ 4 were originally conditional on the Gowers uniformity of the von Mangoldt
function). Analogous results also exist for weights w supported on a sequence given by a Hardy field
[12] or random sequences [14]; see also [42] for related results concerning correlation sequences
𝑛 ↦→
∫
𝑋

𝑓1(𝑇𝑛𝑥) · · · 𝑓𝑘 (𝑇 𝑘𝑛𝑥) 𝑑𝜇(𝑥). As an application of Theorem 1.5, we can extend the result on
prime weights to short collections of intervals (𝐼𝑁 )𝑁 .

Theorem 1.6 (Multiple ergodic averages over primes in short intervals). Let 𝑘 ≥ 1, 𝜀 > 0 and
𝜅 ∈ [5/8+𝜀, 1−𝜀]. Let ℎ1, . . . , ℎ𝑘 be distinct positive integers. Let (𝑋,X , 𝜇, 𝑇) be a measure-preserving
system. Let 𝑓1, . . . , 𝑓𝑘 : 𝑋 → C be bounded and measurable. Then the multiple ergodic averages

E𝑁<𝑝≤𝑁+𝑁 𝜅 𝑓1(𝑇ℎ1 𝑝𝑥) · · · 𝑓𝑘 (𝑇ℎ𝑘 𝑝𝑥)

converge in 𝐿2 (𝜇).

The results of [13] and [63] correspond to the case 𝜅 = 1. According to the best of our knowledge,
Theorem 1.6 is the first result of its kind with 𝜅 < 1.

1.2.3. Linear equations in short intervals
The work of Green and the third author [17] on linear equations in primes (together with [18], [21])
provides for any finite complexity systems of linear forms (𝜓1, . . . , 𝜓𝑡 ) : Z𝑑 → Z𝑡 an asymptotic
formula for ∑

n∈𝐾∩Z𝑑

𝑡∏
𝑖=1

Λ(𝜓𝑖 (n)), (1.24)

whenever 𝐾 ⊂ [−𝑋, 𝑋]𝑑 is a convex body containing a positive proportion of the whole cube [−𝑋, 𝑋]𝑑 ,
that is, vol(𝐾) � 𝑋𝑑 . One may ask if one can establish similar results when K is a smaller region
in [−𝑋, 𝑋]𝑑 , of volume � 𝑋 𝜃𝑑 with 𝜃 < 1. Note that, for a single linear form, this boils down to
asymptotics for primes in short intervals (where the exponent 𝜃 = 7/12 from [33], [29] is the best one
known). Using Theorem 1.5, we can indeed give asymptotics for equation (1.24) in small regions.

Theorem 1.7 (Generalized Hardy–Littlewood conjecture in small boxes for finite complexity systems).
Let 𝑋 ≥ 3 and 𝑋5/8+𝜀 ≤ 𝐻 ≤ 𝑋1−𝜀 for some fixed 𝜀 > 0. Let 𝑑, 𝑡, 𝐿 ≥ 1. Let Ψ = (𝜓1, . . . , 𝜓𝑡 ) be a
system of affine-linear forms, where each 𝜓𝑖 : Z𝑑 → Z has the form 𝜓𝑖 (x) = �𝜓𝑖 · x +𝜓𝑖 (0) with �𝜓𝑖 ∈ Z𝑑
and 𝜓𝑖 (0) ∈ Z satisfying | �𝜓𝑖 | ≤ 𝐿 and |𝜓𝑖 (0) | ≤ 𝐿𝑋 . Suppose that �𝜓𝑖 and �𝜓 𝑗 are linearly independent
whenever 𝑖 ≠ 𝑗 . Let 𝐾 ⊂ (𝑋, 𝑋 + 𝐻]𝑑 be a convex body. Then∑

n∈𝐾∩Z𝑑

𝑡∏
𝑖=1

Λ(𝜓𝑖 (n)) = 𝛽∞
∏
𝑝

𝛽𝑝 + 𝑜𝑡 ,𝑑,𝐿 (𝐻𝑑), (1.25)

where Λ is extended as 0 to the nonpositive integers and the Archimedean factor is given by

𝛽∞ = vol(𝐾 ∩ Ψ−1(R𝑡>0))

and the local factors are given by

𝛽𝑝 = En∈(Z/𝑝Z)𝑑
𝑡∏
𝑖=1

𝑝

𝑝 − 1
1𝜓𝑖 (n)≠0.

Remark 1.8. From Theorem 1.5 and the proof method of Theorem 1.7, one can also deduce similar
correlation results when in equation (1.25) one replaces Λ with 𝜇 or 𝑑𝑘 (with the value of 𝜃 as in

https://doi.org/10.1017/fmp.2023.28 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2023.28


10 K. Matomäki et al.

Theorem 1.5, and with no main term in the case of 𝜇, and a different local product in the case of 𝑑𝑘 ).
More specifically, under the assumption of Theorem 1.7, we have∑

n∈𝐾∩Z𝑑

𝑡∏
𝑖=1

𝜇(𝜓𝑖 (n)) = 𝑜𝑡 ,𝑑,𝐿 (𝐻𝑑), (1.26)

and, for a positive integer k,∑
n∈𝐾∩Z𝑑

𝑡∏
𝑖=1

𝑑𝑘 (𝜓𝑖 (n)) = 𝛽∞
∏
𝑝

𝛽𝑝 + 𝑜𝑡 ,𝑑,𝐿 (𝐻𝑑 log𝑡 (𝑘−1) 𝑋),

where 𝑑𝑘 is extended as 0 to the nonpositive integers and the Archimedean factor is given by

𝛽∞ =
∫
𝐾

𝑡∏
𝑖=1

log𝑘−1
+ 𝜓𝑖 (x)
(𝑘 − 1)! 𝑑x = 𝑂𝑡 ,𝑑,𝐿 (𝐻𝑑 log𝑡 (𝑘−1) 𝑋),

and the local factors are given by

𝛽𝑝 =
En∈Z𝑑𝑝

∏𝑡
𝑖=1 𝑑𝑘, 𝑝 (𝜓𝑖 (n))∏𝑡

𝑖=1 E𝑚∈Z𝑝𝑑𝑘, 𝑝 (𝑚)
= En∈Z𝑑𝑝

𝑡∏
𝑖=1

( 𝑝 − 1
𝑝

) 𝑘−1
𝑑𝑘, 𝑝 (𝜓𝑖 (n)).

Here, log+ 𝑦 := log max(𝑦, 1), Z𝑝 is the p-adics (with the usual Haar probability measure),

𝑑𝑘, 𝑝 (𝑚) =
(
𝑘 − 1 + 𝑣𝑝 (𝑚)

𝑘 − 1

)
,

and 𝑣𝑝 (𝑚) is the number of times p divides m. These local factors are natural extensions of the ones
defined in [47, Remark 1.2] in the special case of two linear forms 𝜓1(𝑛) = 𝑛, 𝜓2(𝑛) = 𝑛 + ℎ.

We have the following immediate corollary to Theorem 1.7.

Corollary 1.9 (Linear equations in primes in short intervals). Let 𝑋 ≥ 3 and 𝑋5/8+𝜀 ≤ 𝐻 ≤ 𝑋1−𝜀 for
some fixed 𝜀 > 0. Let 𝑑, 𝑡, 𝐿 ≥ 1. Let Ψ = (𝜓1, . . . , 𝜓𝑡 ) : Z𝑑 → Z𝑡 be a system of affine-linear forms,
where each 𝜓𝑖 has the form 𝜓𝑖 (x) = �𝜓𝑖 · x + 𝜓𝑖 (0) with �𝜓𝑖 ∈ Z𝑑 and 𝜓𝑖 (0) ∈ Z satisfying | �𝜓𝑖 | ≤ 𝐿 and
|𝜓𝑖 (0) | ≤ 𝐿𝑋 . Suppose that �𝜓𝑖 and �𝜓 𝑗 are linearly independent whenever 𝑖 ≠ 𝑗 . Suppose that, for every
prime p, the system of equations Ψ(n) = 0 is solvable with n ∈ ((Z/𝑝Z) \ {0})𝑑 . Then the number of
solutions to Ψ(n) = 0 with n ∈ (P ∩ (𝑋, 𝑋 + 𝐻])𝑑 is

�
vol((𝑋, 𝑋 + 𝐻]𝑑 ∩ Ψ−1(R𝑡>0))

log𝑑 𝑋
+ 𝑜𝑑,𝑡 ,𝐿

(
𝐻𝑑

log𝑑 𝑋

)
.

Thus, for example, for any 𝜀 > 0 and any large enough odd N there is a solution to

𝑝1 + 𝑝2 + 𝑝3 = 𝑁, 𝑝1, 𝑝2, 𝑝3, 2𝑝1 − 𝑝2 ∈ P

with 𝑝𝑖 ∈ [𝑁/3 − 𝑁5/8+𝜀 , 𝑁/3 + 𝑁5/8+𝜀]. Without the condition 2𝑝1 − 𝑝2 ∈ P, this is due to Zhan
[64]. The exponent 5/8 in Zhan’s result has been improved using sieve methods (see, e.g., [3]) and
more recently using the transference principle [43]. It would probably be possible to use a sieve method
also to improve on Corollary 1.9; it would suffice to find a suitable minorant function for Λ(𝑛) that has
positive average and is Gowers uniform in shorter intervals. Such a minorant could be constructed with
our arithmetic information using Harman’s sieve method [24], but we do not do so here.
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1.3. Methods of proof

We now describe (in somewhat informal terms) the general strategy of proof of our main theorems,
although for various technical reasons the actual rigorous proof will not quite follow the intuitive plan
that is outlined here.

To prove Theorem 1.1, the first step, which is standard, is to apply Heath–Brown’s identity (Lemma
2.16) together with a combinatorial lemma regarding subsums of a finite number of nonnegative reals
summing to one (Lemma 2.20) to decompose 𝜇,Λ, 𝑑𝑘 (up to small errors) into three standard types of
sums:

(I) Type I sums, which are roughly of the form 𝛼 ∗ 1 = 𝛼 ∗ 𝑑1 for some arithmetic function 𝛼 : N→ C
supported on some interval [1, 𝐴𝐼 ] that is not too large, and with 𝛼 bounded in an 𝐿2 averaged sense.

(I2) Type 𝐼2 sums, which are roughly of the form 𝛼 ∗ 𝑑2 for some arithmetic function 𝛼 : N → C

supported on some interval [1, 𝐴𝐼2 ] that is not too large, and with 𝛼 bounded in an 𝐿2 averaged
sense.

(II) Type 𝐼 𝐼 sums, which are roughly of the form 𝛼 ∗ 𝛽 for some arithmetic functions 𝛼, 𝛽 : N→ Cwith
𝛼 supported on some interval [𝐴−

𝐼 𝐼 , 𝐴+
𝐼 𝐼 ] that is neither too long nor too close to 1 or X, and with

𝛼, 𝛽 bounded in an 𝐿2 averaged sense.

This decomposition is detailed in Section 4. The precise ranges of parameters 𝐴𝐼 , 𝐴𝐼2 , 𝐴−
𝐼 𝐼 , 𝐴+

𝐼 𝐼 that
arise in this decomposition depend on the choice of 𝜃 (and, in the case of 𝑑𝑘 for small k, on the value
of k); this is encoded in the combinatorial lemma given here as Lemma 2.20.

The treatment of these types of sums (in Theorem 4.2) depends on the behavior of the nilsequence
𝐹 (𝑔(𝑛)Γ), in particular whether it is ‘major arc’ or ‘minor arc’. This splitting into different behaviors
will be done somewhat differently for different types of sums.

In case of type I and type 𝐼2 sums, one can use the equidistribution theory of nilmanifolds to
essentially reduce to two cases, the major arc case in which the nilsequence 𝐹 (𝑔(𝑛)Γ) behaves like (or
‘pretends to be’) the constant function 1 (or some other function of small period), and the minor arc case
in which F has mean zero and 𝑔(𝑛)Γ is highly equidistributed in the nilmanifold 𝐺/Γ. The contribution
of type I and type 𝐼2 major arc sums can be treated by standard methods, namely an application of
Perron’s formula and mean value theorems for Dirichlet series; see Section 3.

The contribution of type I minor arc sums can be treated by a slight modification of the arguments
in [18], which are based on the ‘quantitative Leibman theorem’ (Theorem 2.7 below) that characterizes
when a nilsequence is equidistributed, as well as a classical lemma of Vinogradov (Lemma 2.3 below)
that characterizes when a polynomial modulo 1 is equidistributed. (Actually, it will be convenient to rely
primarily on a corollary of Lemma 2.3 that asserts that if typical dilates of a polynomial are equidis-
tributed modulo 1, then the polynomial itself is equidistributed modulo 1: See Corollary 2.4 below.)

Our treatment of type 𝐼2 minor arc sums is more novel. A model case is that of treating the 𝑑2-type
correlation ∑

𝑋<𝑛≤𝑋+𝐻
𝑑2 (𝑛)𝐹 (𝑔(𝑛)Γ).

From the definition of the divisor function 𝑑2, we can expand this sum as a double sum∑
𝑛,𝑚:𝑋<𝑛𝑚≤𝑋+𝐻

𝐹 (𝑔(𝑛𝑚)Γ). (1.27)

We are not able to obtain nontrivial estimates on such sums in the regime 𝐻 ≤ 𝑋1/3. However,
when 𝐻 ≥ 𝑋1/3+𝜀 , it turns out by elementary geometry of numbers that the hyperbola neighborhood
{(𝑛, 𝑚) ∈ Z2 : 𝑋 < 𝑛𝑚 ≤ 𝑋 + 𝐻} may be partitioned3 into arithmetic progressions 𝑃 ⊂ Z2 that mostly

3This partition is reminiscent of the classical Hardy–Littlewood partition of the unit circle into major and minor arcs, except
that we are partitioning (a neighborhood of) a hyperbola rather than a circle.
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have nontrivial length; see Theorem 8.1 for a precise statement. This decomposition lets us efficiently
decompose the sum (1.27) into short sums of the form∑

(𝑛,𝑚) ∈𝑃
𝐹 (𝑔(𝑛𝑚)Γ)

that turn out to exhibit cancellation for most progressions P in the type 𝐼2 minor arc case, mainly thanks
to the quantitative Leibman theorem (Theorem 2.7) and a corollary of the Vinogradov lemma (Corollary
2.4); see Section 8.

It remains to handle the contribution of type 𝐼 𝐼 sums, which are of the form∑
𝑋<𝑛≤𝑋+𝐻

𝛼 ∗ 𝛽(𝑛)𝐹 (𝑔(𝑛)Γ)

which we can expand as ∑
𝐴−𝐼 𝐼 ≤𝑎≤𝐴

+
𝐼 𝐼

𝛼(𝑎)
∑

𝑋/𝑎<𝑏≤𝑋/𝑎+𝐻/𝑎
𝛽(𝑏)𝐹 (𝑔(𝑎𝑏)Γ). (1.28)

To treat these sums, we can use a Fourier decomposition and the equidistribution theory of nilmani-
folds to reduce (roughly speaking) to treating the following three special cases of these sums:

• Type 𝐼 𝐼 major arc sums that are essentially of the form∑
𝑋<𝑛≤𝑋+𝐻

𝛼 ∗ 𝛽(𝑛)𝑛𝑖𝑇

for some real number 𝑇 = 𝑋𝑂 (1) of polynomial size (one can also consider generalizations of such
sums when the 𝑛𝑖𝑇 factor is twisted by an additional Dirichlet character 𝜒 of bounded conductor).

• Abelian type 𝐼 𝐼 minor arc sums in which 𝐹 (𝑔(𝑛)Γ) = 𝑒(𝑃(𝑛)) is a polynomial phase that does
not ‘pretend’ to be a character 𝑛𝑖𝑇 (or more generally 𝜒(𝑛)𝑛𝑖𝑇 for some Dirichlet character 𝜒 of
bounded conductor) in the sense that the Taylor coefficients of 𝑒(𝑃(𝑛)) around X do not align with
the corresponding coefficients of such characters.

• Nonabelian type 𝐼 𝐼 minor arc sums, in which 𝑔(𝑛)Γ is highly equidistributed in a nilmanifold 𝐺/Γ
arising from a nonabelian nilpotent group G, and F exhibits nontrivial oscillation in the direction of
the center 𝑍 (𝐺) of G (which one can reduce to be one-dimensional).

One can treat the contribution of the type 𝐼 𝐼 major arc sums by applying Perron’s formula and
Dirichlet polynomial estimates of Baker–Harman–Pintz [4] in the regime, so long as one actually has a
suitable triple convolution (with one of the subfactors having well-controlled correlations with 𝑛𝑖𝑇 ); see
Lemma 3.5. As already implicitly observed by Zhan [64], this case can be treated (with favorable choices
of parameters) for any of the three functions 𝜇,Λ, 𝑑𝑘 in the case 𝜃 = 5/8. As observed in [50], in the
case of the Möbius function 𝜇, it is possible to lower 𝜃 to 3/5 and still obtain triple convolution structure
after removing a small exceptional error term from 𝜇 (which is responsible for the final discorrelation
bounds not saving arbitrary powers of log 𝑋); see Lemma 4.5.

It remains to treat the contribution of nonabelian and abelian type 𝐼 𝐼 minor arc sums. It turns out
that we will be able to establish good estimates for such sums (1.28) in the regime

𝑋 𝜀 𝑋

𝐻
≪ 𝐴−

𝐼 𝐼 < 𝐴+
𝐼 𝐼 ≪ 𝑋−𝜀𝐻.

In this regime, the inner intervals (𝑋/𝑎, 𝑋/𝑎 + 𝐻/𝑎] in equation (1.28) have nonnegligible length (at
least 𝑋 𝜀), and furthermore they exhibit nontrivial overlap with each other ((𝑋/𝑎, 𝑋/𝑎 + 𝐻/𝑎] will
essentially be identical to (𝑋/𝑎′, 𝑋/𝑎′ + 𝐻/𝑎′] whenever 𝑎′ =

(
1 +𝑂

(
𝑋−𝜀 𝐻

𝑋

) )
𝑎).
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As a consequence, many of the dilated nilsequences 𝑏 ↦→ 𝐹 (𝑔(𝑎𝑏)Γ) appearing in equation (1.28)
will correlate with the same portion of the sequence 𝛽. To handle this situation, we introduce a
nilsequence version of the large sieve inequality in Proposition 2.15, which we establish with the aid
of the equidistribution theory for nilsequences, as well as Goursat’s lemma. The upshot of this large
sieve inequality is that for many nearby pairs 𝑎′, 𝑎 there is an algebraic relation between the sequences
𝑏 ↦→ 𝑔(𝑎𝑏) and 𝑏 ↦→ 𝑔(𝑎′𝑏), namely that one has an identity of the form

𝑔(𝑎′·) = 𝜀𝑎𝑎′𝑔(𝑎·)𝛾𝑎𝑎′ ,

where 𝜀𝑎𝑎′ : Z→ 𝐺 is a ‘smooth’ polynomial map and 𝛾𝑎𝑎′ : Z→ 𝐺 is a ‘rational’ polynomial map; see
equation (6.7) for a precise statement. This can be viewed as an assertion that the map g is ‘approximately
dilation-invariant’ in some weak sense. This turns out to imply a nontrivial lack of two-dimensional
equidistribution for the map

(𝑎, 𝑎′, 𝑏, 𝑏′) ↦→ (𝑔(𝑎𝑏)Γ, 𝑔(𝑎𝑏′)Γ, 𝑔(𝑎′𝑏)Γ, 𝑔(𝑎′𝑏′)Γ)

which is incompatible with the nonabelian nature of G thanks to a commutator argument of Furstenberg
and Weiss [15]; see Section 6. This resolves the nonabelian case. In the abelian case, one can replace
the maps g by the ordinary polynomials P, and one can then proceed by adapting the arguments by the
first two authors in [49] to show that 𝑒(𝑃(𝑛)) necessarily ‘pretends’ to be like a character 𝑛𝑖𝑇 , which
resolves the abelian type 𝐼 𝐼 minor arc case. Combining all these cases yields Theorem 1.1.

1.3.1. The result on Gowers norms
The proof of Theorem 1.5 (in Section 9) requires in addition to Theorem 1.1 and the inverse theorem
for the Gowers norms also a construction of pseudorandom majorants for (W-tricked versions of) Λ
and 𝑑𝑘 over short intervals (𝑋, 𝑋 + 𝐻]. By this, we mean functions 𝜈1, 𝜈2 that majorize the functions
Λ, 𝑑𝑘 (after W-tricking and suitable normalization) and such that 𝜈𝑖 − 1 restricted to (𝑋, 𝑋 + 𝐻] is
Gowers uniform. In the case of long intervals (that is, 𝐻 = 𝑋), the existence of such majorants is well-
known from works of Green and the third author [16] and Matthiesen [52]. Fortunately, it turns out
that the structure of these well-known majorants as type I sums of small ‘level’ enables us to show that
they work as majorants also over short intervals (𝑋, 𝑋 + 𝐻]; see Lemmas 9.5 and 9.6. These lemmas
combined with the implementation of the W-trick (which in the case of 𝑑𝑘 requires additionally two
simple lemmas, namely Lemmas 9.8 and 9.9) leads to the proof of Theorem 1.5.

Remark 1.10. In this remark, we discuss the obstructions to improving the value of 𝜃 in the various
components of Theorem 1.1. In most of these results, the primary obstruction arises (roughly speaking)
from portions of 𝜇, Λ or 𝑑𝑘 that look something like

1(𝑋 𝛼1 ,2𝑋 𝛼1 ] ∗ · · · ∗ 1(𝑋 𝛼𝑚 ,2𝑋 𝛼𝑚 ] (1.29)

for various tuples (𝛼1, . . . , 𝛼𝑚) of positive real numbers that add up to 1. More specifically:

(a) For the 𝜃 = 5/8 results in Theorem 1.1(i)–(iii), the primary obstruction arises from convolutions
(1.29) with (𝛼1, . . . , 𝛼𝑚) equal to (1/4, 1/4, 1/4, 1/4), when correlated against characters 𝑛𝑖𝑇 with
𝑇 � 𝑋𝑂 (1) , as this lies just outside the reach of our twisted major arc type I and type 𝐼 𝐼 estimates
when 𝜃 goes below 5/8. This obstruction was already implicitly observed by Zhan [64].

(b) For the 𝜃 = 3/5 result in Theorem 1.1(iv), the primary obstruction are convolutions (1.29) with
(𝛼1, . . . , 𝛼𝑚) equal to (2/5, 1/5, 1/5, 1/5) or (1/5, 1/5, 1/5, 1/5, 1/5), when correlated against
‘minor arc’ nilsequences, such as 𝑒(𝛼𝑛) for some minor arc 𝛼. Such convolutions become just out
of reach of our type I, type 𝐼 𝐼 and type 𝐼2 estimates when 𝜃 goes below 3/5. This obstruction was
already observed in [50].

(c) For the 𝜃 = 1/3 result in Theorem 1.1(iii), the primary obstruction is of a different nature from the
preceding cases: It is that our treatment of minor arcs in this case relies crucially on the ability to
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partition the neighborhood of a hyperbola into arithmetic progressions (see Theorem 8.1), and this
partition is no longer available in any useful form once 𝜃 goes below 1/3.

(d) For the 𝜃 = 5/9 result in Theorem 1.1(iii), the primary obstruction arises from convolutions (1.29)
with (𝛼1, . . . , 𝛼𝑚) equal to (1/3, 1/3, 1/3), when correlated against minor arc nilsequences, for
reasons similar to those in the previous case (c).

1.4. Notation

The parameter X should be thought of as being large.
We use 𝑌 � 𝑍 , 𝑌 = 𝑂 (𝑍) or 𝑍 � 𝑌 to denote the estimate |𝑌 | ≤ 𝐶𝑍 for some constant C. If we wish

to permit this constant to depend (possibly ineffectively) on one or more parameters we shall indicate
this by appropriate subscripts, thus for instance 𝑂 𝜀,𝐴(𝑍) denotes a quantity bounded in magnitude by
𝐶𝜀,𝐴𝑍 for some quantity 𝐶𝜀,𝐴 depending only on 𝜀, 𝐴. We write 𝑌 � 𝑍 for 𝑌 � 𝑍 � 𝑌 . When working
with 𝑑𝑘 , all implied constants are permitted to depend on k. We also write 𝑦 ∼ 𝑌 to denote the assertion
𝑌 < 𝑦 ≤ 2𝑌 .

If x is a real number (resp. an element of R/Z), we write 𝑒(𝑥) � 𝑒2𝜋𝑖𝑥 and let ‖𝑥‖R/Z denote the
distance of x to the nearest integer (resp. zero).

We use 1𝐸 to denote the indicator of an event E, thus 1𝐸 equals 1 when E is true and 0 otherwise. If
S is a set, we write 1𝑆 for the indicator function 1𝑆 (𝑛) � 1𝑛∈𝑆 .

Unless otherwise specified, all sums range over natural number values, except for sums over p which
are understood to range over primes. We use 𝑑 |𝑛 to denote the assertion that d divides n, (𝑛, 𝑚) to denote
the greatest common divisor of n and m, 𝑛 = 𝑎 (𝑞) to denote the assertion that n and a have the same
residue mod q, and 𝑓 ∗ 𝑔(𝑛) �

∑
𝑑 |𝑛 𝑓 (𝑑)𝑔(𝑛/𝑑) to denote the Dirichlet convolution of two arithmetic

functions 𝑓 , 𝑔 : N→ C.
The height of a rational number 𝑎/𝑏 with 𝑎, 𝑏 coprime is defined as max(|𝑎 |, |𝑏 |).

2. Basic tools

2.1. Total variation

The notion of maximal summation defined in equation (1.4) interacts well with the notion of total
variation, which we now define.

Definition 2.1 (Total variation). Given any function 𝑓 : 𝑃 → C on an arithmetic progression P, the
total variation norm ‖ 𝑓 ‖TV(𝑃) is defined by the formula

‖ 𝑓 ‖TV(𝑃) � sup
𝑛∈𝑃

| 𝑓 (𝑛) | + sup
𝑛1< · · ·<𝑛𝑘

𝑘−1∑
𝑗=1

| 𝑓 (𝑛 𝑗+1) − 𝑓 (𝑛 𝑗 ) |,

where the second supremum ranges over all increasing finite sequences 𝑛1 < · · · < 𝑛𝑘 in P and all
𝑘 ≥ 1. We remark that in this finitary setting one can simply take 𝑛1, . . . , 𝑛𝑘 to be the elements of P in
increasing order, if one wishes. We adopt the convention that ‖ 𝑓 ‖TV(𝑃) = 0 when P is empty. For any
natural number 𝑞 ≥ 1, we also define

‖ 𝑓 ‖TV(𝑃;𝑞) �
∑

𝑎∈Z/𝑞Z
‖ 𝑓 ‖TV(𝑃∩(𝑎+𝑞Z)) .

Informally, if f is bounded in TV(𝑃; 𝑞) norm, then f does not vary much on each residue class
modulo q in P. From the fundamental theorem of calculus, we see that if 𝑓 : 𝐼 → C is a continuously
differentiable function then

‖ 𝑓 ‖TV(𝑃) � sup
𝑡 ∈𝐼

| 𝑓 (𝑡) | +
∫
𝐼
| 𝑓 ′(𝑡) | 𝑑𝑡 (2.1)

for all arithmetic progressions P in I. Also, from the identity 𝑎𝑏−𝑎′𝑏′ = (𝑎−𝑎′)𝑏+(𝑏−𝑏′)𝑎′ we see that
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‖ 𝑓 𝑔‖TV(𝑃;𝑞) � ‖ 𝑓 ‖TV(𝑃;𝑞) ‖𝑔‖TV(𝑃;𝑞) (2.2)

for any functions 𝑓 , 𝑔 : 𝑃 → C defined on an arithmetic progression and any 𝑞 ≥ 1.
We can now record some basic properties of maximal summation:

Lemma 2.2 (Basic properties of maximal sums).
(i) (Triangle inequalities) For any subprogression 𝑃′ of an arithmetic progression P, and any 𝑓 : 𝑃 →
C we have �����∑

𝑛∈𝑃
𝑓 (𝑛)1𝑃′ (𝑛)

�����∗ =
�����∑
𝑛∈𝑃′

𝑓 (𝑛)

�����∗ ≤
�����∑
𝑛∈𝑃

𝑓 (𝑛)

�����∗
and �����∑

𝑛∈𝑃
𝑓 (𝑛)

����� ≤
�����∑
𝑛∈𝑃

𝑓 (𝑛)

�����∗ ≤∑
𝑛∈𝑃

| 𝑓 (𝑛) |.

If P can be partitioned into two subprogressions as 𝑃 = 𝑃1 � 𝑃2, then�����∑
𝑛∈𝑃

𝑓 (𝑛)

�����∗ ≤
�����∑
𝑛∈𝑃1

𝑓 (𝑛)

�����∗ +
�����∑
𝑛∈𝑃2

𝑓 (𝑛)

�����∗. (2.3)

Finally, the map 𝑓 ↦→ |
∑
𝑛∈𝑃 𝑓 (𝑛) |∗ is a seminorm.

(ii) (Local stability) If 𝑥0 ∈ R, 𝐻 > 0, and 𝑓 : Z→ C, then����� ∑
𝑥0<𝑛≤𝑥0+𝐻

𝑓 (𝑛)

�����∗ ≤ 2
𝐻

∫ 𝑥0+𝐻/2

𝑥0−𝐻/2

����� ∑
𝑥<𝑛≤𝑥+𝐻

𝑓 (𝑛)

�����∗ 𝑑𝑥.

(iii) (Summation by parts) Let P be an arithmetic progression, and let 𝑓 , 𝑔 : 𝑃 → C be functions. Then
we have �����∑

𝑛∈𝑃
𝑓 (𝑛)𝑔(𝑛)

�����∗ ≤ ‖𝑔‖TV(𝑃)

�����∑
𝑛∈𝑃

𝑓 (𝑛)

�����∗ (2.4)

and more generally �����∑
𝑛∈𝑃

𝑓 (𝑛)𝑔(𝑛)

�����∗ ≤ ‖𝑔‖TV(𝑃;𝑞)

�����∑
𝑛∈𝑃

𝑓 (𝑛)

�����∗ (2.5)

for any 𝑞 ≥ 1.
Proof. The claims (i) all follow easily the triangle inequality and the observation that the intersection of
two arithmetic progressions is again an arithmetic progression; for instance, equation (2.3) follows from
the observation that any subprogression 𝑃′ of P is partitioned into subprogressions 𝑃′ ∩ 𝑃1, 𝑃′ ∩ 𝑃2 of
𝑃1, 𝑃2, respectively. To prove (ii), we observe from (i) that for any 0 < 𝑡 < 𝐻/2 we have����� ∑

𝑥0<𝑛≤𝑥0+𝐻
𝑓 (𝑛)

�����∗ ≤
������ ∑
𝑥0<𝑛≤𝑥0+𝐻/2

𝑓 (𝑛)

������
∗

+

������ ∑
𝑥0+𝐻/2<𝑛≤𝑥0+𝐻

𝑓 (𝑛)

������
∗

≤

����� ∑
𝑥0−𝑡<𝑛≤𝑥0−𝑡+𝐻

𝑓 (𝑛)

�����∗ +
����� ∑
𝑥0+𝑡<𝑛≤𝑥0+𝑡+𝐻

𝑓 (𝑛)

�����∗
and the claim then follows by averaging in t.
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To prove the first claim (2.4) of (iii), it will suffice by the monotonicity properties of total variation
and maximal sums to show that�����∑

𝑛∈𝑃′
𝑓 (𝑛)𝑔(𝑛)

����� ≤ ‖𝑔‖TV(𝑃′)

�����∑
𝑛∈𝑃′

𝑓 (𝑛)

�����∗ (2.6)

for all subprogressions 𝑃′ of P. Clearly, we may assume 𝑃′ is nonempty. If we order the elements of 𝑃′

as 𝑛1 < 𝑛2 < · · · < 𝑛𝑘 , then from summation by parts we have∑
𝑛∈𝑃′

𝑓 (𝑛)𝑔(𝑛) =
𝑘−1∑
𝑗=1

(𝑔(𝑛 𝑗 ) − 𝑔(𝑛 𝑗+1))
𝑗∑

𝑖=1
𝑓 (𝑛𝑖) + 𝑔(𝑛𝑘 )

𝑘∑
𝑖=1

𝑓 (𝑛𝑖).

Since each segment {𝑛1, . . . , 𝑛 𝑗 } of 𝑃′ is again a subprogression of 𝑃′, we have from the triangle
inequality that �����∑

𝑛∈𝑃′
𝑓 (𝑛)𝑔(𝑛)

����� ≤ 𝑘−1∑
𝑗=1

|𝑔(𝑛 𝑗 ) − 𝑔(𝑛 𝑗+1) |

�����∑
𝑛∈𝑃′

𝑓 (𝑛)

�����∗ + |𝑔(𝑛𝑘 ) |
�����∑
𝑛∈𝑃′

𝑓 (𝑛)

�����∗
and the claim (2.6) now follows from Definition 2.1. Thus, equation (2.4) holds. To prove the second
claim (2.5), partition P into subprogressions 𝑃 ∩ (𝑎 + 𝑞Z), apply equation (2.4) to each subprogression
and sum using (i). �

2.2. Vinogradov lemma

If 𝑃 : Z → R/Z is a polynomial of degree d, and I is an interval of length |𝐼 | ≥ 1, we define the
smoothness norm

‖𝑃‖𝐶∞ (𝐼 ) � sup
0≤ 𝑗≤𝑑

sup
𝑛∈𝐼

|𝐼 | 𝑗 ‖𝜕 𝑗
1 𝑃(𝑛)‖R/Z,

where 𝜕1 is the difference operator 𝜕1𝑃(𝑛) � 𝑃(𝑛) − 𝑃(𝑛 − 1). We remark that this definition deviates
very slightly from that in [19, Definition 2.7]; in particular, we allow the index j to equal zero and we
allow n to range over I rather than being set to the origin. We use the same notation ‖𝑃‖𝐶∞ (𝐼 ) for a
polynomial 𝑃 : Z→ R after reducing its coefficients modulo 1.

The following lemma asserts, roughly speaking, that a polynomial P is (somewhat) equidistributed
unless it is smooth.
Lemma 2.3 (Vinogradov lemma). Let 0 < 𝜀, 𝛿 < 1/2, 𝑑 ≥ 0, and let 𝑃 : Z→ R/Z be a polynomial of
degree at most d. Let I be an interval of length |𝐼 | ≥ 1, and suppose that

‖𝑃(𝑛)‖R/Z ≤ 𝜀

for at least 𝛿 |𝐼 | integers 𝑛 ∈ 𝐼. Then either 𝛿 �𝑑 𝜀, or else one has

‖𝑞𝑃‖𝐶∞ (𝐼 ) �𝑑 𝛿−𝑂𝑑 (1)𝜀

for some integer 1 ≤ 𝑞 �𝑑 𝛿−𝑂𝑑 (1) .
Proof. By applying a translation, we may assume that I takes the form (0, 𝑁] for some 𝑁 ≥ 1. We may
also assume 𝜀 ≤ 𝛿/2, since we are clearly done otherwise. We may now invoke [19, Lemma 4.5] to
conclude that there exists 1 ≤ 𝑞 �𝑑 𝛿−𝑂𝑑 (1)𝜀 such that

sup
1≤ 𝑗≤𝑑

sup
𝑛∈𝐼

|𝐼 | 𝑗 ‖𝑞𝜕
𝑗

1 𝑃(𝑛)‖R/Z �𝑑 𝛿−𝑂𝑑 (1)𝜀. (2.7)
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This is almost what we want, except that we have to also control the 𝑗 = 0 contribution. But from
hypothesis, we have at least one 𝑛0 ∈ 𝐼 such that ‖𝑃(𝑛0)‖R/Z ≤ 𝜀, and from equation (2.7) we have
‖𝑞𝜕1𝑃(𝑛)‖R/Z �𝑑 𝛿−𝑂𝑑 (1) |𝐼 |−1𝜀 for all 𝑛 ∈ 𝐼. From the triangle inequality, we then conclude that

‖𝑞𝑃(𝑛)‖R/Z �𝑑 𝛿−𝑂𝑑 (1)𝜀

for all 𝑛 ∈ 𝐼, and the claim follows. �

The following handy corollary of Lemma 2.3 asserts, roughly speaking, that if many dilates of a
polynomial are smooth, then the polynomial itself is smooth.

Corollary 2.4 (Concatenating dilated smoothness). Let 0 < 𝛿 < 1/2, 𝑑 ≥ 0, and let 𝑃 : Z→ R/Z be a
polynomial of degree at most d. Let 𝐴 ≥ 1, let I be an interval with |𝐼 | ≥ 2𝐴 and suppose that

‖𝑃(𝑎·)‖𝐶∞ ( 1
𝑎 𝐼 )

≤ 1
𝛿

(2.8)

for at least 𝛿𝐴 integers a in [𝐴, 2𝐴], where 1
𝑎 𝐼 � { 𝑡𝑎 : 𝑡 ∈ 𝐼} is the dilate of I by 1

𝑎 . Then either
|𝐼 | �𝑑 𝛿−𝑂𝑑 (1) 𝐴, or else one has

‖𝑞𝑃‖𝐶∞ (𝐼 ) �𝑑 𝛿−𝑂𝑑 (1)

for some integer 1 ≤ 𝑞 �𝑑 𝛿−𝑂𝑑 (1) .

Proof. We allow all implied constants to depend on d. We may assume that |𝐼 | ≥ 𝐶𝛿−𝐶 𝐴 for a large
constant C depending on d, as the claim is immediate otherwise.

We now claim that for each 0 ≤ 𝑗 ≤ 𝑑 that there exists a decomposition

𝑃 = 𝑃 𝑗 +𝑄 𝑗 , (2.9)

where 𝑃 𝑗 : Z→ R/Z is a polynomial of degree at most d with

‖𝑞 𝑗𝑃 𝑗 ‖𝐶∞ (𝐼 ) � 𝛿−𝑂 (1) (2.10)

for some 1 ≤ 𝑞 𝑗 � 𝛿−𝑂 (1) , and 𝑄 𝑗 : Z→ R/Z is a polynomial of degree at most j. For 𝑗 = 𝑑, one can
simply set 𝑃𝑑 = 0 and 𝑄𝑑 = 𝑃. Now, suppose by downward induction that 0 ≤ 𝑗 < 𝑑 and the claim has
already been proven for 𝑗 + 1. From equation (2.10) (for 𝑃 𝑗+1), we have

‖𝑞 𝑗+1𝑃 𝑗+1‖𝐶∞ (𝐼 ) � 𝛿−𝑂 (1) .

Routine Taylor expansion then gives

‖𝑞 𝑗+1𝑃 𝑗+1 (𝑎·)‖𝐶∞ ( 1
𝑎 𝐼 )

� 𝛿−𝑂 (1)

for all 𝑎 ∈ [𝐴, 2𝐴], thus by equation (2.8) and the triangle inequality we have

‖𝑞 𝑗+1𝑄 𝑗+1 (𝑎·)‖𝐶∞ ( 1
𝑎 𝐼 )

� 𝛿−𝑂 (1)

for ≥ 𝛿𝐴 choices of 𝑎 ∈ [𝐴, 2𝐴].
Now, write 𝑄 𝑗+1 (𝑛) = 𝛼 𝑗+1

( 𝑛
𝑗+1
)
+ 𝑄 𝑗 (𝑛), where 𝑄 𝑗 is of degree at most j. Taking 𝑗 + 1-fold

derivatives, we see that

‖𝑎 𝑗+1𝑞 𝑗+1𝛼 𝑗+1‖R/Z � 𝛿−𝑂 (1) (𝐴/|𝐼 |) 𝑗+1
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for ≥ 𝛿𝐴 choices of 𝑎 ∈ [𝐴, 2𝐴]. Applying Lemma 2.3 to the polynomial 𝑎 → 𝑎 𝑗+1𝑞 𝑗+1𝛼 𝑗+1 (and
recalling that |𝐼 |/𝐴 ≥ 𝐶𝛿−𝐶 for a suitably large C by assumption), we conclude that there is 1 ≤ 𝑞 �
𝛿𝑂 (1) such that

‖𝑞(·) 𝑗+1𝑞 𝑗+1𝛼 𝑗+1‖𝐶∞ ( [𝐴,2𝐴]) � 𝛿−𝑂 (1) (𝐴/|𝐼 |) 𝑗+1

and hence on taking 𝑗 + 1-fold derivatives

‖( 𝑗 + 1)!𝑞𝑞 𝑗+1𝛼 𝑗+1‖R/Z � 𝛿−𝑂 (1) |𝐼 |− 𝑗−1.

If one then sets 𝑞 𝑗 � ( 𝑗 + 1)!𝑞𝑞 𝑗+1 and 𝑃 𝑗 (𝑛) � 𝑃 𝑗+1 (𝑛) + 𝛼 𝑗+1
( 𝑛
𝑗+1
)
, we obtain the decomposition

(2.9), and equation (2.10) follows from the triangle inequality. This closes the induction. Applying the
claim with 𝑗 = 0, we obtain the corollary. �

2.3. Equidistribution on nilmanifolds

We now recall some of the basic notation and results from [19] concerning equidistribution of polynomial
maps on nilmanifolds.

Definition 2.5 (Filtered group). Let 𝑑 ≥ 1. A filtered group is a group G (which we express in
multiplicative notation 𝐺 = (𝐺, ·) unless explicitly indicated otherwise) equipped with a filtration
𝐺• = (𝐺𝑖)∞𝑖=0 of nested groups 𝐺 ≥ 𝐺0 ≥ 𝐺1 ≥ . . . such that [𝐺𝑖 , 𝐺 𝑗 ] ≤ 𝐺𝑖+ 𝑗 for all 𝑖, 𝑗 ≥ 0. We
say that this group has degree at most d if 𝐺𝑖 is trivial for all 𝑖 > 𝑑. Given a filtered group of degree at
most d, a polynomial map 𝑔 : Z → 𝐺 from Z to G is a map of the form 𝑔(𝑛) = 𝑔0𝑔

(𝑛1)
1 . . . 𝑔

(𝑛𝑑)
𝑑 , where

𝑔𝑖 ∈ 𝐺𝑖 for all 0 ≤ 𝑖 ≤ 𝑑; the collection of such maps will be denoted Poly(Z→ 𝐺).

The well-known Lazard–Leibman theorem (see, e.g., [19, Proposition 6.2]) asserts that Poly(Z→ 𝐺)
is a group under pointwise multiplication; also, from [19, Corollary 6.8] we see that if 𝑔 : Z → 𝐺 is a
polynomial map then so is 𝑛 ↦→ 𝑔(𝑎𝑛 + 𝑏) for any integers 𝑎, 𝑏.

If G is a simply connected nilpotent Lie group, we write log 𝐺 for the Lie algebra. From the
Baker–Campbell–Hausdorff formula,4 (see, e.g., [22, Theorem 3.3]) we see that the exponential map
exp: log 𝐺 → 𝐺 is a homeomorphism and hence has an inverse log: 𝐺 → log 𝐺.

Definition 2.6 (Filtered nilmanifolds). Let 𝑑, 𝐷 ≥ 1 and 0 < 𝛿 < 1. A filtered nilmanifold 𝐺/Γ of
degree at most d, dimension D, and complexity at most 1/𝛿 consists of the following data:

• A filtered simply connected nilpotent Lie group G of dimension D equipped with a filtration 𝐺• =
(𝐺𝑖)∞𝑖=0 of degree at most d, with 𝐺0 = 𝐺1 = 𝐺 and all 𝐺𝑖 closed connected subgroups of G.

• A lattice (i.e., a discrete cocompact subgroup Γ) of G, with the property that Γ𝑖 � Γ ∩𝐺𝑖 is a lattice
of 𝐺𝑖 for all 𝑖 ≥ 0.

• A linear basis 𝑋1, . . . , 𝑋𝐷 (which we call a Mal’cev basis) of log 𝐺.

Furthermore, we assume the following axioms:

(i) For all 1 ≤ 𝑖, 𝑗 ≤ 𝐷, we have [𝑋𝑖 , 𝑋 𝑗 ] =
∑
𝑖, 𝑗<𝑘≤𝐷 𝑐𝑖 𝑗𝑘𝑋𝑘 for some rational numbers 𝑐𝑖 𝑗𝑘 of

height at most 1/𝛿.
(ii) For all 0 ≤ 𝑖 ≤ 𝑑, the vector space 𝐺𝑖 is spanned by the 𝑋 𝑗 with 𝐷 − dim 𝐺𝑖 < 𝑗 ≤ 𝐷.

(iii) We have Γ = {exp(𝑛1𝑋1) · · · exp(𝑛𝐷𝑋𝐷) : 𝑛1, . . . , 𝑛𝐷 ∈ Z}.

It is easy to see that 𝐺/Γ has the structure of a smooth compact D-dimensional manifold, which we equip
with a probability Haar measure 𝑑𝜇𝐺/Γ. We define the metric 𝑑𝐺 on G to be the largest right-invariant
metric such that 𝑑𝐺 (exp(𝑡1𝑋1) · · · exp(𝑡𝐷𝑋𝐷), 1) ≤ sup1≤𝑖≤𝐷 |𝑡𝑖 | for all 𝑡1, . . . , 𝑡𝐷 ∈ R. We then define

4The reader may consult [48, Appendix B] for more details on the use of the Baker–Campbell–Hausdorff formula in the context
of quantitative nilmanifold theory.

https://doi.org/10.1017/fmp.2023.28 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2023.28


Forum of Mathematics, Pi 19

a metric 𝑑𝐺/Γ on 𝐺/Γ by the formula 𝑑𝐺/Γ (𝑥, 𝑦) � inf𝑔Γ=𝑥,ℎΓ=𝑦 𝑑𝐺 (𝑔, ℎ). The Lipschitz norm of a
function 𝐹 : 𝐺/Γ → C is defined to be the quantity

sup
𝑥∈𝐺/Γ

|𝐹 (𝑥) | + sup
𝑥,𝑦∈𝐺/Γ:𝑥≠𝑦

|𝐹 (𝑥) − 𝐹 (𝑦) |
𝑑𝐺/Γ (𝑥, 𝑦) .

A horizontal character 𝜂 associated to a filtered nilmanifold is a continuous homomorphism 𝜂 : 𝐺 →
R that maps Γ to the integers.

An element 𝛾 of G is said to be M-rational for some 𝑀 ≥ 1 if one has 𝛾𝑟 ∈ Γ for some natural
number 1 ≤ 𝑟 ≤ 𝑀 . A subnilmanifold 𝐺 ′/Γ′ of 𝐺/Γ (thus, 𝐺 ′ is a closed connected subgroup of G
with Γ′𝑖 � 𝐺 ′

𝑖 ∩ Γ cocompact in 𝐺 ′
𝑖 for all i) is said to be M-rational if each element 𝑋 ′

1, . . . , 𝑋 ′
dim𝐺′

of the Mal’cev basis associated to G is a linear combination of the 𝑋𝑖 with all coefficients rational of
height at most M.

A rational subgroup 𝐺 ′ of complexity at most 1/𝛿 is a closed connected subgroup of G with the
property that log 𝐺 ′ admits a linear basis consisting of dim 𝐺 ′ vectors of the form

∑𝐷
𝑖=1 𝑎𝑖𝑋𝑖 , where

each 𝑎𝑖 is a rational of height at most 1/𝛿.

It is easy to see that every horizontal character takes the form 𝜂(𝑔) = 𝜆(log 𝑔) for some linear
functional 𝜆 : log 𝐺 → R that annihilates log[𝐺, 𝐺] and maps log Γ to the integers. From this, one can
verify that the number of horizontal characters of Lipschitz norm at most 1/𝛿 is at most 𝑂𝑑,𝐷 (𝛿−𝑂𝑑,𝐷 (1) ).

From several applications of Baker–Campbell–Hausdorff formula, we see that if G has degree at
most d and 𝛾1, 𝛾2 ∈ 𝐺 are M-rational, then 𝛾1𝛾2 is 𝑂𝑑 (𝑀𝑂𝑑 (1) )-rational.

We have the following basic dichotomy between equidistribution and smoothness:

Theorem 2.7 (Quantitative Leibman theorem). Let 0 < 𝛿 < 1/2, let 𝑑, 𝐷 ≥ 1, let I be an interval with
|𝐼 | ≥ 1 and let 𝐺/Γ be a filtered nilmanifold of degree at most d, dimension at most D and complexity at
most 1/𝛿. Let 𝐹 : 𝐺/Γ → C be Lipschitz of norm at most 1/𝛿 and of mean zero (i.e.,

∫
𝐺/Γ 𝐹 𝑑𝜇𝐺/Γ = 0).

Suppose that 𝑔 : Z→ 𝐺 is a polynomial map with���∑
𝑛∈𝐼

𝐹 (𝑔(𝑛)Γ)
���∗ ≥ 𝛿 |𝐼 |.

Then there exists a nontrivial horizontal character 𝜂 : 𝐺 → R/Z of Lipschitz norm 𝑂𝑑,𝐷 (𝛿−𝑂𝑑,𝐷 (1) )
such that

‖𝜂 ◦ 𝑔‖𝐶∞ (𝐼 ) �𝑑,𝐷 𝛿−𝑂𝑑,𝐷 (1) .

Proof. By applying a translation, we may assume 𝐼 = (0, 𝑁] for some 𝑁 ≥ 1. The claim now follows
from [59, Theorem 3.5]. �

Let 𝐺/Γ be a filtered nilmanifold of dimension D and complexity at most 1/𝛿, and let 𝐺 ′ be a
rational subgroup of complexity at most 1/𝛿. In [19, Proposition A.10], it is shown that 𝐺 ′/Γ′ can be
equipped with the structure of a filtered nilmanifold of complexity 𝑂𝑑,𝐷 (𝛿−𝑂𝑑,𝐷 (1) ), where Γ′ � Γ∩𝐺 ′,
𝐺 ′
𝑖 � 𝐺𝑖 ∩ 𝐺 ′, and the metrics 𝑑𝐺 , 𝑑𝐺′ are comparable on 𝐺 ′ up to factors of 𝑂𝑑,𝐷 (𝛿−𝑂𝑑,𝐷 (1) ); one

can view 𝐺 ′/Γ′ as a subnilmanifold of 𝐺/Γ.
One can easily verify from basic linear algebra and the Baker–Campbell–Hausdorff formula that the

following groups are rational subgroups of G of complexity 𝑂𝑑,𝐷 (𝛿−𝑂𝑑,𝐷 (1) ):

• The groups 𝐺𝑖 in the filtration for 0 ≤ 𝑖 ≤ 𝑑.
• The kernel ker 𝜂 of any horizontal character 𝜂 of Lipschitz norm 𝑂𝑑,𝐷 (𝛿−𝑂𝑑,𝐷 (1) ).
• The center 𝑍 (𝐺) = {exp(𝑋) : 𝑋 ∈ log 𝐺; [𝑋,𝑌 ] = 0 ∀𝑌 ∈ log 𝐺} of G.
• The intersection 𝐺 ′ ∩ 𝐺 ′′ or commutator [𝐺 ′, 𝐺 ′′] of two rational subgroups 𝐺 ′, 𝐺 ′′ of G of com-

plexity 𝑂𝑑,𝐷 (𝛿−𝑂𝑑,𝐷 (1) ).
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• The product 𝐺 ′𝑁 of two rational subgroups 𝐺 ′, 𝑁 of G of complexity 𝑂𝑑,𝐷 (𝛿−𝑂𝑑,𝐷 (1) ), with N
normal.
We can quotient out a filtered nilmanifold by a normal subgroup to obtain another filtered nilmanifold,

with polynomial control on complexity:
Lemma 2.8 (Quotienting by a normal subgroup). Let 𝐺/Γ be a filtered nilmanifold of degree at most d,
dimension D and complexity at most 1/𝛿. Let N be a normal rational subgroup of G of complexity at most
1/𝛿, and let 𝜋 : 𝐺 ↦→ 𝐺/𝑁 be the quotient map. Then 𝜋(𝐺)/𝜋(Γ) can be given the structure of a filtered
nilmanifold of degree at most d, dimension 𝐷 − dim 𝑁 , and complexity 𝑂𝑑,𝐷 (𝛿−𝑂𝑑,𝐷 (1) ) such that

𝑑𝜋 (𝐺) (𝜋(𝑔), 𝜋(ℎ)) �𝑑,𝐷 𝛿−𝑂𝑑,𝐷 (1) inf
𝑛∈N

𝑑𝐺 (𝑔, 𝑛ℎ) (2.11)

for any 𝑔, ℎ ∈ 𝐺.
Proof. We allow all implied constants to depend on 𝑑, 𝐷. Let �̃� : log 𝐺 → log 𝐺/log 𝑁 ≡ log(𝐺/𝑁) be
the quotient map of log 𝐺 by the Lie algebra ideal log 𝑁 , then 𝜋 ◦ exp = exp ◦�̃�. For each 0 ≤ 𝑖 ≤ 𝑑, the
vectors �̃�(𝑋 𝑗 ) for 𝐷 − dim 𝐺𝑖 < 𝑗 ≤ 𝐷 span the linear subspace �̃�(log 𝐺𝑖) of log(𝐺/𝑁), and the linear
relations between those vectors are are generated by 𝑂 (1) equations with coefficients rational of height
𝑂 (𝛿−𝑂 (1) ). From this and linear algebra, we may find a basis �̃�1, . . . , �̃�dim(𝐺/𝑁 ) of log(𝐺/𝑁) such that
for each 0 ≤ 𝑖 ≤ 𝑑, �̃�(log 𝐺𝑖) is the span of �̃� 𝑗 for dim(𝐺/𝑁) − dim �̃�(log 𝐺𝑖) < 𝑗 ≤ dim(𝐺/𝑁), and
each �̃� 𝑗 is a linear combination of the �̃�(𝑋1), . . . , �̃�(𝑋𝐷) with coefficients rational of height 𝑂 (𝛿−𝑂 (1) ).
Meanwhile, 𝜋(Γ) is generated by 𝜋(𝑋1), . . . , 𝜋(𝑋𝐷). From this and the Baker–Campbell–Hausdorff
formula, we see that the basis �̃�1, . . . , �̃�dim(𝐺/𝑁 ) is a 𝑂 (𝛿−𝑂 (1) )-rational weak basis for 𝜋(𝐺)/𝜋(Γ) in
the sense of [19, Definition A.7]. Applying [19, Proposition A.9] to this weak basis, we obtain a Mal’cev
basis that gives 𝜋(𝐺)/𝜋(Γ) the structure of a filtered nilmanifold with the stated degree, dimension and
complexity. It remains to establish the bound (2.11). By right translation invariance, we can take g to be
the identity. For the upper bound, it suffices (since 𝜋 is N-invariant) to show that

𝑑𝜋 (𝐺) (1, 𝜋(ℎ)) � 𝛿−𝑂 (1)𝑑𝐺 (1, ℎ),

but this follows from the fact that �̃� : log 𝐺 → �̃�(log 𝐺) has operator norm 𝑂 (𝛿−𝑂 (1) ) when using the
𝑋1, . . . , 𝑋𝐷 basis for log 𝐺 and the �̃�1, . . . , �̃�dim(𝐺/𝑁 ) basis for �̃�(log 𝐺) to define norms.

Now, we need to establish the lower bound. By [19, Lemma A.4], it suffices to show that

‖𝑌 ‖ � 𝛿−𝑂 (1) inf
𝑌 ′ ∈ �̃�−1 (𝑌 )

‖𝑌 ′‖

for any 𝑌 ∈ �̃�(log 𝐺), where again we use the norm given by the 𝑋1, . . . , 𝑋𝐷 basis for log 𝐺 and the
�̃�1, . . . , �̃�dim(𝐺/𝑁 ) . But this is easily verified for each 𝑌 = �̃�𝑖 , and the claim then follows by linearity. �

A central frequency is a continuous homomorphism 𝜉 : 𝑍 (𝐺) → R which maps 𝑍 (𝐺) ∩ Γ to the
integers Z (that is to say, a horizontal character on 𝑍 (𝐺), or a Fourier character of the central torus
𝑍 (𝐺)/(𝑍 (𝐺) ∩ Γ)). A function 𝐹 : 𝐺/Γ → C is said to oscillate with central frequency 𝜉 if one has the
identity

𝐹 (𝑧𝑥) = 𝑒(𝜉 (𝑧))𝐹 (𝑥)

for all 𝑥 ∈ 𝐺/Γ and 𝑧 ∈ 𝑍 (𝐺). As with horizontal characters, the number of central frequencies 𝜉 of
Lipschitz norm at most 1/𝛿 is 𝑂𝑑,𝐷 (𝛿−𝑂𝑑,𝐷 (1) ). If 𝜉 is such a central frequency, one can readily verify
that the kernel ker 𝜉 is a rational normal subgroup of G of complexity 𝑂𝑑,𝐷 (𝛿−𝑂𝑑,𝐷 (1) ).

We have the following convenient decomposition5 (cf., [19, Lemma 3.7]):

5The decomposition in [19] uses the action of the vertical group 𝐺𝑑 (which is a subgroup of the center 𝑍 (𝐺)) rather than the
entire center, but the arguments are otherwise nearly identical. One can think of Proposition 2.9 as a slight refinement of [19,
Lemma 3.7], in that the components exhibit central oscillation rather than merely vertical oscillation.
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Proposition 2.9 (Central Fourier approximation). Let 𝑑, 𝐷 ≥ 1 and 0 < 𝛿 < 1. Let 𝐺/Γ be a filtered
nilmanifold of degree at most d, dimension D and complexity at most 1/𝛿. Let 𝐹 : 𝐺/Γ → C be a
Lipschitz function of norm at most 1/𝛿. Then we can decompose

𝐹 =
∑
𝜉

𝐹𝜉 +𝑂 (𝛿),

where 𝜉 ranges over central frequencies of Lipschitz norm at most 𝑂𝑑,𝐷 (𝛿−𝑂𝑑,𝐷 (1) ), and each 𝐹𝜉 has
Lipschitz norm 𝑂𝑑,𝐷 (𝛿−𝑂𝑑,𝐷 (1) ) and oscillates with central frequency 𝜉. Furthermore, if F has mean
zero, then so do all of the 𝐹𝜉 .

Proof. We allow all implied constants to depend on 𝑑, 𝐷. Since 𝑍 (𝐺)/(𝑍 (𝐺) ∩Γ) is an abelian filtered
nilmanifold of complexity 𝑂 (𝛿−𝑂 (1) ), it can be identified with a torus R𝑚/Z𝑚, where 𝑚 = 𝑂 (1) and
the metric on 𝑍 (𝐺) is comparable to the metric on R𝑚 up to factors of 𝑂 (𝛿−𝑂 (1) ); the identification
of log 𝑍 (𝐺) with R𝑚 induces a logarithm map log: 𝑍 (𝐺) → R𝑚 and an exponential map exp: R𝑚 →
𝑍 (𝐺). Central frequencies 𝜉 can then be identified with elements 𝑘 𝜉 of Z𝑚, with 𝜉 (𝑧) = 𝑘 𝜉 · log(𝑧) for
any 𝑧 ∈ 𝑍 (𝐺).

Let 𝜑 : R𝑚 → R be a fixed bump function (depending only on m) that equals 1 at the origin, and let
𝑅 > 1 be a parameter to be chosen later. For any central frequency 𝜉, we set

𝐹𝜉 (𝑥) � 𝜑(𝑘 𝜉 /𝑅)
∫
R𝑚/Z𝑚

𝐹 (𝑧𝑥)𝑒(−𝜉 (𝑧)) 𝑑𝑧,

where 𝑑𝑧 is Haar probability measure on the torus R𝑚/Z𝑚, which acts centrally on 𝐺/Γ in the obvious
fashion. It is easy to see that 𝐹𝜉 has Lipschitz norm 𝑂 (𝛿−𝑂 (1) ), oscillates with central frequency 𝜉, and
vanishes unless 𝜉 has Lipschitz norm 𝑂 (𝛿−𝑂 (1)𝑅𝑂 (1) ); also, if F has mean zero, then so do all of the
𝐹𝜉 . From the Fourier inversion formula, we have

𝜑(𝑘 𝜉 /𝑅) =
∫
R𝑚

�̂�(𝑦)𝑒(𝑘 𝜉 · 𝑦/𝑅) 𝑑𝑦 =
∫
R𝑚

�̂�(𝑦)𝑒(𝜉 (exp(𝑦/𝑅))) 𝑑𝑦,

where �̂�(𝑦) �
∫
R𝑚

𝜑(𝜁)𝑒(−𝜁 · 𝑦) 𝑑𝜁 , as well as the Fourier inversion formula on the torus,∑
𝜉

𝐹𝜉 (𝑥) =
∫
R𝑚

�̂�(𝑦)𝐹 (exp(𝑦/𝑅)𝑥) 𝑑𝑦.

On the other hand, from the Lipschitz nature of F we have

𝐹 (exp(𝑦/𝑅)𝑥) = 𝐹 (𝑥) +𝑂 (𝛿−𝑂 (1) |𝑦 |/𝑅).

Since �̂� is rapidly decreasing and has total integral 1, we obtain

𝐹 =
∑
𝜉

𝐹𝜉 +𝑂 (𝛿−𝑂 (1) /𝑅),

and the claim follows by choosing 𝑅 = 𝑂 (𝛿−𝑂 (1) ) suitably. �

Next, we shall recall a fundamental factorization theorem for polynomial sequences. Before we can
state it, we need to define a few notions.

Definition 2.10 (Smoothness, total equidistribution, rationality). Let 𝐺/Γ be a filtered nilmanifold,
𝑔 ∈ Poly(Z→ 𝐺) be a polynomial sequence, 𝐼 ⊂ R be an interval of length |𝐼 | ≥ 1, and 𝑀 > 0.
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(i) We say that g is (𝑀, 𝐼)-smooth if one has

𝑑𝐺 (𝑔(𝑛), 1𝐺) ≤ 𝑀; 𝑑𝐺 (𝑔(𝑛), 𝑔(𝑛 − 1)) ≤ 𝑀/|𝐼 |

for all 𝑛 ∈ 𝐼.
(ii) We say that g is totally 1/𝑀-equidistributed in 𝐺/Γ on I if one has����� 1

|𝑃 |
∑
𝑛∈𝑃

𝐹 (𝑔(𝑛)Γ) −
∫
𝐺/Γ

𝐹

����� ≤ 1
𝑀
‖𝐹‖Lip

whenever 𝐹 : 𝐺/Γ → C is Lipschitz and P is an arithmetic progression in I of cardinality at least
|𝐼 |/𝑀 .

(iii) We say that g is M-rational if there exists 1 ≤ 𝑟 ≤ 𝑀 such that 𝑔(𝑛)𝑟 ∈ Γ for all 𝑛 ∈ Z.

From Taylor expansion and the Baker–Campbell–Hausdorff formula, it is not difficult to see that if
𝐺/Γ has degree at most d and g is M-rational, then the map 𝑛 ↦→ 𝑔(𝑛)Γ is q-periodic for some period
1 ≤ 𝑞 �𝑑 𝑀𝑂𝑑 (1) .

Lemma 2.11. Let 𝑑, 𝐷 ≥ 1 and 0 < 𝛿 < 1. Let 𝐺/Γ be a filtered nilmanifold of degree at most d,
dimension D and complexity at most 1/𝛿. Let 𝑔 ∈ Poly(Z → 𝐺), and let I be an interval with |𝐼 | ≥ 1.
Suppose that

‖𝜂 ◦ 𝑔‖𝐶∞ (𝐼 ) ≤ 1/𝛿 (2.12)

for some nontrivial horizontal character 𝜂 : 𝐺 → R/Z of Lipschitz norm at most 1/𝛿. Then there is a
decomposition 𝑔 = 𝜀𝑔′𝛾 into polynomial maps 𝜀, 𝑔′, 𝛾 ∈ Poly(Z→ 𝐺) such that

(i) 𝜀 is (𝛿−𝑂𝑑,𝐷 (1) , 𝐼)-smooth;
(ii) 𝑔′ takes values in 𝐺 ′ = ker 𝜂;

(iii) 𝛾 is 𝛿−𝑂𝑑,𝐷 (1) -rational.

Proof. This is a slight variant of [19, Lemma 7.9], the main difference being that our hypothesis (2.12)
involves 𝜂 ◦ 𝑔 rather than 𝜂 ◦ 𝑔2 (where 𝑔2 is the nonlinear part of g). The argument in the proof of
[19, Lemma 7.9] can be modified in an obvious manner as follows. By translation, we may assume that
𝐼 = [1, |𝐼 |]. Let 𝜓 : 𝐺 → R𝐷 be the Mal’cev coordinate map. Suppose that

𝜓(𝑔(𝑛)) = 𝑡0 +
(
𝑛

1

)
𝑡1 +
(
𝑛

2

)
𝑡2 + · · · +

(
𝑛

𝑑

)
𝑡𝑑

for some 𝑡0, 𝑡1, · · · , 𝑡𝑑 ∈ R𝐷 with 𝜓−1 (𝑡𝑖) ∈ 𝐺𝑖 . Our assumption on ‖𝜂 ◦ 𝑔‖𝐶∞ (𝐼 ) implies that for some
𝑘 ∈ Z𝐷 with |𝑘 | ≤ 𝛿−1, we have

‖𝑘 · 𝑡𝑖 ‖R/Z � 𝛿−𝑂𝑑,𝐷 (1) /|𝐼 |

for each 1 ≤ 𝑖 ≤ 𝑑. Choose 𝑢𝑖 ∈ R𝐷 with 𝜓−1(𝑢𝑖) ∈ 𝐺𝑖 such that

𝑘 · 𝑢𝑖 ∈ Z, |𝑡𝑖 − 𝑢𝑖 | � 𝛿−𝑂𝑑,𝐷 (1) /|𝐼 |.

Then choose 𝑣𝑖 ∈ R𝐷 with 𝜓−1 (𝑣𝑖) ∈ 𝐺𝑖 , all of whose coordinates are rationals over some denominator
� 𝛿−𝑂𝑑,𝐷 (1) , such that

𝑘 · 𝑢𝑖 = 𝑘 · 𝑣𝑖
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for each 1 ≤ 𝑖 ≤ 𝑑. Define 𝜀, 𝛾 by

𝜓(𝜀(𝑛)) = 𝑡0 +
𝑑∑
𝑖=1

(
𝑛

𝑖

)
(𝑡𝑖 − 𝑢𝑖), 𝜓(𝛾(𝑛)) =

𝑑∑
𝑖=1

(
𝑛

𝑖

)
𝑣𝑖 ,

and then define 𝑔′ by

𝑔′(𝑛) = 𝜀(𝑛)−1𝑔(𝑛)𝛾(𝑛)−1.

One can verify that they satisfy the desired properties. �

Theorem 2.12 (Factorization theorem). Let 𝑑, 𝐷 ≥ 1 and 0 < 𝛿 < 1. Let 𝐺/Γ be a filtered nilmanifold
of degree at most d, dimension D and complexity at most 1/𝛿. Let 𝑔 ∈ Poly(Z → 𝐺) and 𝐴 > 0,
and let I be an interval with |𝐼 | ≥ 1. Then there exists an integer 1/𝛿 ≤ 𝑀 �𝐴,𝐷,𝑑 𝛿−𝑂𝐴,𝐷,𝑑 (1) and a
decomposition 𝑔 = 𝜀𝑔′𝛾 into polynomial maps 𝜀, 𝑔′, 𝛾 ∈ Poly(Z→ 𝐺) such that

(i) 𝜀 is (𝑀, 𝐼)-smooth;
(ii) There is an M-rational subnilmanifold 𝐺 ′/Γ′ of 𝐺/Γ such that 𝑔′ takes values in 𝐺 ′ and is totally

1/𝑀𝐴-equidistributed on I in 𝐺 ′/Γ′, and more generally in 𝐺 ′/Γ′′ whenever Γ′′ is a subgroup of
Γ′ of index at most 𝑀𝐴; and

(iii) 𝛾 is M-rational.

Proof. See [19, Theorem 1.19] (after rounding I to integer endpoints and translating to be of the form
[1, 𝑁]). The additional requirement in (ii) that one has equidistribution in the larger nilmanifolds 𝐺 ′/Γ′′
is not stated in [19, Theorem 1.19] but follows easily from the proof, the point being that if a sequence
𝑔′ ∈ Poly(Z→ 𝐺 ′) fails to be totally 1/𝑀𝐴-equidistributed in 𝐺 ′/Γ′′, then one has ‖𝜂◦𝑔′‖𝐶∞ (𝐼 ) �𝑑,𝐷

𝑀𝑂𝑑,𝐷 (𝐴) for some nontrivial horizontal character 𝜂 on 𝐺 ′/Γ′′ of Lipschitz norm 𝑂𝑑,𝐷 (𝑀𝑂𝑑,𝐷 (𝐴) ),
which on multiplying 𝜂 by the index of Γ′′ in Γ′ also gives ‖𝜂′ ◦ 𝑔′‖𝐶∞ (𝐼 ) �𝑑,𝐷 𝑀𝑂𝑑,𝐷 (𝐴) for some
nontrivial horizontal character 𝜂′ on 𝐺 ′/Γ′ of Lipschitz norm 𝑂𝑑,𝐷 (𝑀𝑂𝑑,𝐷 (𝐴) ). As a consequence,
one can replace all occurrences of 𝐺 ′/Γ′ in the proof of [19, Theorem 1.19] with 𝐺 ′/Γ′′ with only
negligible changes to the arguments. �

We will also need a multidimensional version of this theorem.

Theorem 2.13 (Multidimensional factorization theorem). Let 𝑡, 𝑑, 𝐷 ≥ 1 and 0 < 𝛿 < 1. Let 𝐺/Γ be a
filtered nilmanifold of degree at most d, dimension D and complexity at most 1/𝛿. Let 𝑔 ∈ Poly(Z𝑡 → 𝐺)
and 𝐴 > 0, and let 𝐼1, . . . , 𝐼𝑡 intervals with |𝐼1 |, . . . , |𝐼𝑡 | ≥ 𝐶𝛿−𝐶 , for some C that is sufficiently
large depending on 𝑡, 𝑑, 𝐷, 𝐴. Then there exists an integer 1/𝛿 ≤ 𝑀 �𝐴,𝐷,𝑑,𝑡 𝛿−𝑂𝐴,𝐷,𝑑,𝑡 (1) and a
decomposition 𝑔 = 𝜀𝑔′𝛾 into polynomial maps 𝜀, 𝑔′, 𝛾 ∈ Poly(Z𝑡 → 𝐺) such that

(i) 𝜀 is (𝑀, 𝐼1×· · ·× 𝐼𝑡 )-smooth, in the sense that 𝑑𝐺 (𝜀(𝑛), 1𝐺) ≤ 𝑀 and 𝑑𝐺 (𝜀(𝑛+𝑒𝑖), 1𝐺) ≤ 𝑀/|𝐼𝑖 |
for all 𝑛 ∈ 𝐼1 × · · · × 𝐼𝑡 and 𝑖 = 1, . . . , 𝑡, where 𝑒1, . . . , 𝑒𝑡 are the standard basis of Z𝑑;

(ii) There is an M-rational subnilmanifold 𝐺 ′/Γ′ of 𝐺/Γ such that 𝑔′ takes values in 𝐺 ′ and is totally
1/𝑀𝐴-equidistributed in 𝐺 ′/Γ′, and more generally in 𝐺 ′/Γ′′ whenever Γ′′ is a subgroup of Γ′ of
index at most 𝑀𝐴, in the sense that����� 1

|𝑃1 × · · · × 𝑃𝑡 |
∑

𝑛∈𝑃1×···×𝑃𝑡
𝐹 (𝑔′(𝑛)Γ) −

∫
𝐺′/Γ′′

𝐹

����� ≤ 1
𝑀
‖𝐹‖Lip

whenever 𝐹 : 𝐺/Γ → C is Lipschitz and for each 𝑖 = 1, . . . , 𝑡, 𝑃𝑖 is an arithmetic progression in 𝐼𝑖
of cardinality at least |𝐼𝑖 |/𝑀; and

(iii) 𝛾 is M-rational, in the sense that there exists 1 ≤ 𝑟 ≤ 𝑀 such that 𝑔(𝑛)𝑟 ∈ Γ for all 𝑛 ∈ Z𝑡 .

Proof. This follows from [19, Theorem 10.2], after implementing the corrections in [20], and the
modifications indicated in the proof of Theorem 2.12. �
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As a first application of Theorem 2.12, we can obtain a criterion for correlation between nilsequences
with a nontrivial central frequency:

Proposition 2.14 (Correlation criterion). Let 𝑑, 𝐷 ≥ 1 and 0 < 𝛿 < 1. Let 𝐺/Γ be a filtered nilmanifold
of degree at most d, dimension D and complexity at most 1/𝛿, whose center 𝑍 (𝐺) is one-dimensional.
Let 𝑔1, 𝑔2 ∈ Poly(Z→ 𝐺), let I be an interval with |𝐼 | ≥ 1 and let 𝐹 : 𝐺/Γ → C be Lipschitz of norm
at most 1/𝛿 and having a nonzero central frequency 𝜉. Suppose that one has the correlation�����∑

𝑛∈𝐼
𝐹 (𝑔1 (𝑛)Γ)𝐹 (𝑔2 (𝑛)Γ)

�����∗ ≥ 𝛿 |𝐼 |.

Then at least one of the following holds:

(i) There exists a nontrivial horizontal character 𝜂 : 𝐺 → R/Z of Lipschitz norm 𝑂𝑑,𝐷 (𝛿−𝑂𝑑,𝐷 (1) )
such that ‖𝜂 ◦ 𝑔𝑖 ‖𝐶∞ (𝐼 ) �𝑑,𝐷 𝛿−𝑂𝑑,𝐷 (1) for some 𝑖 ∈ {1, 2}.

(ii) There exists a factorization

𝑔2 = 𝜀(𝜙 ◦ 𝑔1)𝛾

where 𝜀 is (𝑂𝑑,𝐷 (𝛿−𝑂𝑑,𝐷 (1) ), 𝐼)-smooth, 𝜙 : 𝐺 → 𝐺 is a Lie group automorphism whose associated
Lie algebra isomorphism log 𝜙 : log 𝐺 → log 𝐺 has matrix coefficients that are all rational of height
𝑂𝑑,𝐷 (𝛿−𝑂𝑑,𝐷 (1) ) in the Mal’cev basis 𝑋1, . . . , 𝑋𝐷 of log 𝐺, and 𝛾 is 𝑂𝑑,𝐷 (𝛿−𝑂𝑑,𝐷 (1) )-rational.

Proof. We allow all implied constants to depend on 𝑑, 𝐷. The product of the filtered nilmanifold 𝐺/Γ
with itself is again a filtered nilmanifold (𝐺×𝐺)/(Γ×Γ), with the obvious filtration (𝐺×𝐺)𝑖 � 𝐺𝑖×𝐺𝑖

and Mal’cev basis (𝑋𝑖 , 0), (0, 𝑋𝑖), 𝑖 = 1, . . . , 𝐷. This product filtered nilmanifold has degree at most d,
dimension 2𝐷 and complexity at most 𝑂 (𝛿−𝑂 (1) ). The pair (𝑔1, 𝑔2) can be then viewed as an element
of Poly(Z→ 𝐺 × 𝐺). If we let 𝐹 ⊗ 𝐹 : (𝐺 × 𝐺)/(Γ × Γ) → C be the function

𝐹 ⊗ 𝐹 (𝑥1, 𝑥2) � 𝐹 (𝑥1)𝐹 (𝑥2)

then F is Lipschitz with norm 𝑂 (𝛿−𝑂 (1) ) and one has�����∑
𝑛∈𝐼

𝐹 ⊗ 𝐹 ((𝑔1, 𝑔2) (𝑛) (Γ × Γ))

�����∗ ≥ 𝛿 |𝐼 |. (2.13)

Let 𝐴 > 1 be sufficiently large depending on 𝑑, 𝐷. Applying Theorem 2.12 to (𝑔1, 𝑔2) (with 𝛿 replaced
by 𝛿𝐴), we can find 𝛿−𝐴 ≤ 𝑀 �𝐴 𝛿−𝑂𝐴 (1) and a factorization

(𝑔1, 𝑔2) = (𝜀1, 𝜀2) (𝑔′1, 𝑔′2) (𝛾1, 𝛾2) (2.14)

where 𝜀1, 𝑔′1, 𝛾1 ∈ Poly(Z→ 𝐺1), 𝜀2, 𝑔′2, 𝛾2 ∈ Poly(Z→ 𝐺2) such that

(i) (𝜀1, 𝜀2) is (𝑀, 𝐼)-smooth;
(ii) There is an M-rational subnilmanifold 𝐺 ′/Γ′ of (𝐺 ×𝐺)/(Γ× Γ) such that (𝑔′1, 𝑔′2) takes values in

𝐺 ′ and is totally 1/𝑀𝐴-equidistributed in 𝐺 ′/Γ′′ for any subgroup Γ′′ of Γ′ of index at most 𝑀𝐴;
and

(iii) (𝛾1, 𝛾2) is M-rational.

We caution that 𝐺 ′ is a subgroup of 𝐺 × 𝐺 rather than G. From equation (2.13), we thus have�����∑
𝑛∈𝐼

𝐹 ⊗ 𝐹 ((𝜀1, 𝜀2) (𝑛) (𝑔′1, 𝑔′2) (𝑛) (𝛾1, 𝛾2) (𝑛) (Γ × Γ))

�����∗ ≥ 𝛿 |𝐼 |.
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Since (𝛾1, 𝛾2) is M-rational, it is 𝑂 (𝑀𝑂 (1) )-periodic and then by the pigeonhole principle (and Lemma
2.2(i)) we can thus find M-rational (𝛾0

1 , 𝛾0
2) ∈ 𝐺 × 𝐺 such that�����∑

𝑛∈𝐼
𝐹 ⊗ 𝐹 ((𝜀1, 𝜀2) (𝑛) (𝑔′1, 𝑔′2) (𝑛) (𝛾

0
1 , 𝛾0

2) (Γ × Γ))

�����∗ � 𝑀−𝑂 (1) |𝐼 |.

By shifting 𝛾0
1 , 𝛾0

2 by elements of Γ if necessary we may assume that they lie at distance 𝑂 (𝑀𝑂 (1) )
from the identity. If we partition I into subintervals J of length � 𝑀−𝐶 |𝐼 | for some large constant C, we
see from the pigeonhole principle (and Lemma 2.2(i)) that we can find one such J for which�����∑

𝑛∈𝐽
𝐹 ⊗ 𝐹 ((𝜀1, 𝜀2) (𝑛) (𝑔′1, 𝑔′2) (𝑛) (𝛾

0
1 , 𝛾0

2) (Γ × Γ))

�����∗ � 𝑀−𝑂 (1) |𝐽 |.

As (𝜀1, 𝜀2) is (𝑀, 𝐼)-smooth, it fluctuates by 𝑂 (𝑀1−𝐶 ) on J and stays a distance 𝑂 (𝑀) from the
identity, hence by the Lipschitz nature of 𝐹 ⊗ 𝐹 we conclude (for 𝐶 = 𝑂 (1) large enough) that there
exists (𝜀0

1, 𝜀0
2) ∈ 𝐺 × 𝐺 at distance 𝑂 (𝑀) from the identity such that�����∑

𝑛∈𝐽
𝐹 ⊗ 𝐹 ((𝜀0

1, 𝜀0
2) (𝑔

′
1, 𝑔′2) (𝑛) (𝛾

0
1 , 𝛾0

2) (Γ × Γ))

�����∗ � 𝑀−𝑂 (1) |𝐽 |.

Allowing implied constants to depend on C, we conclude that�����∑
𝑛∈𝐼

𝐹 ⊗ 𝐹 ((𝜀0
1, 𝜀0

2) (𝑔
′
1, 𝑔′2) (𝑛) (𝛾

0
1 , 𝛾0

2) (Γ × Γ))

�����∗ � 𝑀−𝑂 (1) |𝐼 |.

From the Baker–Campbell–Hausdorff formula and the M-rationality of (𝛾0
1 , 𝛾0

2), we see that
(𝛾0

1 , 𝛾0
2) (Γ × Γ) (𝛾0

1 , 𝛾0
2)
−1 can be covered by 𝑂 (𝑀𝑂 (1) ) cosets of Γ × Γ, and conversely. Thus, if we set

Γ′′ � 𝐺 ′ ∩ (Γ × Γ) ∩ (𝛾0
1 , 𝛾0

2) (Γ × Γ) (𝛾0
1 , 𝛾0

2)
−1,

then 𝐺 ′ ∩ (Γ × Γ) can be covered by 𝑂 (𝑀𝑂 (1) ) cosets of Γ′′, thus Γ′′ is a subgroup of 𝐺 ′ ∩ (Γ × Γ) of
index 𝑂 (𝑀𝑂 (1) ) such that

Γ′′(𝛾0
1 , 𝛾0

2) ⊂ (𝛾0
1 , 𝛾0

2) (Γ × Γ). (2.15)

Indeed, one can take Γ′′ to be the intersection of 𝐺 ′ ∩ (Γ × Γ) and (𝛾0
1 , 𝛾0

2) (Γ × Γ) (𝛾0
1 , 𝛾0

2)
−1. One can

then write the above claim as �����∑
𝑛∈𝐼

𝐹 ′((𝑔′1, 𝑔′2) (𝑛)Γ
′′)

�����∗ � 𝑀−𝑂 (1) |𝐼 |,

where 𝐹 ′ : 𝐺 ′/Γ′′ → C is defined by

𝐹 ′((𝑔′1, 𝑔′2)Γ
′′) � 𝐹 (𝜀0

1𝑔′1𝛾0
1Γ)𝐹 (𝜀

0
2𝑔′2𝛾0

2Γ)

for any (𝑔′1, 𝑔′2) ∈ 𝐺 ′, with the inclusion (2.15) ensuring that this function is well-defined. Since F
is Lipschitz with norm 1/𝛿 ≤ 𝑀 , and 𝜀0

1, 𝛾0
1 , 𝜀0

2, 𝛾0
2 are at distance 𝑂 (𝑀𝑂 (1) ) from the identity, this

function is Lipschitz with norm 𝑂 (𝑀𝑂 (1) ), hence by total equidistribution of (𝑔′1, 𝑔′2) we conclude (for
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A large enough) that ����∫
𝐺′/Γ′′

𝐹 ′
���� � 𝑀−𝑂 (1) . (2.16)

Suppose that the slice 𝐻 � {𝑔 ∈ 𝐺 : (𝑔, 1) ∈ 𝐺 ′} is nontrivial. This is a nontrivial closed connected
subgroup of G; by considering the final nontrivial element of the series H, [𝐻, 𝐺], [[𝐻, 𝐺], 𝐺], . . . ,
we conclude that H contains a nontrivial closed connected central subgroup of G. Since 𝑍 (𝐺) is one-
dimensional, we conclude that H contains 𝑍 (𝐺). In particular, 𝐺 ′ contains 𝑍 (𝐺) × {1}.

Since F has central frequency 𝜉, we see that

𝐹 ′((𝑧, 1) (𝑔1, 𝑔2)) = 𝑒(𝜉 · 𝑧)𝐹 ′(𝑔1, 𝑔2)

for all 𝑧 ∈ 𝑍 (𝐺). By invariance of Haar measure, this implies that∫
𝐺′/Γ′′

𝐹 ′ = 𝑒(𝜉 · 𝑧)
∫
𝐺′/Γ′′

𝐹 ′.

Since 𝜉 is nontrivial, this implies that
∫
𝐺′/Γ′′ 𝐹 ′ = 0, contradicting equation (2.16). Thus, the slice

{𝑔 ∈ 𝐺 : (𝑔, 1) ∈ 𝐺 ′} is trivial. Similarly, the slice {𝑔 ∈ 𝐺 : (1, 𝑔) ∈ 𝐺 ′} is trivial.
Now, suppose that the projection 𝐾 � {𝑔1 ∈ 𝐺 : (𝑔1, 𝑔2) ∈ 𝐺 ′ for some 𝑔2 ∈ 𝐺} is not all of G.

This is a proper closed connected subgroup of G with

log 𝐾 = {𝑋 ∈ log 𝐺 : (𝑋,𝑌 ) ∈ log 𝐺 ′ for some 𝑌 ∈ log 𝐺};

thus log 𝐾 is the projection of log 𝐺 ′ to log 𝐺. Since log 𝐺 ′ is 𝑀𝑂 (1) -rational, log 𝐾 is also. Hence,
there exists a nontrivial horizontal character 𝜂 : 𝐺 → R/Z of Lipschitz norm 𝑂 (𝑀𝑂 (1) ) that annihilates
K, so in particular 𝜂(𝑔′1 (𝑛)) = 0 for all n. From equation (2.14), we then have

𝜂(𝑔1 (𝑛)) = 𝜂(𝜀1 (𝑛)) + 𝜂(𝛾1 (𝑛)).

Since 𝛾1 is M-rational, 𝑀𝜂(𝛾1 (𝑛)) = 0. Thus, if we replace 𝜂 by 𝑀𝜂 we have

𝜂(𝑔1 (𝑛)) = 𝜂(𝜀1 (𝑛)).

Since (𝜀1, 𝜀2) is (𝑀, 𝐼) smooth, we thus conclude that

‖𝜂 ◦ 𝑔1‖𝐶∞ (𝐼 ) � 𝑀𝑂 (1)

and we are in conclusion (i) of the proposition. Thus, we may assume that the projection {𝑔1 ∈ 𝐺 :
(𝑔1, 𝑔2) ∈ 𝐺 ′ for some 𝑔2 ∈ 𝐺} is all of G. Similarly, we may assume that {𝑔2 ∈ 𝐺 : (𝑔1, 𝑔2) ∈
𝐺 ′ for some 𝑔1 ∈ 𝐺} is all of G.

Applying Goursat’s lemma, we now conclude that 𝐺 ′ takes the form

𝐺 ′ = {(𝑔1, 𝜙(𝑔1)) : 𝑔1 ∈ 𝐺}

for some group automorphism 𝜙 : 𝐺 → 𝐺. Since 𝐺 ′ is a 𝑂 (𝑀𝑂 (1) )-rational subgroup of 𝐺 ×𝐺, 𝜙 must
be a Lie group automorphism whose associated Lie algebra automorphism log 𝜙 : log 𝐺 → log 𝐺 has
coefficients that are rational of height 𝑂 (𝑀𝑂 (1) ) in the Mal’cev basis. Since (𝑔′1 (𝑛), 𝑔′2 (𝑛)) takes values
in 𝐺 ′, we have

𝑔′2(𝑛) = 𝜙(𝑔′1 (𝑛))
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and hence by equation (2.14) and some rearranging

𝑔2 (𝑛) = 𝜀2 (𝑛)𝜙(𝜀1(𝑛))−1𝜙(𝑔1 (𝑛))𝜙(𝛾1(𝑛))−1𝛾2 (𝑛).

It is then routine to verify that conclusion (ii) of the proposition holds. �

As a consequence of this criterion, we can establish the following large sieve inequality for nilse-
quences, which is a more quantitative variant of the one in [48, Proposition 4.11].
Proposition 2.15 (Large sieve). Let 𝑑, 𝐷 ≥ 1 and 0 < 𝛿 < 1. Let 𝐺/Γ be a filtered nilmanifold of
degree at most d, dimension D and complexity at most 1/𝛿, whose center 𝑍 (𝐺) is one-dimensional. Let
𝑔1, . . . , 𝑔𝐾 ∈ Poly(Z→ 𝐺), let I be an interval with |𝐼 | ≥ 1 and let 𝐹 : 𝐺/Γ → C be Lipschitz of norm
at most 1/𝛿 and having a nonzero central frequency 𝜉. Suppose that there is a function 𝑓 : Z→ C with∑
𝑛∈𝐼 | 𝑓 (𝑛) |2 ≤ 1

𝛿 |𝐼 | such that �����∑
𝑛∈𝐼

𝑓 (𝑛)𝐹 (𝑔𝑖 (𝑛)Γ)

�����∗ ≥ 𝛿 |𝐼 | (2.17)

for all 𝑖 = 1, . . . , 𝐾 . Then at least one of the following holds:
(i) There exists a nontrivial horizontal character 𝜂 : 𝐺 → R/Z of Lipschitz norm 𝑂𝑑,𝐷 (𝛿−𝑂𝑑,𝐷 (1) )

such that ‖𝜂 ◦ 𝑔𝑖 ‖𝐶∞ (𝐼 ) �𝑑,𝐷 𝛿−𝑂𝑑,𝐷 (1) for �𝑑,𝐷 𝛿𝑂𝑑,𝐷 (1)𝐾 values of 𝑖 = 1, . . . , 𝐾 .
(ii) For �𝑑,𝐷 𝛿𝑂𝑑,𝐷 (1)𝐾2 pairs (𝑖, 𝑗) ∈ {1, . . . , 𝐾}2, there exists a factorization

𝑔𝑖 = 𝜀𝑖 𝑗𝑔 𝑗𝛾𝑖 𝑗 ,

where 𝜀𝑖 𝑗 is (𝑂𝑑,𝐷 (𝛿−𝑂𝑑,𝐷 (1) ), 𝐼)-smooth and 𝛾𝑖 𝑗 is 𝑂𝑑,𝐷 (𝛿−𝑂𝑑,𝐷 (1) )-rational.
Proof. We allow implied constants to depend on 𝑑, 𝐷. From equation (2.17), one can find progressions
𝑃𝑖 ⊂ 𝐼 for 𝑖 = 1, . . . , 𝐾 such that �����∑

𝑛∈𝐼
𝑓 (𝑛)1𝑃𝑖 (𝑛)𝐹 (𝑔𝑖 (𝑛)Γ)

����� ≥ 𝛿 |𝐼 |

and thus ����� 𝐾∑
𝑖=1

𝜃𝑖
∑
𝑛∈𝐼

𝑓 (𝑛)1𝑃𝑖 (𝑛)𝐹 (𝑔𝑖 (𝑛)Γ)

����� ≥ 𝛿𝐾 |𝐼 |

for some complex numbers 𝜃𝑖 with |𝜃𝑖 | ≤ 1. By interchanging the sums and applying Cauchy–Schwarz,
we have ����� 𝐾∑

𝑖=1
𝜃𝑖
∑
𝑛∈𝐼

𝑓 (𝑛)1𝑃𝑖 (𝑛)𝐹 (𝑔𝑖 (𝑛)Γ)

����� 2 ≤ 1
𝛿
|𝐼 |
∑
𝑛∈𝐼

����� 𝐾∑
𝑖=1

𝜃𝑖1𝑃𝑖 (𝑛)𝐹 (𝑔𝑖 (𝑛)Γ)

����� 2
and thus ∑

𝑛∈𝐼

����� 𝐾∑
𝑖=1

𝜃𝑖1𝑃𝑖 (𝑛)𝐹 (𝑔𝑖 (𝑛)Γ)

����� 2 ≥ 𝛿3𝐾2 |𝐼 |.

From the triangle inequality, we have∑
𝑛∈𝐼

����� 𝐾∑
𝑖=1

𝜃𝑖1𝑃𝑖 (𝑛)𝐹 (𝑔𝑖 (𝑛)Γ)

����� 2 ≤ ∑
1≤𝑖, 𝑗≤𝐾

�����∑
𝑛∈𝐼

𝐹 (𝑔𝑖 (𝑛)Γ)𝐹 (𝑔 𝑗 (𝑛)Γ)

�����∗
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and thus ∑
1≤𝑖, 𝑗≤𝐾

�����∑
𝑛∈𝐼

𝐹 (𝑔𝑖 (𝑛)Γ)𝐹 (𝑔 𝑗 (𝑛)Γ)

�����∗ ≥ 𝛿3𝐾2 |𝐼 |.

The inner sum is 𝑂 (𝛿−2 |𝐼 |), thus we have�����∑
𝑛∈𝐼

𝐹 (𝑔𝑖 (𝑛)Γ)𝐹 (𝑔 𝑗 (𝑛)Γ)

�����∗ � 𝛿𝑂 (1) |𝐼 |

for � 𝛿𝑂 (1)𝐾2 pairs (𝑖, 𝑗) ∈ {1, . . . , 𝐾}2. For each such pair, we apply Proposition 2.14. If conclusion
(i) of that proposition holds for � 𝛿𝑂 (1)𝐾2 pairs (𝑖, 𝑗), then by the pigeonhole principle (noting that
there are only 𝑂 (𝛿−𝑂 (1) ) choices for 𝜂) we obtain conclusion (i) of the current proposition. Thus, we
may assume that conclusion (ii) of Proposition 2.14 holds for � 𝛿𝑂 (1)𝐾2 pairs (𝑖, 𝑗) ∈ {1, . . . , 𝐾}2,
thus we have

𝑔𝑖 = 𝜀𝑖 𝑗𝜙𝑖 𝑗 (𝑔 𝑗 )𝛾𝑖 𝑗

for all such pairs (𝑖, 𝑗), where 𝜀𝑖 𝑗 is (𝑂 (𝛿−𝑂 (1) ), 𝐼)-smooth, 𝛾𝑖 𝑗 is 𝑂 (𝛿−𝑂 (1) )-rational and 𝜙𝑖 𝑗 : 𝐺 → 𝐺
is a Lie group automorphism whose associated Lie algebra isomorphism log 𝜙 : log 𝐺 → log 𝐺 has
matrix coefficients that are all rational of height 𝑂 (𝛿−𝑂 (1) ) in the Mal’cev basis 𝑋1, . . . , 𝑋𝐷 of log 𝐺. The
total number of choices for 𝜙𝑖 𝑗 is 𝑂 (𝛿−𝑂 (1) ), so by the pigeonhole principle we may assume that 𝜙𝑖 𝑗 = 𝜙
is independent of 𝑖, 𝑗 . By Cauchy–Schwarz, we may thus find � 𝛿𝑂 (1)𝐾3 triples (𝑖, 𝑖′, 𝑗) ∈ {1, . . . , 𝐾}3

such that

𝑔𝑖 = 𝜀𝑖 𝑗𝜙(𝑔 𝑗 )𝛾𝑖 𝑗 ; 𝑔𝑖′ = 𝜀𝑖′ 𝑗𝜙(𝑔 𝑗 )𝛾𝑖′ 𝑗 ,

where 𝜀𝑖 𝑗 , 𝜀𝑖′ 𝑗 , 𝛾𝑖 𝑗 , 𝛾𝑖′ 𝑗 are as above. This implies that

𝑔𝑖 = 𝜀𝑖 𝑗𝜀
−1
𝑖′ 𝑗𝑔𝑖′𝛾

−1
𝑖′ 𝑗𝛾𝑖 𝑗 .

Pigeonholing in j and relabeling 𝑖, 𝑖′ as 𝑖, 𝑗 , we obtain conclusion (ii) of the current proposition. �

2.4. Combinatorial lemmas

The following lemma is a standard consequence of Heath-Brown’s identity.

Lemma 2.16. Let 𝑋 ≥ 2, and let 𝐿 ∈ N be fixed. We may find a collection F of (log 𝑋)𝑂 (1) functions
𝑓 : N→ R such that

Λ(𝑛) =
∑
𝑓 ∈F

𝑓 (𝑛)

for each 𝑋/2 ≤ 𝑛 ≤ 4𝑋 , and each 𝑓 ∈ F takes the form

𝑓 = 𝑎 (1) ∗ · · · ∗ 𝑎 (ℓ)

for some ℓ ≤ 2𝐿, where 𝑎 (𝑖) is supported on (𝑁𝑖 , 2𝑁𝑖] for some 𝑁𝑖 ≥ 1/2, and each 𝑎 (𝑖) (𝑛) is
either 1(𝑁𝑖 ,2𝑁𝑖 ] (𝑛), (log 𝑛)1(𝑁𝑖 ,2𝑁𝑖 ] (𝑛), or 𝜇(𝑛)1(𝑁𝑖 ,2𝑁𝑖 ] . Moreover, 𝑁1𝑁2 · · · 𝑁ℓ � 𝑋 , and 𝑁𝑖 �
𝑋1/𝐿 for each i with 𝑎 (𝑖) (𝑛) = 𝜇(𝑛)1(𝑁𝑖 ,2𝑁𝑖 ] (𝑛). The same statement holds for 𝜇 in place of Λ (but
(log 𝑛)1(𝑁𝑖 ,2𝑁𝑖 ] (𝑛) does not appear).
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Proof. Using Heath-Brown’s identity (see [37, (13.37), (13.38)] with 𝐾 = 𝐿 and 𝑧 = (2𝑋)1/𝐿), we have

Λ(𝑛) =
∑

1≤ 𝑗≤𝐿
(−1) 𝑗−1

(
𝐿

𝑗

) ∑
𝑚1 ,...,𝑚 𝑗 ≤(2𝑋 )1/𝐿

𝜇(𝑚1) · · · 𝜇(𝑚 𝑗 )
∑

𝑚1 · · ·𝑚 𝑗𝑛1 · · ·𝑛 𝑗=𝑛
log 𝑛1

and

𝜇(𝑛) =
∑

1≤ 𝑗≤𝐿
(−1) 𝑗−1

(
𝐿

𝑗

) ∑
𝑚1 ,...,𝑚 𝑗 ≤(2𝑋 )1/𝐿

𝜇(𝑚1) · · · 𝜇(𝑚 𝑗 )
∑

𝑚1 · · ·𝑚 𝑗𝑛1 · · ·𝑛 𝑗−1=𝑛

1.

The conclusion follows after dyadic division of the ranges of variables. �

The following Shiu’s bound [60, Theorem 1] will be used multiple times to control sums of divisor
functions in short intervals in arithmetic progressions.

Lemma 2.17. Let 𝐴 ≥ 1 and 𝜀 > 0 be fixed. Let 𝑋 ≥ 𝐻 ≥ 𝑋 𝜀 and 1 ≤ 𝑞 ≤ 𝐻1−𝜀 . Let f be a
nonnegative multiplicative function such that 𝑓 (𝑝ℓ) ≤ 𝐴ℓ for every prime power 𝑝ℓ and 𝑓 (𝑛) �𝑐 𝑛𝑐

for every 𝑐 > 0. Then, for any integer a coprime to q, we have∑
𝑋<𝑛≤𝑋+𝐻

𝑛≡𝑎 (mod 𝑞)

𝑓 (𝑛) � 𝐻

𝜑(𝑞) log 𝑋
exp
( ∑
𝑝≤2𝑋
𝑝�𝑞

𝑓 (𝑝)
𝑝

)
.

For proving Theorem 1.1(iv)–(v), we need a more flexible combinatorial decomposition of the
multiplicative functions 𝜇, 𝑑𝑘 , where we introduce an extra variable 𝑝 ∈ (𝑃, 𝑄] in the factorization.
Before stating this, let us quickly prove a lemma that will in particular allow us to write, for 𝑃 < 𝑄 ≤
𝑋1/(log log𝑋 )2 ,

1(𝑛,∏𝑃<𝑝≤𝑄 𝑝)=1 =
∑

𝑑 | (𝑛,
∏

𝑃<𝑝≤𝑄 𝑝)
𝑑≤𝑋 𝜀

𝜇(𝑑) + acceptable error

in our sums. This can be seen as a simple version of the fundamental lemma of the sieve that is sufficient
to our needs.

Lemma 2.18. Let 𝑘, 𝑟 ≥ 1 and 𝜀 > 0 be fixed. Let 𝑋 ≥ 𝐻 ≥ 𝑋 𝜀 and 𝑋 ≥ 𝐷 ≥ 𝑄 > 𝑃 ≥ 2. Then, for
any 𝐶 ≥ 1, ∑

𝑋<𝑚𝑛≤𝑋+𝐻
𝑝 |𝑚 =⇒ 𝑝∈(𝑃,𝑄]

𝑚>𝐷

𝑑𝑘 (𝑚𝑛)𝑟 �𝐶 𝐻
(log 𝑋)2𝑘𝑟𝑒𝐶

exp(𝐶 log𝐷
log𝑄 )

. (2.18)

Proof. Write ℓ = 𝑚𝑛, and note that since 𝑚 > 𝐷, we have Ω(ℓ) ≥ log𝐷
log𝑄 . Hence,the left-hand side of

equation (2.18) is

≤
∑

𝑋<ℓ≤𝑋+𝐻
Ω(ℓ) ≥ log𝐷

log𝑄

𝑑2(ℓ)𝑑𝑘 (ℓ)𝑟 ≤ 𝑒−𝐶
log𝐷
log𝑄

∑
𝑋<ℓ≤𝑋+𝐻

𝑒𝐶Ω(ℓ)𝑑2(ℓ)𝑑𝑘 (ℓ)𝑟 �𝐶 𝐻
(log 𝑋)2𝑘𝑟𝑒𝐶

exp(𝐶 log𝐷
log𝑄 )

by Lemma 2.17. �

Now, we state the lemma allowing us to introduce an extra variable 𝑝 ∈ (𝑃, 𝑄] in the factorization.
It is a slight variant of [50, Lemma 3.1] (see also [50, Remark 3.2]).
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Lemma 2.19. Let 𝜀 > 0 and 𝑘 ≥ 1 be fixed. Let 𝑋 ≥ 3, 𝑋 𝜀 ≤ 𝐻 ≤ 𝑋 , and let 2 ≤ 𝑃 < 𝑄 ≤
𝑋1/(log log𝑋 )2 . Write P (𝑃, 𝑄) =

∏
𝑃<𝑝≤𝑄 𝑝. Let f be any multiplicative function satisfying | 𝑓 (𝑛) | ≤

𝑑𝑘 (𝑛). Then for any sequence {𝜔𝑛} with |𝜔𝑛 | ≤ 1, we have∑
𝑋<𝑛≤𝑋+𝐻

(𝑛,P (𝑃,𝑄))>1

𝑓 (𝑛)𝜔𝑛 =
∑

𝑋<𝑝𝑟𝑛≤𝑋+𝐻
𝑃<𝑝≤𝑄
𝑟 ≤𝑋 𝜀/2

𝑎𝑟 𝑓 (𝑝) 𝑓 (𝑛)𝜔𝑝𝑟𝑛 +𝑂

(
𝐻 (log 𝑋)4𝑘

𝑃
+ 𝐻

exp((log log 𝑋)2)

)
,

where {𝑎𝑟 } is an explicit sequence satisfying |𝑎𝑟 | ≤ 𝑑𝑘+1(𝑟).

Proof. This is very similar to [50, Remark 3.2], but for completeness we provide the proof in a somewhat
simpler form.

By Ramaré’s identity

𝑓 (𝑛)𝜔𝑛1(𝑛,P (𝑃,𝑄))>1 =
∑

𝑃<𝑝≤𝑄

∑
𝑝𝑚=𝑛

𝑓 (𝑝𝑚)𝜔𝑝𝑚

𝜔 (𝑃,𝑄] (𝑝𝑚), (2.19)

where 𝜔 (𝑃,𝑄] (𝑚) is the number of distinct prime divisors of m on (𝑃, 𝑄]; this identity follows directly
since the number of representations 𝑛 = 𝑝𝑚 with 𝑃 < 𝑝 ≤ 𝑄 is 𝜔 (𝑃,𝑄] (𝑛).

We write m uniquely as 𝑚 = 𝑚1𝑚2 with 𝑚1 having all of its prime factors from (𝑃, 𝑄] and 𝑚2 having
no prime factors from that interval. Summing over n and then spotting the condition (𝑚2,P (𝑃, 𝑄)) = 1
using Möbius inversion, we see that∑

𝑋<𝑛≤𝑋+𝐻
(𝑛,P (𝑃,𝑄))>1

𝑓 (𝑛)𝜔𝑛 =
∑

𝑃<𝑝≤𝑄

∑
𝑋/𝑝≤𝑚1𝑚2≤(𝑋+𝐻 )/𝑝
𝑝′ |𝑚1=⇒𝑝′ ∈(𝑃,𝑄]
(𝑚2 ,P (𝑃,𝑄))=1

𝑓 (𝑝𝑚1𝑚2)
𝜔 (𝑃,𝑄] (𝑝𝑚1)

𝜔𝑚1𝑚2 𝑝

=
∑

𝑃<𝑝≤𝑄

∑
𝑋/𝑝≤𝑚1𝑑𝑚2≤(𝑋+𝐻 )/𝑝

𝑑 |P (𝑃,𝑄)
𝑝′ |𝑚1=⇒𝑝′ ∈(𝑃,𝑄]

𝜇(𝑑) 𝑓 (𝑝𝑚1𝑑𝑚2)
𝜔 (𝑃,𝑄] (𝑝𝑚1)

𝜔𝑚1𝑑𝑚2 𝑝 . (2.20)

Let us show that we can restrict the summation to 𝑑𝑚1 ≤ 𝑋 𝜀/2. Writing 𝑚 = 𝑑𝑚1 and 𝑛 = 𝑝𝑚2, we
see that by Lemma 2.18 with 𝐶 = 4/𝜀 the contribution of 𝑑𝑚1 > 𝑋 𝜀/2 is bounded by

≤
∑

𝑋<𝑚𝑛≤𝑋+𝐻
𝑝 |𝑚 =⇒ 𝑝∈(𝑃,𝑄]

𝑚>𝑋 𝜀/2

𝑑2(𝑚)𝑑2(𝑛)𝑑𝑘 (𝑚𝑛) ≤
∑

𝑋<𝑚𝑛≤𝑋+𝐻
𝑝 |𝑚 =⇒ 𝑝∈(𝑃,𝑄]

𝑚>𝑋 𝜀/2

𝑑2𝑘 (𝑚𝑛)3 � 𝐻

exp((log log 𝑋)2)
.

Furthermore, since in equation (2.20) all prime factors of 𝑝𝑑𝑚1 are from (𝑃, 𝑄], we have

𝑓 (𝑝𝑚1𝑑𝑚2) = 𝑓 (𝑝) 𝑓 (𝑑𝑚1) 𝑓 (𝑚2) and 𝜔 (𝑃,𝑄] (𝑝𝑚1) = 𝜔 (𝑃,𝑄] (𝑚1) + 1 (2.21)

unless there exists a prime 𝑞 ∈ (𝑃, 𝑄] such that 𝑞2 | 𝑝𝑚1𝑑𝑚2 =: ℓ. Applying Lemma 2.17, the error
introduced by making the changes equations(2.21) to (2.20) is

�
∑

𝑃<𝑞≤𝑄

∑
𝑋<ℓ≤𝑋+𝐻

𝑞2 |ℓ

𝑑4(ℓ)𝑑𝑘 (ℓ) �
∑

𝑃<𝑞≤𝑄

𝐻

𝑞2 (log 𝑋)4𝑘−1 � 𝐻

𝑃
(log 𝑋)4𝑘−1.
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Thus, equation (2.20) equals∑
𝑋 ≤𝑝𝑚1𝑑𝑚2≤𝑋+𝐻
𝑝′ |𝑑𝑚1=⇒𝑝′ ∈(𝑃,𝑄]
𝑃<𝑝≤𝑄,𝑑𝑚1≤𝑋 𝜀/2

𝜇(𝑑) 𝑓 (𝑝) 𝑓 (𝑑𝑚1) 𝑓 (𝑚2)
𝜔 (𝑃,𝑄] (𝑚1) + 1

𝜔𝑚1𝑑𝑚2 𝑝 +𝑂

(
𝐻

exp((log log 𝑋)2)
+ 𝐻

𝑃
(log 𝑋)4𝑘−1

)
,

and the claim follows with

𝑎𝑟 := 𝑓 (𝑟)1𝑝 |𝑟 =⇒ 𝑝∈(𝑃,𝑄]
∑

𝑟=𝑑𝑚1

𝜇(𝑑)
𝜔 (𝑃,𝑄] (𝑚1) + 1

. �

The following combinatorial lemma will be used to arrange each component arising from Lemma
2.16 into a desired form, such as a type I sum, a type 𝐼 𝐼 sum or a type 𝐼2 sum.

Lemma 2.20. Let 𝛼1, . . . , 𝛼𝑘 be nonnegative real numbers with
∑𝑘
𝑖=1 𝛼𝑖 = 1, and let 1

3 ≤ 𝜃 ≤ 1. For
any 𝐼 ⊂ {1, . . . , 𝑘}, write 𝛼𝐼 �

∑
𝑖∈𝐼 𝛼𝑖 . Consider the following statements:

(I) One has 𝛼𝑖 ≥ 1 − 𝜃 for some 1 ≤ 𝑖 ≤ 𝑘 .
(I2

maj) One has 𝛼{𝑖, 𝑗 } ≥ 1 − 𝜃 for some 1 ≤ 𝑖 < 𝑗 ≤ 𝑘 .
(I2) One has 𝛼{𝑖, 𝑗 } ≥ 3

2 (1 − 𝜃) for some 1 ≤ 𝑖 < 𝑗 ≤ 𝑘 .
(IImaj) There exists a partition {1, . . . , 𝑘} = 𝐼 � 𝐽 � 𝐽 ′ such that 2𝜃 − 1 ≤ 𝛼𝐼 ≤ 4𝜃 − 2 and

|𝛼𝐽 − 𝛼𝐽 ′ | ≤ 2𝜃 − 1.
(IImin) There exists a partition {1, . . . , 𝑘} = 𝐽 � 𝐽 ′ such that |𝛼𝐽 − 𝛼𝐽 ′ | ≤ 2𝜃 − 1 (or equivalently,

𝛼𝐽 , 𝛼𝐽 ′ ∈ [1 − 𝜃, 𝜃]; or equivalently, 𝛼𝐽 ∈ [1 − 𝜃, 𝜃]).

Then the following claims hold.

(i) Suppose that 𝜃 = 5/8. Then at least one of (I) or (𝐼 𝐼maj) holds.
(ii) Suppose that 𝜃 ≥ 3/5. Then at least one of (I), (𝐼2) or (𝐼 𝐼min) holds.

(iii) Suppose that 𝜃 = 7/12. Then at least one of (I), (𝐼maj
2 ) or (𝐼 𝐼maj) holds.

(iv) Suppose that 𝑘 = 5 and 𝜃 = 11/20. Then at least one of (𝐼maj
2 ) or (𝐼 𝐼maj) holds.

(v) Suppose that 𝑘 ∈ {3, 4} and 𝜃 ≥ 1/2. Then (𝐼maj
2 ) holds.

(vi) Suppose that 𝑘 = 3 and 𝜃 ≥ 5/9 or 𝑘 = 2 and 𝜃 ≥ 1/3. Then (𝐼2) holds.

Remark 2.21. The different conclusions (I), (𝐼maj
2 ), (𝐼2), (𝐼 𝐼maj), (𝐼 𝐼min) in Lemma 2.20 correspond to

different types of sums that behave well on intervals (𝑋, 𝑋 + 𝐻] with H much larger than 𝑋 𝜃 :

• Exponents obeying (I) correspond to ‘type I sums’ which behave well for both major and minor arc
correlations.

• Exponents obeying (𝐼maj
2 ) correspond to ‘type 𝐼2 sums’ which behave well for major arc correlations.

• Exponents obeying (𝐼2) correspond to ‘type 𝐼2 sums’ which behave well for both major and minor arc
correlations.

• Exponents obeying (𝐼 𝐼maj) correspond to ‘type 𝐼 𝐼 sums’ which behave well for major arc correlations.
• Exponents obeying (𝐼 𝐼min) correspond to ‘type 𝐼 𝐼 sums’ which behave well for minor arc correlations

or for major arc correlations when one can extract a medium-sized prime factor from the sum.

Proof. We first handle the easy case (vi). If 𝑘 = 2 and 𝜃 ≥ 1/3, then 3
2 (1 − 𝜃) ≤ 1 and (𝐼2) follows

simply by taking {𝑖, 𝑗} = {1, 2}. If 𝑘 = 3 and 𝜃 ≥ 5
9 , then 3

2 (1 − 𝜃) ≤ 2
3 and (𝐼2) follows by noting that

the sum of the two largest of the reals 𝛼1, 𝛼2, 𝛼3 is necessarily at least 2
3 .

Now, we prove (v). If 𝑘 = 4 and 𝜃 ≥ 1/2, then by the pigeonhole principle one of 𝛼{1,2}, 𝛼{3,4} is at
least 1

2 ≥ 1 − 𝜃, and we obtain (𝐼maj
2 ) in this case. The case 𝑘 = 3 follows similarly, with some room to

spare.
In a similar spirit in case (iv), when 𝑘 = 5 and 𝜃 = 11

20 , then one of the 𝛼𝑖 must be at most 1
5 ; without

loss of generality 𝛼5 ≤ 1
5 . Since 1 − 𝜃 = 9

20 , we obtain (𝐼maj
2 ) except when 𝛼{1,2}, 𝛼{3,4} ≤ 9

20 , which by
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∑5
𝑖=1 𝛼𝑖 = 1 forces 𝛼{3,4}, 𝛼{1,2} ≥ 1 − 9

20 −
1
5 = 7

20 . Thus, |𝛼{1,2} − 𝛼{3,4} | ≤ 9
20 −

7
20 = 1

10 = 2𝜃 − 1.
Also, we have

𝛼5 = 1 − 𝛼1,2 − 𝛼3,4 ≥ 1 − 9
20

− 9
20

=
1

10
= 2𝜃 − 1

and

𝛼5 ≤
1
5
= 4𝜃 − 2

and so we obtain (𝐼 𝐼maj) in this case. This establishes (iv).
In the remaining cases (i)–(iii) we assume, without loss of generality, that

𝛼1 ≥ 𝛼2 ≥ · · · ≥ 𝛼𝑘 .

In case (ii) when 𝜃 ≥ 3/5, we obtain (I) unless 𝛼 𝑗 < 1 − 𝜃 for each j and (𝐼2) unless 𝛼{𝑖, 𝑗 } <
3
2 (1 − 𝜃) ≤ 𝜃 for any distinct 𝑖, 𝑗 . But if 𝛼{𝑖, 𝑗 } ∈ [1 − 𝜃, 𝜃] for some distinct 𝑖, 𝑗 , then we have (𝐼 𝐼min).
Hence, we can assume that 𝛼𝑖, 𝑗 < 1 − 𝜃 for any distinct 𝑖, 𝑗 . In particular, for any 𝑗 ≠ 1 we have

𝛼 𝑗 ≤
𝛼1 + 𝛼 𝑗

2
≤ 1 − 𝜃

2
≤ 2𝜃 − 1.

Consequently, there must be an index 𝑟 ∈ {3, . . . , 𝑘} such that 𝛼1 +
∑𝑟

𝑗=2 𝛼 𝑗 ∈ [1 − 𝜃, 𝜃], and hence
(𝐼 𝐼min) holds.

Let us now consider (i). Now, 𝜃 = 5/8 and we obtain (I) unless 𝛼 𝑗 < 3/8 for every j (and in particular
we can assume that 𝑘 ≥ 3). Note that 2𝜃−1 = 1/4 in this case. If now 𝛼3 > 1/4, then 𝛼1, 𝛼2 ∈ [1/4, 3/8]
and we have (𝐼 𝐼maj) with 𝐽 = {1}, 𝐽 ′ = {2}, and 𝐼 = {3, . . . , 𝑘}.

On the other hand, if 𝛼3 ≤ 1/4, we set 𝐽0 = {1} and 𝐽 ′0 = {2, . . . , 𝑟} with 𝑟 ≥ 2 the greatest integer
such that 𝛼𝐽 ′0

< 𝛼𝐽0 . Then necessarily |𝛼𝐽0 −𝛼𝐽 ′0
| ≤ 1/4 = 2𝜃−1. Furthermore, 𝛼𝐽 ′0

+𝛼𝐽0 ≤ 2 ·𝛼1 ≤ 3/4.
If also 𝛼𝐽 ′0

+ 𝛼𝐽0 ≥ 1/2, then we have (𝐼 𝐼maj) with 𝐽 = 𝐽0, 𝐽 ′ = 𝐽 ′0 and 𝐼 = {1, . . . , 𝑘} \ (𝐽0 ∪ 𝐽 ′0).
Otherwise, we add indices 𝑗 ≥ 𝑟 + 1 one by one to 𝐽0 or 𝐽 ′0 depending on whether 𝛼𝐽0 < 𝛼𝐽 ′0

or not. We
continue this process until 𝛼𝐽0 + 𝛼𝐽 ′0

∈ [1/2, 3/4], and we again obtain (𝐼 𝐼maj).
Let us finally turn to (iii). Now, 𝜃 = 7/12 and 2𝜃 − 1 = 1/6. We obtain (𝐼maj

2 ) unless 𝛼{𝑖, 𝑗 } < 1 − 𝜃 =
5/12 for any distinct 𝑖, 𝑗 . In particular, we can assume that 𝛼1 + 𝛼2 + 𝛼3 + 𝛼4 < 5/6 < 1 and thus 𝑘 ≥ 5.

If 𝛼5 > 1/6, then 𝛼{2,3}, 𝛼{1,4} ∈ [1/3, 5/12]. Consequently, 1 − 𝛼{1,4} − 𝛼{2,3} ∈ [1/6, 1/3] and
we obtain (𝐼 𝐼maj) with 𝐽 = {1, 4}, 𝐽 ′ = {2, 3}, and 𝐼 = {1, . . . , 𝑘} \ {1, 2, 3, 4}.

On the other hand, if 𝛼5 ≤ 2𝜃 − 1 = 1/6, we can argue similarly to case (i): We set 𝐽0 = {1, 2} and
𝐽 ′0 = {3, . . . , 𝑟} with 𝑟 ≥ 4 the greatest integer such that 𝛼𝐽 ′0

≤ 𝛼𝐽0 . Then necessarily |𝛼𝐽0 − 𝛼𝐽 ′0
| ≤

1/6 = 2𝜃 − 1. Furthermore, 𝛼𝐽0 + 𝛼𝐽 ′0
≤ 2𝛼1,2 ≤ 5/6. If also 𝛼𝐽0 + 𝛼𝐽 ′0

≥ 2/3, then we have (𝐼 𝐼maj) with
𝐽 = 𝐽0 and 𝐽 ′ = 𝐽 ′0. Otherwise, we add indices 𝑗 ≥ 𝑟 + 1 one by one to 𝐽0 or 𝐽 ′0 depending on whether
𝛼𝐽0 < 𝛼𝐽 ′0

or not. We continue this process until 𝛼𝐽0 +𝛼𝐽 ′0
∈ [2/3, 5/6], and we again obtain (𝐼 𝐼maj). �

Remark 2.22. The following counterexamples, with 𝜀 small, show that 𝜃 in the various components of
Lemma 2.20 cannot be decreased (apart from the 𝑘 = 3 case of (v)):

• 𝜃 = 5/8 − 𝜀, (𝛼1, . . . , 𝛼𝑘 ) = (1/4, 1/4, 1/4, 1/4);
• 𝜃 = 3/5 − 𝜀, (𝛼1, . . . , 𝛼𝑘 ) ∈ {(2/5, 1/5, 1/5, 1/5), (1/5, 1/5, 1/5, 1/5, 1/5)};
• 𝜃 = 7/12 − 𝜀, (𝛼1, . . . , 𝛼𝑘 ) = (1/6, 1/6, 1/6, 1/6, 1/6, 1/6);
• 𝜃 = 11/20 − 𝜀, (𝛼1, . . . , 𝛼𝑘 ) = (1/5, 1/5, 1/5, 1/5, 1/5);
• 𝜃 = 1/2 − 𝜀, (𝛼1, . . . , 𝛼𝑘 ) = (1/4, 1/4, 1/4, 1/4);
• 𝜃 = 5/9 − 𝜀, (𝛼1, . . . , 𝛼𝑘 ) = (1/3, 1/3, 1/3);
• 𝜃 = 1/3 − 𝜀, (𝛼1, . . . , 𝛼𝑘 ) = (𝛼, 1 − 𝛼) for any 𝛼 ∈ (0, 1).
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3. Major arc estimates

In the proof of Theorem 1.1, we shall use Theorem 4.2 below to reduce to ‘major arc’ cases where
more-or-less 𝐹 (𝑔(𝑛)Γ) = 1 (or 𝐹 (𝑔(𝑛)Γ) = 𝑛𝑖𝑡 in case of type 𝐼 𝐼 sums). The purpose of this section
is to establish the following estimates corresponding to the case 𝐹 (𝑔(𝑛)Γ) = 1 as well as an auxiliary
result (Lemma 3.5 below) on trilinear sums in case 𝐹 (𝑔(𝑛)Γ) = 𝑛𝑖𝑡 .
Theorem 3.1 (Major arc estimate). Let 𝑋 ≥ 3 and 𝑋 𝜃+𝜀 ≤ 𝐻 ≤ 𝑋1−𝜀 for some 0 < 𝜃 < 1 and 𝜀 > 0.
(i) (Huxley type estimates) Set 𝜃 = 7/12. Then, for all 𝐴 > 0,����� ∑

𝑋<𝑛≤𝑋+𝐻
𝜇(𝑛)

�����∗ �𝐴,𝜀
𝐻

log𝐴 𝑋

and ����� ∑
𝑋<𝑛≤𝑋+𝐻

(Λ(𝑛) − Λ♯ (𝑛))

�����∗ �𝐴,𝜀
𝐻

log𝐴 𝑋
.

(ii) Let 𝑘 ≥ 2. Set 𝜃 = 1/3 for 𝑘 = 2, 𝜃 = 1/2 for 𝑘 = 3, 4, 𝜃 = 11/20 for 𝑘 = 5 and 𝜃 = 7/12 for 𝑘 ≥ 6.
Then ����� ∑

𝑋<𝑛≤𝑋+𝐻
(𝑑𝑘 (𝑛) − 𝑑♯𝑘 (𝑛))

�����∗ �𝜀
𝐻

𝑋𝑐𝑘
+ 𝐻

𝑋 𝜀/1000

for some constant 𝑐𝑘 > 0 depending only on k.
We remark that if we replace the maximal sums | · |∗ here by the ordinary sums | · |, then the

𝜃 = 7/12 case of Theorem 3.1 can also be extracted after some computation from the work of
Ramachandra [56] (see in particular Remarks 4, 5 of that paper), with a pseudopolynomial gain
𝑂 (exp(−𝑐(log 𝑋)1/3/(log log 𝑋)1/3)), while the cases 𝑘 = 4, 5 of Theorem 3.1(ii) follow from [23,
(4.23)]) and [27]. Here, we will provide the proofs from our viewpoint. It may be possible to improve
the error terms in (i) to be pseudopolynomial in nature even for the maximal sums, if one adjusts the
approximants 𝜇♯,Λ♯ to take into account the possibility of a Siegel zero, in the spirit of [61, Proposition
2.2].

For the 𝜃 = 7/12 result, the primary obstruction arises from convolutions (1.29) with (𝛼1, . . . , 𝛼𝑚)
equal to (1/6, 1/6, 1/6, 1/6, 1/6, 1/6), as this lies just outside the reach of our untwisted major arc type
I and type 𝐼 𝐼 estimates when 𝜃 goes below 7/12 (cf., the third item of Remark 2.22). This obstruction
has long been known; see, for example, [29]. Note that this obstruction does not arise for 𝑘 < 6, which
explains the fact that better exponents than 7/12 are available for 𝑑2, 𝑑3, 𝑑4, 𝑑5. The corresponding
obstructions can be found in the other items of Remark 2.22.

It would probably be possible to obtain Theorem 3.1(ii) for 𝜃 = 131/416 ≈ 0.315 when 𝑘 = 2 and
for 𝜃 = 43/96 ≈ 0.448 when 𝑘 = 3 – corresponding to the progress in the Dirichlet divisor problem
[34, 41] – but we do not attempt to compute this here (it requires checking that the arguments in the
literature, when adapted to the Dirichlet divisor problem in an arithmetic progression, give a polynomial
dependence on the common difference of the arithmetic progression and it also does not directly improve
the exponents in Theorem 1.1).

Let us now explain the strategy of the proof of Theorem 3.1. Let 𝑓 ∈ {𝜇,Λ, 𝑑𝑘 }. By adjusting the
implied constants, it suffices to show the claims with����� ∑

𝑋<𝑛≤𝑋+𝐻
( 𝑓 (𝑛) − 𝑓 ♯ (𝑛))

�����∗ replaced by max
𝑎,𝑞∈N

��������
∑

𝑋<𝑛≤𝑋+𝐻
𝑛≡𝑎 (mod 𝑞)

( 𝑓 (𝑛) − 𝑓 ♯ (𝑛))

�������� .
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In the cases 𝑓 = 𝜇,Λ, we take 𝐻 ′ � 𝑋/log20𝐴 𝑋 and in the case 𝑓 = 𝑑𝑘 we take 𝐻 ′ � 𝑋1−1/100𝑘 . We
use the triangle inequality to write��������

1
𝐻

∑
𝑋<𝑛≤𝑋+𝐻

𝑛≡𝑎 (mod 𝑞)

( 𝑓 (𝑛) − 𝑓 ♯ (𝑛))

�������� ≤
��������

1
𝐻

∑
𝑋<𝑛≤𝑋+𝐻

𝑛≡𝑎 (mod 𝑞)

𝑓 (𝑛) − 1
𝐻 ′

∑
𝑋<𝑛≤𝑋+𝐻 ′
𝑛≡𝑎 (mod 𝑞)

𝑓 (𝑛)

��������
+

��������
1

𝐻 ′

∑
𝑋<𝑛≤𝑋+𝐻 ′
𝑛≡𝑎 (mod 𝑞)

( 𝑓 (𝑛) − 𝑓 ♯ (𝑛))

�������� +
��������

1
𝐻

∑
𝑋<𝑛≤𝑋+𝐻

𝑛≡𝑎 (mod 𝑞)

𝑓 ♯ (𝑛) − 1
𝐻 ′

∑
𝑋<𝑛≤𝑋+𝐻 ′
𝑛≡𝑎 (mod 𝑞)

𝑓 ♯ (𝑛)

�������� . (3.1)

Then we show that each of the three differences on the right-hand side is small. Let us next state the
required results.

To attack the second difference in equation (3.1), we show in Section 3.1 that Theorem 3.1 holds in
long intervals.

Proposition 3.2 (Long intervals). Let 𝑋 ≥ 𝐻2 ≥ 2.

(i) Let 𝐴 > 0 and6 𝑋/log𝐴 𝑋 ≤ 𝐻2 ≤ 𝑋 . Then

max
𝑎,𝑞∈N

��������
∑

𝑋<𝑛≤𝑋+𝐻2
𝑛≡𝑎 (mod 𝑞)

𝜇(𝑛)

�������� �𝐴
𝐻2

log𝐴 𝑋
. (3.2)

and

max
𝑎,𝑞∈N

��������
∑

𝑋<𝑛≤𝑋+𝐻2
𝑛≡𝑎 (mod 𝑞)

(Λ(𝑛) − Λ♯ (𝑛))

�������� �𝐴
𝐻2

log𝐴 𝑋
. (3.3)

(ii) Let 𝑘 ≥ 2 and 𝑋1− 1
50𝑘 ≤ 𝐻2 ≤ 𝑋 . Then

max
𝑎,𝑞∈N

��������
∑

𝑋<𝑛≤𝑋+𝐻2
𝑛≡𝑎 (mod 𝑞)

(𝑑𝑘 (𝑛) − 𝑑♯𝑘 (𝑛))

�������� �
𝐻2

2
𝑋

log𝑘−2 𝑋. (3.4)

Furthermore, using the definitions of our approximants Λ♯ (𝑛) and 𝑑♯𝑘 (𝑛) as type I sums, it will be
straightforward to show that the third difference on the right of equation (3.1) is small; in Section 3.2,
we shall show the following.

Lemma 3.3 (Long and short averages of approximant). Let 𝑋 ≥ 𝐻2 ≥ 𝐻1 ≥ 𝑋1/4 ≥ 2.

(i) One has

max
𝑎,𝑞∈N

��������
1

𝐻1

∑
𝑋<𝑛≤𝑋+𝐻1
𝑛≡𝑎 (mod 𝑞)

Λ♯ (𝑛) − 1
𝐻2

∑
𝑋<𝑛≤𝑋+𝐻2
𝑛≡𝑎 (mod 𝑞)

Λ♯ (𝑛)

�������� � exp(−(log 𝑋)1/10). (3.5)

6Actually, thanks to Lemma 2.2(i), it would suffice to consider the case 𝐻2 = 𝑋 here.
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(ii) Let 𝑘 ≥ 2. Then

max
𝑎,𝑞∈N

��������
1

𝐻1

∑
𝑋<𝑛≤𝑋+𝐻1
𝑛≡𝑎 (mod 𝑞)

𝑑♯𝑘 (𝑛) −
1

𝐻2

∑
𝑋<𝑛≤𝑋+𝐻2
𝑛≡𝑎 (mod 𝑞)

𝑑♯𝑘 (𝑛)

�������� �
1

𝑋1/100 +
𝐻2
𝑋

log𝑘−2 𝑋. (3.6)

Our ability to handle the first difference in equation (3.1) is what determines the exponent 𝜃.
Concerning the first difference, we prove the following proposition in Section 3.4.
Proposition 3.4 (Long and short averages of arithmetic function).
(i) Let 𝑋/log20𝐴 𝑋 ≥ 𝐻2 ≥ 𝐻1 ≥ 𝑋7/12+𝜀 . Then

max
𝑎,𝑞∈N

��������
1

𝐻1

∑
𝑋<𝑛≤𝑋+𝐻1
𝑛≡𝑎 (mod 𝑞)

Λ(𝑛) − 1
𝐻2

∑
𝑋<𝑛≤𝑋+𝐻2
𝑛≡𝑎 (mod 𝑞)

Λ(𝑛)

�������� �𝐴,𝜀
1

log𝐴 𝑋

and

max
𝑎,𝑞∈N

��������
1

𝐻1

∑
𝑋<𝑛≤𝑋+𝐻1
𝑛≡𝑎 (mod 𝑞)

𝜇(𝑛)

�������� �𝐴,𝜀
1

log𝐴 𝑋
.

(ii) Let 𝑘 ≥ 2. Set 𝜃 = 1/3 for 𝑘 = 2, 𝜃 = 1/2 for 𝑘 = 3, 4, 𝜃 = 11/20 for 𝑘 = 5, and 𝜃 = 7/12 for 𝑘 ≥ 6.
There exists 𝑐𝑘 > 0 such that if 𝑋1−1/(100𝑘) ≥ 𝐻2 ≥ 𝐻1 ≥ 𝑋 𝜃+𝜀 , then

max
𝑎,𝑞∈N

��������
1

𝐻1

∑
𝑋<𝑛≤𝑋+𝐻1
𝑛≡𝑎 (mod 𝑞)

𝑑𝑘 (𝑛) −
1

𝐻2

∑
𝑋<𝑛≤𝑋+𝐻2
𝑛≡𝑎 (mod 𝑞)

𝑑𝑘 (𝑛)

�������� �𝜀,𝑘
1

𝑋𝑐𝑘
+ 1

𝑋 𝜀/1000

Theorem 3.1 now follows from equation (3.1) together with Propositions 3.4 and 3.2 and Lemma 3.3.
The case 𝑘 = 2 of Proposition 3.4(ii) can be treated using classical methods on the Dirichlet divisor

problem. In 𝑘 ≥ 3 cases of Proposition 3.4(ii), we write 𝑑𝑘 (𝑛) =
∑
𝑛=𝑚1 · · ·𝑚𝑘

1, split 𝑚 𝑗 into dyadic
intervals 𝑚 𝑗 ∼ 𝑀 𝑗 � 𝑋𝛼𝑗 and classify resulting dyadic sums using Lemma 2.20(iii). On the other hand
in case of Proposition 3.4(i), we first use Heath-Brown’s identity and then Lemma 2.20(iii) to classify
the resulting sums.

For trilinear sums satisfying (𝐼 𝐼maj) from Lemma 2.20, we shall deduce in Section 3.3 the following
consequence of the work of Baker, Harman and Pintz [4]. Part (ii) of the lemma will be used in handling
certain type 𝐼 𝐼 sums in Section 4.
Lemma 3.5. Let 1/2 ≤ 𝜃 < 1 and 𝜀 > 0. Let also 𝑊 ≤ 𝑋 𝜀/200 and 𝑋 𝜃+𝜀 ≤ 𝐻1 ≤ 𝐻2 ≤ 𝑋/𝑊4. Let
𝐿, 𝑀1, 𝑀2 ≥ 1 be such that 𝑀 𝑗 = 𝑋𝛼𝑗 and 𝐿𝑀1𝑀2 � 𝑋 . Let 𝑎𝑚1 , 𝑏𝑚2 , 𝑣ℓ be bounded by 𝑑𝐶2 for some
𝐶 ≥ 1.

Assume that 𝑎, 𝑞 ∈ N, 𝜃 ∈ {11/20, 7/12, 3/5, 5/8} and that 𝛼1, 𝛼2 > 0 obey the bounds

|𝛼1 − 𝛼2 | ≤ 2𝜃 − 1 + 𝜀

100
and 1 − 𝛼1 − 𝛼2 ≤ 4𝜃 − 2 + 𝜀

100
.

(i) If

max
𝑟 | (𝑎,𝑞)

max
𝜒 (mod 𝑞

(𝑎,𝑞) )
sup

𝑊 ≤ |𝑡 | ≤ 𝑋𝑊 4
𝐻1

������ ∑ℓ∼𝐿/𝑟 𝑣ℓ𝑟 𝜒(ℓ)
ℓ1/2+𝑖𝑡

������ �𝐶
(𝐿/𝑟)1/2

𝑊1/3 , (3.7)
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then ��� 1
𝐻1

∑
𝑋<𝑚1𝑚2ℓ≤𝑋+𝐻1

𝑚 𝑗∼𝑀 𝑗 ,ℓ∼𝐿
𝑚1𝑚2ℓ≡𝑎 (mod 𝑞)

𝑎𝑚1 𝑏𝑚2 𝑣ℓ −
1

𝐻2

∑
𝑋<𝑚1𝑚2ℓ≤𝑋+𝐻2

𝑚 𝑗∼𝑀 𝑗 ,ℓ∼𝐿
𝑚1𝑚2ℓ≡𝑎 (mod 𝑞)

𝑎𝑚1 𝑏𝑚2 𝑣ℓ

��� � 𝑑3(𝑞)
log𝑂𝐶 (1) 𝑋

𝑊1/3 .

(ii) If

max
𝑟 | (𝑎,𝑞)

max
𝜒 (mod 𝑞

(𝑎,𝑞) )
sup

|𝑡 | ≤ 𝑋𝑊 4
𝐻1

������ ∑ℓ∼𝐿/𝑟 𝑣ℓ𝑟 𝜒(ℓ)
ℓ1/2+𝑖𝑡

������ �𝐶
(𝐿/𝑟)1/2

𝑊1/3 , (3.8)

then ��� 1
𝐻1

∑
𝑋<𝑚1𝑚2ℓ≤𝑋+𝐻1

𝑚 𝑗∼𝑀 𝑗 ,ℓ∼𝐿
𝑚1𝑚2ℓ≡𝑎 (mod 𝑞)

𝑎𝑚1 𝑏𝑚2 𝑣ℓ

��� � 𝑑3(𝑞)
log𝑂𝐶 (1) 𝑋

𝑊1/3 .

For sums satisfying (𝐼maj
2 ) from Lemma 2.20, we shall use standard methods to deduce in Section

3.3 the following lemma.

Lemma 3.6. Let 𝜃 ∈ [1/2, 1) and 𝜀 > 0. Let 𝑊 ≤ 𝑋 𝜀/4, and let 𝑋 𝜃+𝜀 ≤ 𝐻1 ≤ 𝐻2 ≤ 𝑋/𝑊4. Let
𝐿, 𝑀1, 𝑀2 ≥ 1 be such that 𝑀 𝑗 = 𝑋𝛼𝑗 and 𝐿𝑀1𝑀2 � 𝑋 . Let 𝑣ℓ be bounded by 𝑑𝐶2 (ℓ). Assume that
𝑎, 𝑞 ∈ N and

𝛼1 + 𝛼2 ≥ 1 − 𝜃. (3.9)

Then ��� 1
𝐻1

∑
𝑋<𝑚1𝑚2ℓ≤𝑋+𝐻1

𝑚 𝑗∼𝑋 𝛼𝑗

𝑚1𝑚2ℓ≡𝑎 (mod 𝑞)

𝑣ℓ −
1

𝐻2

∑
𝑋<𝑚1𝑚2ℓ≤𝑋+𝐻2

𝑚 𝑗∼𝑋 𝛼𝑗

𝑚1𝑚2ℓ≡𝑎 (mod 𝑞)

𝑣ℓ

��� � 𝑑3(𝑞)
log𝑂𝐶 (1) 𝑋

𝑊1/6 .

3.1. Proof of Proposition 3.2

The bound (3.2) follows immediately from the Siegel–Walfisz theorem (1.13) and the triangle inequality.
Before turning to the proof of equation (3.3), let us discuss the choice of Λ♯. The prime number

theorem with classical error term (see, e.g., [54, Theorem 6.9]) gives∑
𝑛≤𝑋

Λ(𝑛) = 𝑋 +𝑂 (𝑋 exp(−𝑐
√

log 𝑋)) (3.10)

so that if one is interested only in the correlation of Λ(𝑛) with a constant function, one can select the
simple approximant 1. However, this is not sufficient even for the maximal correlation with the constant
function. There is some flexibility7 in how to select the approximant, but (following [61]) we use the
Cramér–Granville model (1.1), which has the benefits of being a nonnegative model function and one
that is known to be pseudorandom (which will be helpful in Section 9).

7For instance, a Fourier-analytic approximant Λ♯ (𝑛) �
∑
𝑞≤𝑄

𝜇 (𝑞)𝑐𝑞 (𝑛)
𝜙 (𝑞) is used in [28], where 𝑐𝑞 (𝑛) �∑

1≤𝑎≤𝑞:(𝑎,𝑞)=1 𝑒 (𝑎𝑛/𝑞) denotes the Ramanujan sum. Another option is to use a truncated convolution sum, Λ♯ (𝑛) �
−
∑
𝑑 |𝑛,𝑑≤𝑅 𝜇 (𝑑) log 𝑑, following, for example, [37, §19.2].
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Proof of equation (3.3). It suffices to show that, for any 𝑎, 𝑞 ∈ N and any 𝐻2 ∈ [𝑋/log𝐴 𝑋, 𝑋], we have��������
∑

𝑋<𝑛≤𝑋+𝐻2
𝑛≡𝑎 (mod 𝑞)

(Λ(𝑛) − Λ♯ (𝑛))

�������� �
𝐻2

log𝐴 𝑋
.

We can clearly assume that 𝑞 < 𝑅 and (𝑎, 𝑞) = 1.
Let 𝐷 = exp((log 𝑋)3/5). By the fundamental lemma of the sieve (see, e.g., [37, Fundamental Lemma

6.3 with 𝑦 = 𝐷, 𝑧 = 𝑅, and 𝜅 = 1]), there exist real numbers 𝜆+𝑑 ∈ [−1, 1] such that, for any 𝐻 ≥ 2,
𝑞 < 𝑅, and 𝑎 ∈ N with (𝑎, 𝑞) = 1, we have∑

𝑋<𝑛≤𝑋+𝐻
𝑛=𝑎 (𝑞)

Λ♯ (𝑛) ≤ 𝑃(𝑅)
𝜑(𝑃(𝑅))

∑
𝑑≤𝐷
𝑑 |𝑃 (𝑅)

𝜆+𝑑

∑
𝑋<𝑛≤𝑋+𝐻
𝑛=𝑎 (𝑞)
𝑑 |𝑛

1

=
∏
𝑝<𝑅

(
1 − 1

𝑝

)−1 ∑
𝑑≤𝐷
𝑑 |𝑃 (𝑅)
(𝑑,𝑞)=1

𝜆+𝑑
𝐻

𝑑𝑞
+𝑂 (𝐷 log 𝑅)

=
𝐻

𝜑(𝑞)

(
1 +𝑂

(
exp
(
− log 𝐷

log 𝑅

)))
+𝑂 (𝐷 log 𝑅),

and also by the fundamental lemma we have a lower bound of the same shape. Hence, for 𝐻 ≥ 𝑋 𝜀 we
have ∑

𝑋<𝑛≤𝑋+𝐻
𝑛=𝑎 (𝑞)

Λ♯ (𝑛) = 𝐻

𝜑(𝑞) +𝑂 𝜀 (𝐻 exp(−(log 𝑋)1/2)), (3.11)

so equation (3.3) follows by the Siegel–Walfisz theorem and the triangle inequality. �

Remark 3.7. One could improve the error term in equation (3.3) by adjusting the approximant Λ♯

to account for a potential Siegel zero; see, for instance, [37, Theorem 5.27] or [61, Proposition 2.2].
However, we will not do so here.

Before turning to the proof of equation (3.4), let us discuss the construction of the approximant 𝑑♯𝑘
which is a somewhat nontrivial task. The classical Dirichlet hyperbola method gives the asymptotic∑

𝑛≤𝑋
𝑛=𝑎 (𝑞)

𝑑𝑘 (𝑛) = 𝑋𝑃𝑘,𝑎,𝑞 (log 𝑋) +𝑂𝑞,𝜀 (𝑋1−1/𝑘+𝜀) (3.12)

for any fixed 𝑎, 𝑞, any 𝜀 > 0, and some explicit polynomial 𝑃𝑘,𝑎,𝑞 of degree 𝑘 − 1 with coefficients
depending only on 𝑘, 𝑎, 𝑞. Better error terms are known here; see, for example, [36, Section 13].

From equation (3.12), the triangle inequality, and Taylor expansion one has∑
𝑋<𝑛≤𝑋+𝐻
𝑛=𝑎 (𝑞)

𝑑𝑘 (𝑛) = 𝐻

(
𝑃𝑘,𝑎,𝑞 (log 𝑋) + 𝑃′

𝑘,𝑎,𝑞 (log 𝑋) +𝑂𝑞,𝜀

(
𝑋1−1/𝑘+𝜀

𝐻
+ 𝐻

𝑋1−𝜀

))

for any 𝜀 > 0 whenever 2 ≤ 𝐻 ≤ 𝑋 .
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Hence, we have to choose the approximant 𝑑♯𝑘 to also obey estimates such as∑
𝑋 ≤𝑛<𝑋+𝐻
𝑛=𝑎 (𝑞)

𝑑♯𝑘 (𝑛) = 𝐻
(
𝑃𝑘,𝑎,𝑞 (log 𝑋) + 𝑃′

𝑘,𝑎,𝑞 (log 𝑋) +𝑂 𝜀 (𝑋−𝜅𝑘 + 𝐻𝑋 𝜀−1)
)

(3.13)

for some 𝜅𝑘 > 0, with exactly the same choice of polynomial 𝑃𝑘,𝑎,𝑞 .
The delta method of Duke, Friedlander and Iwaniec [9] can be used to build an approximant of

a Fourier-analytic nature, basically by isolating the major arc components of 𝑑𝑘 ; see [35], [5], [55]
and [47, Proposition 4.2] for relevant calculations in this direction. However, the approximant that is
(implicitly) constructed in these papers is very complicated, and somewhat difficult to deal with for our
purposes (for instance, it is not evident whether it is nonnegative).

The simpler approximant

𝑑𝑘 (𝑛, 𝐴) � 𝐴1−𝑘
∑
𝑚 |𝑛
𝑚≤𝑛𝐴

𝑑𝑘−1(𝑚)

was recently proposed by Andrade and Smith [1] for various choices of parameter 0 < 𝐴 < 1.
Unfortunately, the polynomial 𝑃𝑘,𝑎,𝑞,𝐴(log 𝑋) associated to this approximant usually only agrees with
𝑃𝑘,𝑎,𝑞 (log 𝑋) to leading order (see [1, Theorem 2.1]), and so with this approximant one cannot hope to
get polynomial saving like in our Theorem 1.1(iii).

Our approximant (1.2) with 𝑃𝑚 (𝑡) as in equation (1.3) can be seen as a more complicated variant of
the Andrade–Smith approximant. Note that the constraint 𝑚 ≤ 𝑅2𝑘−2

𝑘 in equation (1.2) is redundant, as
𝑃𝑚 vanishes for 𝑚 > 𝑅2𝑘−2

𝑘 . Note also that (by adjusting the value of 𝑐𝑘,𝑑,𝐷 in Theorem 1.1) one could
take 𝑅𝑘 to be any sufficiently small power of X, and that, for any 𝑛 � 𝑋 ,

𝑑♯𝑘 (𝑛) =
∑

𝑚≤𝑅2𝑘−2
𝑘

𝑚 |𝑛

𝑘−1∑
𝑗=0

(
𝑘

𝑗

) ∑
𝑛1 ,...,𝑛 𝑗 ≤𝑅𝑘<𝑛 𝑗+1 ,...,𝑛𝑘−1≤𝑅2

𝑘
𝑛1 · · ·𝑛𝑘−1=𝑚

(
log 𝑛 − log(𝑛1 · · · 𝑛 𝑗𝑅

𝑘− 𝑗
𝑘 )
) 𝑘− 𝑗−1

(𝑘 − 𝑗 − 1)! log𝑘− 𝑗−1 𝑅𝑘

�
∑
𝑚 |𝑛

𝑑𝑘−1(𝑚) = 𝑑𝑘 (𝑛). (3.14)

Recall we chose 𝑅𝑘 = 𝑋
1

10𝑘 in equation (1.2). The motivation for our approximant 𝑑♯𝑘 can be seen by
noting that, sorting a factorization 𝑛 = 𝑛1 · · · 𝑛𝑘 into terms 𝑛1, . . . , 𝑛 𝑗 ≤ 𝑅𝑘 and terms 𝑛 𝑗+1, . . . , 𝑛𝑘 > 𝑅𝑘 ,
we get the generalized Dirichlet hyperbola identity

𝑑𝑘 (𝑛) =
𝑘−1∑
𝑗=0

(
𝑘

𝑗

) ∑
𝑛1 ,...,𝑛 𝑗 ≤𝑅𝑘

∑
𝑛 𝑗+1 ,...,𝑛𝑘−1>𝑅𝑘

𝑛
𝑛1 ...𝑛𝑘−1

>𝑅𝑘

1𝑛1 · · ·𝑛𝑘−1 |𝑛. (3.15)

The polynomials 𝑃𝑚 (𝑡) are chosen to match with the contribution from the sum over 𝑛 𝑗+1, . . . , 𝑛𝑘−1 as
can be seen from the proof of equation (3.4) that we now give.

Proof of equation (3.4). It suffices to show that, for any 𝑘 ≥ 2, any 𝑎, 𝑞 ∈ N, and any
𝐻2 ∈ [𝑋1−1/(50𝑘) , 𝑋], we have��������

∑
𝑋<𝑛≤𝑋+𝐻2
𝑛≡𝑎 (mod 𝑞)

(𝑑𝑘 (𝑛) − 𝑑♯𝑘 (𝑛))

�������� �
𝐻2

2
𝑋

log𝑘−2 𝑋.
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Since 𝑑𝑘 (𝑛) = 𝑂 𝜀 (𝑛𝜀), we can clearly assume that 𝑞 ≤ 𝑋
1

40𝑘 . Using equation (3.15), we obtain

∑
𝑋<𝑛≤𝑋+𝐻2
𝑛≡𝑎 (mod 𝑞)

𝑑𝑘 (𝑛) =
∑

𝑎𝑖 (mod 𝑞)
𝑎1 · · ·𝑎𝑘≡𝑎 (mod 𝑞)

𝑘−1∑
𝑗=0

(
𝑘

𝑗

) ∑
𝑛1 ,...,𝑛 𝑗 ≤𝑅𝑘

𝑛𝑖≡𝑎𝑖 (mod 𝑞)

∑
𝑛 𝑗+1 ,...,𝑛𝑘−1>𝑅𝑘

𝑋
𝑛1 ···𝑛𝑘−1

>𝑅𝑘

𝑛𝑖≡𝑎𝑖 (mod 𝑞)

(
𝐻2

𝑞𝑛1 · · · 𝑛𝑘−1
+𝑂 (1)

)

+𝑂

������
∑

𝑛1 ,...,𝑛 𝑗 ≤𝑅𝑘

∑
𝑛 𝑗+1 ,...,𝑛𝑘−1>𝑅𝑘

𝑋+𝐻2
𝑛1 ···𝑛𝑘−1

>𝑅𝑘>
𝑋

𝑛1 ···𝑛𝑘−1

(
𝐻2

𝑛1 · · · 𝑛𝑘−1
+ 1
)�������

.

Let us consider the two error terms. The first error term contributes, using the inequality
1 < 𝑋/(𝑅𝑘𝑛1 · · · 𝑛𝑘−1),

�
∑

𝑎𝑘 (mod 𝑞)

∑
𝑛1 ,...,𝑛𝑘−1≤𝑋

𝑋

𝑅𝑘𝑛1 · · · 𝑛𝑘−1
� 𝑞

𝑋

𝑅𝑘
log𝑘−1 𝑋 �

𝐻2
2

𝑋
log𝑘−2 𝑋

since 𝑞 ≤ 𝑋
1

40𝑘 , 𝑅𝑘 = 𝑋
1

10𝑘 , and 𝐻2 ≥ 𝑋1− 1
50𝑘 . The second error term contributes, using 𝑛1 · · · 𝑛𝑘−1 �

𝑋/𝑅𝑘 and Shiu’s bound (Lemma 2.17),

�
∑

𝑛1 ,...,𝑛𝑘−1≤2𝑋
𝑋
𝑅𝑘

<𝑛1 · · ·𝑛𝑘−1≤
𝑋+𝐻2
𝑅𝑘

𝑅𝑘𝐻2
𝑋

=
𝑅𝑘𝐻2

𝑋

∑
𝑋
𝑅𝑘

<𝑛<
𝑋+𝐻2
𝑅𝑘

𝑑𝑘−1(𝑛) �
𝐻2

2
𝑋

log𝑘−2 𝑋.

Hence, ∑
𝑋<𝑛≤𝑋+𝐻2
𝑛≡𝑎 (mod 𝑞)

𝑑𝑘 (𝑛)

=
𝐻2
𝑞

∑
𝑎𝑖 (mod 𝑞)

𝑎1 · · ·𝑎𝑘≡𝑎 (mod 𝑞)

𝑘−1∑
𝑗=0

(
𝑘

𝑗

) ∑
𝑛1 ,...,𝑛 𝑗 ≤𝑅𝑘

𝑛𝑖≡𝑎𝑖 (mod 𝑞)

1
𝑛1 · · · 𝑛 𝑗

∑
𝑛 𝑗+1 ,...,𝑛𝑘−1>𝑅𝑘

𝑋
𝑛1 ···𝑛𝑘−1

>𝑅𝑘

𝑛𝑖≡𝑎𝑖 (mod 𝑞)

1
𝑛 𝑗+1 · · · 𝑛𝑘−1

+𝑂

(
𝐻2

2
𝑋

log𝑘−2 𝑋

)
. (3.16)

For any 𝐵 ≥ 𝐴 ≥ 1, we have

∑
𝐴<𝑛<𝐵

𝑛≡𝑎 (mod 𝑞)

1
𝑛
=

1
𝑞

∫ 𝐵

𝐴

1
𝑡

𝑑𝑡 +𝑂

(
1
𝐴

)
.
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Applying this 𝑘 − 1 − 𝑗 times, we see that8∑
𝑛 𝑗+1 ,...,𝑛𝑘−1>𝑅𝑘

𝑋
𝑛1 ···𝑛𝑘−1

>𝑅𝑘

𝑛𝑖≡𝑎𝑖 (mod 𝑞)

1
𝑛 𝑗+1 · · · 𝑛𝑘−1

=
1

𝑞𝑘−1− 𝑗

∫
𝑡 𝑗+1 ,...,𝑡𝑘−1>𝑅𝑘

𝑡 𝑗+1 · · ·𝑡𝑘−1≤ 𝑋
𝑛1 ···𝑛𝑗 𝑅𝑘

𝑑𝑡 𝑗+1 · · · 𝑑𝑡𝑘−1

𝑡 𝑗+1 . . . 𝑡𝑘−1
+𝑂

(
(log 𝑋)𝑘−1− 𝑗−1

𝑞𝑘−1− 𝑗−1 · 1
𝑅𝑘

)

=
1

𝑞𝑘−1− 𝑗

log𝑘− 𝑗−1 𝑋

𝑛1 · · ·𝑛 𝑗𝑅𝑘− 𝑗
𝑘

(𝑘 − 𝑗 − 1)! +𝑂

(
(log 𝑋)𝑘− 𝑗−2

𝑞𝑘− 𝑗−2 · 1
𝑅𝑘

)
. (3.17)

Since 𝑅𝑘 = 𝑋
1

10𝑘 , 𝑞 ≤ 𝑋
1

40𝑘 and 𝐻2 ≥ 𝑋1− 1
50𝑘 , the error term contributes to equation (3.16)

� 𝐻2
𝑞

𝑘−1∑
𝑗=0

∑
𝑎 𝑗+1 ,...,𝑎𝑘 (mod 𝑞)

∑
𝑛1 ,...,𝑛 𝑗 ≤𝑅𝑘

1
𝑛1 · · · 𝑛 𝑗

· (log 𝑋)𝑘− 𝑗−2

𝑞𝑘− 𝑗−2 · 1
𝑅𝑘

� 𝐻2
𝑞

𝑘−1∑
𝑗=0

𝑞𝑘− 𝑗 (log 𝑋) 𝑗 · (log 𝑋)𝑘− 𝑗−2

𝑞𝑘− 𝑗−2 · 1
𝑅𝑘

�
𝐻2

2
𝑋

log𝑘−2 𝑋.

Hence, equations (3.16) and (3.17) give

∑
𝑋<𝑛≤𝑋+𝐻2
𝑛≡𝑎 (mod 𝑞)

𝑑𝑘 (𝑛) =
𝐻2

𝑞𝑘− 𝑗

∑
𝑎𝑖 (mod 𝑞)

𝑎1 · · ·𝑎𝑘≡𝑎 (mod 𝑞)

𝑘−1∑
𝑗=0

(
𝑘

𝑗

) ∑
𝑛1 ,...,𝑛 𝑗 ≤𝑅𝑘

𝑛𝑖≡𝑎𝑖 (mod 𝑞)

log𝑘− 𝑗−1 𝑋

𝑛1 · · ·𝑛 𝑗𝑅𝑘− 𝑗
𝑘

(𝑘 − 𝑗 − 1)!𝑛1 · · · 𝑛 𝑗

+𝑂

(
𝐻2

2
𝑋

log𝑘−2 𝑋

)
.

On the other hand, by definition,∑
𝑋<𝑛≤𝑋+𝐻2
𝑛≡𝑎 (mod 𝑞)

𝑑♯𝑘 (𝑛)

=
∑

𝑎𝑖 (mod 𝑞)
𝑎1 · · ·𝑎𝑘≡𝑎 (mod 𝑞)

𝑘−1∑
𝑗=0

(
𝑘

𝑗

) ∑
𝑛1 ,...,𝑛 𝑗 ≤𝑅𝑘

𝑛𝑖≡𝑎𝑖 (mod 𝑞)

log𝑘− 𝑗−1 𝑋

𝑛1 · · ·𝑛 𝑗𝑅𝑘− 𝑗
𝑘

+𝑂
(
𝐻2
𝑋 log𝑘− 𝑗−2 𝑋

)
(𝑘 − 𝑗 − 1)! log𝑘− 𝑗−1 𝑅𝑘

·
∑

𝑅𝑘<𝑛 𝑗+1 ,...,𝑛𝑘−1≤𝑅2
𝑘

𝑛𝑖≡𝑎𝑖 (mod 𝑞)

(
𝐻2

𝑞𝑛1 · · · 𝑛𝑘−1
+𝑂 (1)

)

=
𝐻2
𝑞

∑
𝑎𝑖 (mod 𝑞)

𝑎1 · · ·𝑎𝑘≡𝑎 (mod 𝑞)

𝑘−1∑
𝑗=0

(
𝑘

𝑗

) ∑
𝑛1 ,...,𝑛 𝑗 ≤𝑅𝑘

𝑛𝑖≡𝑎𝑖 (mod 𝑞)

log𝑘− 𝑗−1 𝑋

𝑛1 · · ·𝑛 𝑗𝑅𝑘− 𝑗
𝑘

(𝑘 − 𝑗 − 1)! log𝑘− 𝑗−1 𝑅𝑘

8To obtain the second equality, we use the classical formula
∫
𝑥1 ,...,𝑥𝑑≥0:𝑥1+···+𝑥𝑑≤𝐿

1 𝑑𝑥1 . . . 𝑑𝑥𝑑 = 𝐿𝑑

𝑑! for the volume of a

simplex (easily proven by induction on d and the Fubini–Tonelli theorem combined with the change of variables 𝑥𝑖 = log 𝑡𝑖+ 𝑗
𝑅 for

𝑖 = 1, . . . , 𝑘 − 𝑗 − 1).
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∑
𝑅𝑘<𝑛 𝑗+1 ,...,𝑛𝑘−1≤𝑅2

𝑘
𝑛𝑖≡𝑎𝑖 (mod 𝑞)

1
𝑛1 · · · 𝑛𝑘−1

+𝑂
���
∑

𝑎𝑘 (mod 𝑞)

𝑘−1∑
𝑗=0

∑
𝑛1 ,...,𝑛 𝑗 ≤𝑅𝑘

𝐻2
𝑋 log 𝑋

∑
𝑅𝑘<𝑛 𝑗+1 ,...,𝑛𝑘−1≤𝑅2

𝑘

(
𝐻2

𝑞𝑛1 · · · 𝑛𝑘−1
+ 1
)����

+𝑂
���
∑

𝑎𝑘 (mod 𝑞)

𝑘−1∑
𝑗=0

∑
𝑛1 ,...,𝑛 𝑗 ≤𝑅𝑘

∑
𝑅𝑘<𝑛 𝑗+1 ,...,𝑛𝑘−1≤𝑅2

𝑘

1
���� .

The error terms contribute

�
𝐻2

2
𝑋

log𝑘−2 𝑋 + 𝑞
𝐻2

𝑋 log 𝑋
𝑅2(𝑘−1)
𝑘 + 𝑞𝑅2(𝑘−1)

𝑘 �
𝐻2

2
𝑋

log𝑘−2 𝑋 + 𝑞𝑋1/2

and in the main term

1
log𝑘− 𝑗−1 𝑅𝑘

∑
𝑅𝑘<𝑛 𝑗+1 ,...,𝑛𝑘−1≤𝑅2

𝑘
𝑛𝑖≡𝑎𝑖 (mod 𝑞)

1
𝑛 𝑗+1 · · · 𝑛𝑘−1

=

(
1
𝑞
+𝑂

(
1

𝑅𝑘

)) 𝑘− 𝑗−1
.

The claim follows since 𝑅𝑘 = 𝑋
1

10𝑘 and 𝑞 ≤ 𝑋
1

40𝑘 . �

3.2. Proof of Lemma 3.3

Note first that the claims are trivial unless 𝑞 ≤ 𝑋1/80. For part (ii), note that, for 𝑗 = 1, 2,

1
𝐻 𝑗

∑
𝑋<𝑛≤𝑋+𝐻 𝑗

𝑛≡𝑎 (mod 𝑞)

𝑑♯𝑘 (𝑛)

=
1

𝐻 𝑗

∑
𝑏,𝑐 (mod 𝑞)
𝑏𝑐≡𝑎 (mod 𝑞)

∑
𝑚≤𝑋

2𝑘−2
10𝑘

𝑚≡𝑏 (mod 𝑞)

(
𝑃𝑚 (log 𝑋) +𝑂

(
𝑑𝑘−1(𝑚)

𝐻 𝑗

𝑋 log 𝑋

)) ∑
𝑋/𝑚<𝑛≤(𝑋+𝐻 𝑗 )/𝑚

𝑛≡𝑐 (mod 𝑞)

1

=
1

𝐻 𝑗

∑
𝑏,𝑐 (mod 𝑞)
𝑏𝑐≡𝑎 (mod 𝑞)

∑
𝑚≤𝑋

𝑘−1
5𝑘

𝑚≡𝑏 (mod 𝑞)

(
𝑃𝑚 (log 𝑋) +𝑂

(
𝑑𝑘−1(𝑚)

𝐻 𝑗

𝑋 log 𝑋

)) (
𝐻 𝑗

𝑚𝑞
+𝑂 (1)

)

=
∑

𝑏,𝑐 (mod 𝑞)
𝑏𝑐≡𝑎 (mod 𝑞)

∑
𝑚≤𝑋

𝑘−1
5𝑘

𝑚≡𝑏 (mod 𝑞)

𝑃𝑚(log 𝑋)
𝑚𝑞

+𝑂

(
𝐻 𝑗 log𝑘−2 𝑋

𝑋
+ 𝑞𝑋1/5

𝐻 𝑗

)
.

The claim follows by subtracting this for 𝑗 = 1, 2. Part (i) follows directly from equation (3.11) applied
with 𝐻 ∈ {𝐻1, 𝐻2} and the triangle inequality.

3.3. Proof of Lemmas 3.5 and 3.6

We first make a standard reduction to studying averages of Dirichlet polynomials.
Lemma 3.8. Let 𝑊 ≤ 𝑋1/100. Let |𝑎𝑛 | ≤ 𝑑2(𝑛)𝐶 for some 𝐶 ≥ 1, and let 𝐴(𝑠, 𝜒) :=∑
𝑐1𝑋<𝑛≤𝑐2𝑋 𝑎𝑛𝜒(𝑛)𝑛−𝑠 for some fixed 𝑐2 > 𝑐1 > 0. Let 𝑋1/2 ≤ 𝐻1 ≤ 𝐻2 ≤ 𝑋/𝑊4 and (𝑎, 𝑞) = 1.
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(i) One has

��� 1
𝐻1

∑
𝑋<𝑛≤𝑋+𝐻1
𝑛≡𝑎 (mod 𝑞)

𝑎𝑛 −
1

𝐻2

∑
𝑋<𝑛≤𝑋+𝐻2
𝑛≡𝑎 (mod 𝑞)

𝑎𝑛

��� � log𝑂𝐶 (1) 𝑋

𝑊2

+ log 𝑋

𝑋1/2 max
𝑋
𝐻1

≤𝑇 ≤ 𝑋𝑊 4
𝐻1

1
𝜑(𝑞)

∑
𝜒 (mod 𝑞)

𝑋/𝐻1
𝑇

∫
𝑊 ≤ |𝑡 | ≤𝑇

|𝐴( 1
2 + 𝑖𝑡, 𝜒) | 𝑑𝑡.

(ii) One has

��� 1
𝐻1

∑
𝑋<𝑛≤𝑋+𝐻1
𝑛≡𝑎 (mod 𝑞)

𝑎𝑛

��� � log𝑂𝐶 (1) 𝑋

𝑊2

+ log 𝑋

𝑋1/2 max
𝑋
𝐻1

≤𝑇 ≤ 𝑋𝑊 4
𝐻1

1
𝜑(𝑞)

∑
𝜒 (mod 𝑞)

𝑋/𝐻1
𝑇

∫
|𝑡 | ≤𝑇

|𝐴( 1
2 + 𝑖𝑡, 𝜒) | 𝑑𝑡.

Proof. Let us first consider part (i). We begin by using the orthogonality of characters and Perron’s
formula (see, e.g., [54, Corollary 5.3]) to get that, for 𝑗 = 1, 2,

1
𝐻 𝑗

∑
𝑋<𝑛≤𝑋+𝐻 𝑗

𝑛≡𝑎 (mod 𝑞)

𝑎𝑛 =
1

𝜑(𝑞)𝐻 𝑗

∑
𝜒 (mod 𝑞)

𝜒(𝑎)
∫ 𝑋𝑊 4

𝐻𝑗

− 𝑋𝑊 4
𝐻𝑗

𝐴( 1
2 + 𝑖𝑡, 𝜒)

(𝑋 + 𝐻 𝑗 )1/2+𝑖𝑡 − 𝑋1/2+𝑖𝑡

1
2 + 𝑖𝑡

𝑑𝑡

+𝑂

(
log𝑂𝐶 (1) 𝑋

𝑊4

)
.

The ‘main term’ comes from (only 𝜒0 contributes to actual main terms)

1
𝜑(𝑞)𝐻 𝑗

∑
𝜒 (mod 𝑞)

𝜒(𝑎)
∫ 𝑊

−𝑊
𝐴( 1

2 + 𝑖𝑡, 𝜒)
(𝑋 + 𝐻 𝑗 )1/2+𝑖𝑡 − 𝑋1/2+𝑖𝑡

1
2 + 𝑖𝑡

𝑑𝑡

=
1

𝜑(𝑞)
∑

𝜒 (mod 𝑞)
𝜒(𝑎)
∫ 𝑊

−𝑊
𝐴( 1

2 + 𝑖𝑡, 𝜒)𝑋−1/2+𝑖𝑡𝑑𝑡 +𝑂

(
𝐻 𝑗𝑊

2

𝑋
log𝑂𝐶 (1) 𝑋

)
.

The error term is 𝑂 (log𝑂𝐶 (1) 𝑋/𝑊2) while the main term is independent of j. Hence,

��� 1
𝐻1

∑
𝑋<𝑛≤𝑋+𝐻1
𝑛≡𝑎 (mod 𝑞)

𝑎𝑛 −
1

𝐻2

∑
𝑋<𝑛≤𝑋+𝐻2
𝑛≡𝑎 (mod 𝑞)

𝑎𝑛

��� � log𝑂𝐶 (1) 𝑋

𝑊2

+
2∑
𝑗=1

1
𝜑(𝑞)𝐻 𝑗

∑
𝜒 (mod 𝑞)

∫
𝑊 ≤ |𝑡 | ≤ 𝑋𝑊 4

𝐻𝑗

��𝐴( 1
2 + 𝑖𝑡, 𝜒)

�� ����� (𝑋 + 𝐻 𝑗 )1/2+𝑖𝑡 − 𝑋1/2+𝑖𝑡

1
2 + 𝑖𝑡

����� 𝑑𝑡.
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Since | (𝑋+𝐻 𝑗 )1/2+𝑖𝑡−𝑋1/2+𝑖𝑡

1/2+𝑖𝑡 | � min{𝐻 𝑗𝑋
−1/2, 𝑋1/2/(1 + |𝑡 |)}, the second line contributes

�
2∑
𝑗=1

1
𝜑(𝑞)𝐻 𝑗

∑
𝜒 (mod 𝑞)

𝐻 𝑗

𝑋1/2

∫
𝑊 ≤ |𝑡 | ≤ 𝑋

𝐻𝑗

|𝐴( 1
2 + 𝑖𝑡, 𝜒) |𝑑𝑡

+
2∑
𝑗=1

1
𝜑(𝑞)𝐻 𝑗

∑
𝜒 (mod 𝑞)

∫
𝑋
𝐻𝑗

≤ |𝑡 | ≤ 𝑋𝑊 4
𝐻𝑗

|𝐴( 1
2 + 𝑖𝑡, 𝜒) | 𝑋1/2

1 + |𝑡 | 𝑑𝑡.

Splitting the second integral dyadically, we see that this is

� log 𝑋

𝑋1/2

2∑
𝑗=1

max
𝑋
𝐻𝑗

≤𝑇 ≤ 𝑋𝑊 4
𝐻𝑗

1
𝜑(𝑞)

∑
𝜒 (mod 𝑞)

𝑋/𝐻 𝑗

𝑇

∫
𝑊 ≤ |𝑡 | ≤𝑇

|𝐴( 1
2 + 𝑖𝑡, 𝜒) | 𝑑𝑡.

Since 𝐻2 ≥ 𝐻1, the contribution of the part with 𝑗 = 1 is larger than the contribution of the part with
𝑗 = 2. Hence, part (i) follows.

Part (ii) follows similarly, except there is no need to handle a main term separately. �

Proof of Lemma 3.5. By Shiu’s bound (Lemma 2.17), we can clearly assume that 𝑞 ≤ 𝑊1/2 ≤ 𝑋 𝜀/400.
Let us consider, for 𝑗 = 1, 2,

1
𝐻 𝑗

∑
𝑋<𝑚1𝑚2ℓ≤𝑋+𝐻 𝑗

𝑚1𝑚2ℓ≡𝑎 (mod 𝑞)
𝑚 𝑗∼𝑀 𝑗 ,ℓ∼𝐿

𝑎𝑚1 𝑏𝑚2 𝑣ℓ .

We first split the sums according to 𝑟1 = (𝑚1, 𝑞), 𝑟2 = (𝑚2, 𝑞/𝑟1) and 𝑟3 = (ℓ, 𝑞/(𝑟1𝑟2)), writing
𝑚 𝑗 = 𝑟 𝑗𝑚

′
𝑗 and ℓ = 𝑟3ℓ′. Then 𝑚′

1𝑚′
2ℓ′𝑟1𝑟2𝑟3 ≡ 𝑎 (mod 𝑞

𝑟1𝑟2𝑟3
𝑟1𝑟2𝑟3) and necessarily 𝑟1𝑟2𝑟3 = (𝑎, 𝑞).

We have

1
𝐻 𝑗

∑
𝑋<𝑚1𝑚2ℓ≤𝑋+𝐻 𝑗

𝑚1𝑚2ℓ≡𝑎 (mod 𝑞)
𝑚 𝑗∼𝑀 𝑗 ,ℓ∼𝐿

𝑎𝑚1 𝑏𝑚2 𝑣ℓ

=
∑

𝑟1𝑟2𝑟3=(𝑎,𝑞)

1
𝐻 𝑗

∑
𝑋/(𝑟1𝑟2𝑟3)<𝑚′

1𝑚
′
2ℓ

′ ≤(𝑋+𝐻 𝑗 )/(𝑟1𝑟2𝑟3)
𝑚′

1𝑚
′
2ℓ

′≡ 𝑎
𝑟1𝑟2𝑟3

(mod 𝑞
𝑟1𝑟2𝑟3

)
(𝑚′

1 ,𝑞/𝑟1)=(𝑚′
2 ,𝑞/(𝑟1𝑟2))=(ℓ′,𝑞/(𝑟1𝑟2𝑟3))=1

𝑚′
𝑗∼𝑀 𝑗/𝑟 𝑗 ,ℓ′∼𝐿/𝑟3

𝑎𝑚′
1𝑟1 𝑏𝑚′

2𝑟2 𝑣ℓ′𝑟3 .

Part (i) follows from Lemma 3.8 (with 𝑋/(𝑎, 𝑞), 𝐻 𝑗/(𝑎, 𝑞), 𝑞/(𝑎, 𝑞) and 𝑎/(𝑎, 𝑞) in place of X, 𝐻 𝑗 , q
and a) if, for any 𝑇 ∈ [𝑋/𝐻1, 𝑋𝑊4/𝐻1] and any 𝑟1𝑟2𝑟3 = (𝑎, 𝑞) and any 𝜒(mod 𝑞/(𝑎, 𝑞)), one has∫

𝑊 ≤ |𝑡 | ≤𝑇

���� ∑
𝑚′

1∼𝑀1/𝑟1
(𝑚1 ,𝑞/𝑟1)=1

𝑎𝑚′
1𝑟1 𝜒(𝑚′

1)

𝑚′1/2+𝑖𝑡
1

∑
𝑚′

2∼𝑀2/𝑟2
(𝑚′

2 ,𝑞/(𝑟1𝑟2))=1

𝑏𝑚′
2𝑟2 𝜒(𝑚′

2)

𝑚′1/2+𝑖𝑡
2

∑
ℓ′∼𝐿/𝑟3

(ℓ′,𝑞/(𝑟1𝑟2𝑟3))=1

𝑣ℓ′𝑟3 𝜒(ℓ′)
ℓ′1/2+𝑖𝑡

���� 𝑑𝑡

� log𝑂𝐶 (1) 𝑋

𝑊1/3
𝑇

𝑋/𝐻1

(
𝑋

(𝑎, 𝑞)

)1/2
.

But, using the assumption (3.7), this follows from a slight variant of [4, Lemma 9] with 𝑔 = 1 in
cases 𝜃 ∈ {7/12, 3/5, 5/8} and with 𝑔 = 2 in case 𝜃 = 11/20 (alternatively see [24, Lemma 7.3]).
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The idea in the proofs of these lemmas is to first split the integral to level sets according to the absolute
values of the three Dirichlet polynomials appearing, and then to apply appropriate mean and large
value results individually for the three Dirichlet polynomials to obtain upper bounds for the sizes of the
level sets. Combining these upper bounds using case-by-case study and Hölder’s inequality leads to the
lemmas.

Part (ii) follows similarly. �

In fact, one can establish Lemma 3.5 for 𝜃 ∈ [7/12, 5/8] by using [4, Lemma 9] with 𝑔 = 1, and for
𝜃 ∈ [11/20, 9/16] by using [4, Lemma 9] with 𝑔 = 2 (see [24, end of Section 7.2]), but we shall not
need this more general result.

Proof of Lemma 3.6. By Shiu’s bound (Lemma 2.17), we can assume that 𝑞 ≤ 𝑊1/6. Notice first that if
for either 𝑖 = 1 or 𝑖 = 2, we have 𝜃 + 𝜀 − (1 − 𝛼𝑖) ≥ 𝜀, then we can obtain the claim by simply moving
the sum over 𝑚𝑖 inside. Hence, we can assume that 𝛼1, 𝛼2 < 1 − 𝜃.

Arguing as in proof of Lemma 3.5 and doing a dyadic splitting it suffices to show that, for any
𝑇 ∈ [𝑊, 𝑋𝑊4/𝐻1] and any 𝑟1𝑟2𝑟3 = (𝑎, 𝑞),

1
𝜑( 𝑞

(𝑎,𝑞) )

∑
𝜒 (mod 𝑞

(𝑎,𝑞) )

∫ 2𝑇

𝑇

��� ∑
𝑚1∼𝑀1/𝑟1
(𝑚1 ,𝑞/𝑟1)=1

𝜒(𝑚1)
𝑚1/2+𝑖𝑡

1

∑
𝑚2∼𝑀2/𝑟2

(𝑚2 ,𝑞/(𝑟1𝑟2))=1

𝜒(𝑚2)
𝑚1/2+𝑖𝑡

2

∑
ℓ∼𝐿/𝑟3

(ℓ,𝑞/(𝑟1𝑟2𝑟3))=1

𝜒(ℓ)𝑣ℓ𝑟3

ℓ1/2+𝑖𝑡

��� 𝑑𝑡

(3.18)

� log𝑂 (1) 𝑋

𝑊1/6 max
{

𝑇

𝑋/𝐻1
, 1
} (

𝑋

(𝑎, 𝑞)

)1/2
.

By the fourth moment estimate for Dirichlet L-functions, we have (see [24, Lemma 10.11]), for any
𝑀, 𝑇 ≥ 2 and 𝑑 | (𝑎, 𝑞),

∑
𝜒 (mod 𝑞

(𝑎,𝑞) )

∫ 2𝑇

𝑇

����� ∑
𝑚∼𝑀

(𝑚,𝑞/𝑑)=1

𝜒(𝑚)
𝑚1/2+𝑖𝑡

�����4𝑑𝑡 �
∑

𝜒 (mod 𝑞
𝑑 )

∫ 2𝑇

𝑇

����� ∑
𝑚∼𝑀

𝜒(𝑚)
𝑚1/2+𝑖𝑡

����� 4𝑑𝑡

�
(
𝑞3𝑇 + 𝑞𝑀2

𝑇3

)
log𝑂 (1) (𝑀𝑇).

Hence, using also Hölder and the mean value theorem (see, e.g., [37, Theorem 9.12 with 𝑘 = 𝑞 and
𝑄 = 1]), the left-hand side of equation (3.18) is

� log𝑂 (1) 𝑋

(
𝑞2𝑇 + 𝑋2𝛼1

𝑇3

)1/4 (
𝑞2𝑇 + 𝑋2𝛼2

𝑇3

)1/4 (
𝑇 + 𝑋1−𝛼1−𝛼2

𝑞

)1/2

� 𝑞 log𝑂 (1) 𝑋

(
𝑇 + 𝑇1/2𝑋1/2−𝛼1/2−𝛼2/2 + 𝑋𝛼1/2 + 𝑋𝛼2/2 + 𝑋1/2−𝛼1/2

𝑇1/2 + 𝑋1/2−𝛼2/2

𝑇1/2 + 𝑋1/2

𝑇3/2

)
.

One can see that this is always at most the right-hand side of equation (3.18) by considering each term
separately – depending on the term, the worst case is either 𝑇 = 𝑊 or 𝑇 = 𝑋/𝐻1. �

3.4. Proof of Proposition 3.4

Let us first show the 𝑘 = 2 case of Proposition 3.4(ii). It follows from classical arguments leading to the
exponent 1/3 + 𝜀 in the Dirichlet divisor problem (see, e.g., [62, Section I.6.4]). For completeness, we
provide the proof here. By a trivial bound, we can assume that 𝑞 ≤ 𝑋 𝜀/4.
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First, note that

1
𝐻 𝑗

∑
𝑋<𝑛≤𝑋+𝐻 𝑗

𝑛≡𝑎 (mod 𝑞)

𝑑2(𝑛) =
2

𝐻 𝑗

∑
𝑋<𝑚𝑛≤𝑋+𝐻 𝑗

𝑚≤𝑋1/2

𝑚𝑛≡𝑎 (mod 𝑞)

1 +𝑂

(
1

𝐻 𝑗

∑
𝑚∈(𝑋1/2 , (𝑋+𝐻 𝑗 )1/2 ]

∑
𝑋/𝑚<𝑛≤(𝑋+𝐻 𝑗 )/𝑚
𝑚𝑛≡𝑎 (mod 𝑞)

1

)
.

The error term contributes

� 1
𝐻 𝑗

·
(

𝐻 𝑗

𝑋1/2 + 1
)
·
(

𝐻 𝑗

𝑋1/2 + 1
)
�

𝐻 𝑗

𝑋
+ 1

𝐻 𝑗
.

Hence,it suffices to show that, for any 𝑀 ∈ [1/2, 𝑋1/2], we have

1
𝐻1

∑
𝑋<𝑚𝑛≤𝑋+𝐻1

𝑚∼𝑀
𝑚𝑛≡𝑎 (mod 𝑞)

1 =
1

𝐻2

∑
𝑋<𝑚𝑛≤𝑋+𝐻2

𝑚∼𝑀
𝑚𝑛≡𝑎 (mod 𝑞)

1 +𝑂

(
1

𝑋 𝜀/5

)
.

Now, for 𝑗 = 1, 2,∑
𝑋<𝑚𝑛≤𝑋+𝐻 𝑗

𝑚∼𝑀
𝑚𝑛≡𝑎 (mod 𝑞)

1 =
∑

0≤𝑏,𝑐<𝑞
𝑏𝑐≡𝑎 (mod 𝑞)

∑
𝑚∼𝑀

𝑚≡𝑏 (mod 𝑞)

( ∑
1≤𝑛≤

𝑋+𝐻𝑗
𝑚

𝑛≡𝑐 (mod 𝑞)

1 −
∑

1≤𝑛≤ 𝑋
𝑚

𝑛≡𝑐 (mod 𝑞)

1

)

=
∑

0≤𝑏,𝑐<𝑞
𝑏𝑐≡𝑎 (mod 𝑞)

∑
𝑚∼𝑀

𝑚≡𝑏 (mod 𝑞)

(⌊
𝑋 + 𝐻 𝑗

𝑚𝑞
− 𝑐

𝑞

⌋
−
⌊

𝑋

𝑚𝑞
− 𝑐

𝑞

⌋)
=

∑
0≤𝑏,𝑐<𝑞

𝑏𝑐≡𝑎 (mod 𝑞)

∑
𝑚∼𝑀

𝑚≡𝑏 (mod 𝑞)

(
𝐻 𝑗

𝑚𝑞
+
(

1
2
−
{

𝑋 + 𝐻 𝑗

𝑚𝑞
− 𝑐

𝑞

})
−
(

1
2
−
{

𝑋

𝑚𝑞
− 𝑐

𝑞

}))
.

Hence, it suffices to show that, for 𝑗 = 1, 2 and 𝜉 ∈ {𝑋/𝑞, (𝑋 + 𝐻 𝑗 )/𝑞},∑
0≤𝑏,𝑐<𝑞

𝑏𝑐≡𝑎 (mod 𝑞)

∑
𝑚∼𝑀

𝑚≡𝑏 (mod 𝑞)

(
1
2
−
{

𝜉

𝑚
− 𝑐

𝑞

})
= 𝑂

(
𝐻 𝑗

𝑋 𝜀/5

)
. (3.19)

The left-hand side is trivially 𝑂 (𝑞𝑀) = 𝑂 (𝑋 𝜀/4𝑀), and so equation (3.19) is immediate in case
𝑀 ≤ 𝐻 𝑗/𝑋 𝜀/2, and so we can concentrate on showing equation (3.19) for j and M for which
𝑀 > 𝐻 𝑗/𝑋 𝜀/2.

For any 𝐾 ≥ 1, we have the Fourier expansion (see, e.g., [62, Section I.6.4])

1
2
− {𝑦} =

∑
𝑘≠0

𝑣𝑘𝑒(𝑘𝑦) +𝑂 (1/𝐾) with 𝑣𝑘 � min{1/𝑘, 𝐾/𝑘2}.

Taking 𝐾 𝑗 = 𝑀𝑋 𝜀/2/𝐻 𝑗 (which is ≥ 1) and writing 𝑚 = 𝑏 + 𝑟𝑞, it suffices to show that, for 𝑗 = 1, 2
and 𝜉 ∈ {𝑋/𝑞, (𝑋 + 𝐻 𝑗 )/𝑞},

∑
|𝑘 |>0

min

{
1
𝑘

,
𝑀𝑋 𝜀/2/𝐻 𝑗

𝑘2

} ������ ∑
(𝑀−𝑏)/𝑞<𝑟 ≤(2𝑀−𝑏)/𝑞

𝑒(𝑘𝜉/(𝑏 + 𝑟𝑞))

������ = 𝑂 (𝑋−𝜀/2𝐻 𝑗/𝑞2).

https://doi.org/10.1017/fmp.2023.28 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2023.28


46 K. Matomäki et al.

The second derivative of the phase has size � 𝑘𝑋𝑞/𝑀3, so that by van der Corput’s exponential sum
bound (see, e.g., [62, Theorem 5 in Section I.6.3] or [37, Corollary 8.13]), the left-hand side is

�
∑

0< |𝑘 | ≤𝑀𝑋 𝜀/2/𝐻 𝑗

1
𝑘

((
𝑘𝑋𝑞

𝑀3

)1/2
𝑀

𝑞
+
(

𝑀3

𝑘𝑋𝑞

)1/2)
+

∑
|𝑘 |>𝑀𝑋 𝜀/2/𝐻 𝑗

𝑀𝑋 𝜀/2/𝐻 𝑗

𝑘2

((
𝑘𝑋𝑞

𝑀3

)1/2
𝑀

𝑞
+
(

𝑀3

𝑘𝑋𝑞

)1/2)
� 𝑋1/2+𝜀/4

𝐻1/2
𝑗 𝑞1/2

+ 𝑀3/2

𝑞1/2𝑋1/2 .

This is � 𝑋−𝜀/2𝐻 𝑗/𝑞2 since 𝐻2 ≥ 𝐻1 ≥ 𝑋1/3+𝜀 , 𝑞 ≤ 𝑋 𝜀/4, and 𝑀 ≤ 𝑋1/2. This establishes the 𝑘 = 2
case of Proposition 3.4.

The cases 𝑘 = 3, 4 of Proposition 3.4(ii) follow from dyadic splitting, Lemma 2.20(v) and Lemma
3.6 with 𝑊 = min{𝑋 1

400𝑘 , 𝑋 𝜀/4}, so we can concentrate on Proposition 3.4(i) and cases 𝑘 ≥ 5 of
Proposition 3.4(ii). To apply Lemma 3.5, we need parts (i) and (ii) of the following lemma (part (iii)
will be used in the proof of Lemma 4.5 below):

Lemma 3.9 (Dirichlet polynomial bounds). Let 0 ≤ 𝑇0 ≤ 𝑋 and 𝛼 ∈ (0, 1].

(i) There exists 𝛿 = 𝛿(𝛼) such that, for any character 𝜒 of modulus 𝑞 ≤ 𝑋𝛼/2 and any 𝐿 ∈ [𝑋𝛼, 𝑋],

sup
𝑇0≤ |𝑡 | ≤𝑋

sup
𝐼 ⊂[𝐿,2𝐿 ]

�����∑
ℓ∈𝐼

𝜒(ℓ)
ℓ1/2+𝑖𝑡

����� �𝛼 𝐿1/2𝑋−𝛿 + 𝐿1/2 log 𝑋

(𝑇0 + 1)1/2 .

(ii) For any 𝐴 > 0, any 1 ≤ 𝑟 ≤ 𝑋 , and any character 𝜒 of modulus 𝑞 ≤ log𝐴 𝑋 , one has

sup
|𝑡 | ≤𝑋

sup
𝐼 ⊂[𝑋 𝛼 ,2𝑋 𝛼 ]

�����∑
ℓ∈𝐼

𝜇(𝑟ℓ)𝜒(ℓ)
ℓ1/2+𝑖𝑡

����� �𝛼,𝐴
𝑋𝛼/2

log𝐴 𝑋
.

(iii) Let 𝜀 > 0. For any 𝐴 > 0, any 𝑃 ∈ [exp((log 𝑋)2/3+𝜀), 𝑋2] and any character 𝜒 of modulus
𝑞 ≤ log𝐴 𝑋 ,

sup
𝑇0≤ |𝑡 | ≤𝑋

sup
𝐼 ⊂[𝑃,2𝑃 ]

�����∑
𝑝∈𝐼

𝜒(𝑝)
𝑝1/2+𝑖𝑡

����� �𝜀,𝐴
𝑃1/2

𝑇0
+ 𝑃1/2

log𝐴 𝑋
.

Proof. Parts (ii) and (iii) follow by standard contour integration arguments, using the known zero-free
region for 𝐿(𝑠, 𝜒) (see, e.g., [44, Lemma 2] for a similar argument without the character).

Let us concentrate on part (i). By partial summation, splitting into residue classes 𝑎 (mod 𝑞) and
writing ℓ = 𝑚𝑞 + 𝑎, it suffices to show that, for any 𝑎 ∈ {1, . . . , 𝑞} and |𝑡 | ∈ [𝑇0, 𝑋], we have∑

𝑚∈ 1
𝑞 𝐼

𝑒
( 𝑡

2𝜋
log(𝑚𝑞 + 𝑎)

)
� 𝐿

𝑋−𝛿

𝑞
+ 𝐿

log 𝑋

𝑞(𝑇0 + 1)1/2 . (3.20)

The 𝜈th derivative of the phase 𝑔(𝑚) = 𝑡
2𝜋 log(𝑚𝑞 + 𝑎) satisfies

|𝑔 (𝜈) (𝑚) |𝑚
𝜈

𝜈!
�𝜈 |𝑡 |
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for any 𝜈 ≥ 1. We apply the Weyl bound in the form of [37, Theorem 8.4]. When 𝑇0 ≤ |𝑡 | ≤ 𝐿/𝑞, we
use [37, Theorem 8.4] with 𝑘 = 2, obtaining∑

𝑚∈ 1
𝑞 𝐼

𝑒
( 𝑡

2𝜋
log(𝑚𝑞 + 𝑎)

)
�
(

|𝑡 |
𝐿2/𝑞2 +

1
|𝑡 |

)1/2
𝐿

𝑞
log 𝑋 � 𝐿1/2

𝑞1/2 log 𝑋 + 𝐿 log 𝑋

𝑞(𝑇0 + 1)1/2 .

Recalling that 𝑞 ≤ 𝐿1/2, the bound (3.20) follows with 𝛿 = 𝛼/5.
On the other hand, when 𝐿/𝑞 < |𝑡 | ≤ 𝑋 , we use [37, Theorem 8.4] with 𝑘 = � 2

𝛼 + 2�, obtaining

∑
𝑚∈ 1

𝑞 𝐼

𝑒
( 𝑡

2𝜋
log(𝑚𝑞 + 𝑎)

)
�𝛼

(
|𝑡 |

(𝐿/𝑞)𝑘
+ 1
|𝑡 |

) 4
𝑘2𝑘 𝐿

𝑞
log 𝑋

�𝛼

(
𝑋

(𝐿1/2)𝑘
+ 1

𝐿1/2

) 4
𝑘2𝑘 𝐿

𝑞
log 𝑋 (3.21)

�𝛼
𝐿

1− 2
𝑘2𝑘

𝑞
log 𝑋

and equation (3.20) follows. �

Let us now get back to the proof of Proposition 3.4(ii). Recall that we can assume that 𝑘 ≥ 5.
The claim follows trivially unless 𝑞 ≤ min{𝑋2𝑐𝑘 , 𝑋 𝜀/900}. We can request that 𝑐𝑘 ≤ 1

4000𝑘 . By dyadic
splitting it suffices to show that, for any 𝑁 𝑗 ∈ [1/2, 𝑋] with 𝑁1 · · · 𝑁𝑘 � 𝑋 , one has

max
𝑎,𝑞∈N

𝑞≤𝑋1/(2000𝑘)

����������
1

𝐻1

∑
𝑋<𝑛1 · · ·𝑛𝑘 ≤𝑋+𝐻1

𝑛𝑖∼𝑁𝑖
𝑛1 · · ·𝑛𝑘≡𝑎 (mod 𝑞)

1 − 1
𝐻2

∑
𝑋<𝑛1 · · ·𝑛𝑘 ≤𝑋+𝐻2

𝑛𝑖∼𝑁𝑖
𝑛1 · · ·𝑛𝑘≡𝑎 (mod 𝑞)

1

���������� �
1

𝑋2𝑐𝑘
+ 1

𝑋 𝜀/800 . (3.22)

We can find 𝛼1, . . . , 𝛼𝑘 ∈ [0, 1] with 𝛼1 + · · · + 𝛼𝑘 = 1 such that 𝑁𝑖 � 𝑋𝛼𝑖 for each 𝑖 = 1, . . . , 𝑘 .
In case 𝑘 = 5 and 𝜃 = 11/20, we start by applying Lemma 2.20(iv). In case (𝐼maj

2 ) holds, we apply
Lemma 3.6 with 𝑊 = min{𝑋 𝜀/4, 𝑋8𝑐𝑘 } to obtain equation (3.22). In case (𝐼 𝐼maj) holds, we wish to
apply Lemma 3.5. In order to do this, we need to show that equation (3.7) holds with

𝑣𝑚 =
∑

𝑚=
∏
𝑖∈𝐼 𝑚𝑖

𝑚𝑖∼𝑁𝑖

1 (3.23)

and 𝑊 = min{𝑋 𝜀/200, 𝑋20𝑐𝑘 } for any 𝐿 �
∏

𝑖∈𝐼 𝑁𝑖 . Now, there exists 𝑖0 ∈ 𝐼 such that 𝛼𝑖0 ≥ (2𝜃−1)/𝑘 =
1

10𝑘 . We have (using 𝑑 (𝑟)𝑑 |𝐼 |−1(𝑚) � 𝑊1/100)

������ ∑ℓ∼𝐿/𝑟 𝑣ℓ𝑟 𝜒(ℓ)
ℓ1/2+𝑖𝑡

������ ≤ ∑𝑟=𝑟1𝑟2

∑
𝐿

2𝑟2𝑋
𝛼𝑖0

<𝑚≤ 2𝐿
𝑟2𝑋

𝛼𝑖0

𝑑 |𝐼 |−1(𝑚)
𝑚1/2

���������
∑

𝑚𝑖0∼𝑋
𝛼𝑖0 /𝑟1

𝑚𝑖0∼𝐿/(𝑚𝑟 )

𝜒(𝑚𝑖0 )
𝑚1/2+𝑖𝑡
𝑖0

���������
�
(

𝐿

𝑋𝛼𝑖0

)1/2
𝑊1/100 max

𝑟=𝑟1𝑟2

1
𝑟1/2

2

max
𝑦∼𝑋 𝛼𝑖0 /𝑟1

������ ∑
𝑋
𝛼𝑖0 /𝑟1<𝑚≤𝑦

𝜒(𝑚)
𝑚1/2+𝑖𝑡

������ .
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Hence, equation (3.7) follows for equation (3.23) if we show that

max
𝑟1𝑟2 |𝑞

𝜒 (mod 𝑞
(𝑎,𝑞) )

sup
𝑊 ≤ |𝑡 | ≤ 𝑋𝑊 4

𝐻1

max
𝑦∼𝑋 𝛼𝑖0 /𝑟1

������ ∑
𝑋
𝛼𝑖0 /𝑟1<𝑚≤𝑦

𝜒(𝑚)
𝑚1/2+𝑖𝑡

������ � (𝑋𝛼𝑖0 /𝑟1)1/2

𝑊1/3+1/100 . (3.24)

Note that 𝑋𝛼𝑖0 /𝑟1 ≥ 𝑋
1

10𝑘 −2𝑐𝑘 ≥ 𝑋
1

20𝑘 . We apply Lemma 3.9(i) with 𝑇0 = 𝑊 . Taking 𝑐𝑘 ≤ 𝛿( 1
20𝑘 )/30

we obtain that the left-hand side of equation (3.24) is

�
(

𝑋𝛼𝑖0

𝑟1

)1/2
· log 𝑋

𝑊1/2 � (𝑋𝛼𝑖0 /𝑟1)1/2

𝑊1/3+1/100 .

Hence, equation (3.22) follows from Lemma 3.5. The case 𝑘 ≥ 6 and 𝜃 = 7/12 follows similarly using
Lemma 2.20(iii).

A similar method allows us to establish Proposition 3.4(i). We start by applying Heath-Brown’s
identity (Lemma 2.16) with 𝐿 = �2/𝜀�, writing 𝑁𝑖 = 𝑋𝛼𝑖 . Then we apply Lemma 2.20(iii) to these 𝛼𝑖 .

In case (𝐼 𝐼maj) holds, we argue as above but with 𝑊 = log𝐴 𝑋 for some large 𝐴 > 0. On the other
hand, in case 𝛼𝑖0 ≥ 1 − 𝜃 − 𝜀/2 for some 𝑖0, we write 𝑀 = 1

𝑁𝑖0

∏ℓ
𝑗=1 𝑁 𝑗and move the summation over

𝑛𝑖0 ∼ 𝑋𝛼𝑖0 inside. Then it suffices to show in this case that, for any 𝐵 ≥ 1,

max
𝑎,𝑞∈N

∑
𝑀<𝑚≤2ℓ𝑀

𝑑ℓ−1(𝑚)

������������
1

𝐻1

∑
𝑋/𝑚<𝑛𝑖0 ≤(𝑋+𝐻1)/𝑚

𝑛𝑖0∼𝑁𝑖0
𝑛𝑖0𝑚≡𝑎 (mod 𝑞)

𝑎𝑛𝑖0 −
1

𝐻2

∑
𝑋/𝑚<𝑛𝑖0 ≤(𝑋+𝐻2)/𝑚

𝑛𝑖0∼𝑁𝑖0
𝑛𝑖0𝑚≡𝑎 (mod 𝑞)

𝑎𝑛𝑖0

������������
� 1

(log 𝑋)𝐵

for 𝑎𝑛𝑖0 = 1(𝑁𝑖0 ,2𝑁𝑖0 ] (𝑛𝑖0) and 𝑎𝑛𝑖0 = 1(𝑁𝑖0 ,2𝑁𝑖0 ] (𝑛𝑖0) log 𝑛𝑖0 . But here 𝐻2/𝑀 ≥ 𝐻1/𝑀 ≥ 𝑋 𝜀/2, so the
claim is easy to establish.

In the remaining case (𝐼maj
2 ) holds and 𝛼𝑖 , 𝛼 𝑗 > 𝜀/2. Thus, the corresponding coefficients from Heath-

Brown’s identity are either 1(𝑁𝑖 ,2𝑁𝑖 ] (𝑛) or (log 𝑛)1(𝑁𝑖 ,2𝑁𝑖 ] (𝑛) and the claim follows from Lemma 3.6
(and partial summation if needed).

3.5. Major arc estimates with restricted prime factorization

When proving Theorem 1.1(iv)–(v) we need the following quick consequence of Theorem 3.1. One
could obtain stronger results, but this is sufficient for our needs.

Corollary 3.10. Let 𝑋 ≥ 3 and 𝑋7/12+𝜀 ≤ 𝐻 ≤ 𝑋1−𝜀 for some 𝜀 > 0. Let 2 ≤ 𝑃 < 𝑄 ≤ 𝑋1/(log log𝑋 )2

and write P (𝑃, 𝑄) =
∏

𝑃<𝑝≤𝑄 𝑝.

(i) For all 𝐴 > 0, ����� ∑
𝑋<𝑛≤𝑋+𝐻

1(𝑛,P (𝑃,𝑄))>1𝜇(𝑛)

�����∗ �𝐴,𝜀
𝐻

log𝐴 𝑋
+ 𝐻 (log 𝑋)4

𝑃
.

(ii) Let 𝑘 ≥ 2. For all 𝐴 > 0,����� ∑
𝑋<𝑛≤𝑋+𝐻

1(𝑛,P (𝑃,𝑄))>1 (𝑑𝑘 (𝑛) − 𝑑♯𝑘 (𝑛))

�����∗ �𝐴,𝜀
𝐻

log𝐴 𝑋
+ 𝐻 (log 𝑋)4𝑘

𝑃
.
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Proof. Let us first show (i). By Lemma 2.19 it suffices to show that����������
∑

𝑋<𝑝𝑟𝑛≤𝑋+𝐻
𝑃<𝑝≤𝑄
𝑟 ≤𝑋 𝜀/2

𝑎𝑟 𝜇(𝑛)

����������
∗ �𝐴,𝜀

𝐻

log𝐴 𝑋

whenever |𝑎𝑟 | ≤ 𝑑2(𝑟). By the triangle inequality and Theorem 3.1 the left-hand side is

�
∑

𝑃<𝑝≤𝑄

∑
𝑟 ≤𝑋 𝜀/2

𝑑2(𝑟)

������ ∑
𝑋/(𝑝𝑟 )<𝑛≤(𝑋+𝐻 )/(𝑝𝑟 )

𝜇(𝑛)

������ ∗
�𝐴,𝜀

∑
𝑃<𝑝≤𝑄

∑
𝑟 ≤𝑋 𝜀/2

𝑑2(𝑟)
𝐻

𝑝𝑟 (log 𝑋)𝐴+3 � 𝐻

log𝐴 𝑋
.

Let us now turn to (ii). By Theorem 3.1 and the triangle inequality, it suffices to show the claim with
1(𝑛,P (𝑃,𝑄))>1 replaced by 1(𝑛,P (𝑃,𝑄))=1. Hence, by Möbius inversion we need to show that������ ∑𝑋<𝑛≤𝑋+𝐻

∑
𝑑 | (𝑛,P (𝑃,𝑄))

𝜇(𝑑) (𝑑𝑘 (𝑛) − 𝑑♯𝑘 (𝑛))

������
∗

�𝐴
𝐻

log𝐴 𝑋
. (3.25)

Write 𝐷 := min{𝑋 𝜀/2000, 𝑋𝑐𝑘/2}. Since 𝑑♯𝑘 (𝑚) � 𝑑𝑘 (𝑚) (see equation (3.14)), the contribution of
𝑑 > 𝐷 to the left-hand side of equation (3.25) is by Lemma 2.18 at most

�
∑

𝑋<𝑑𝑛≤𝑋+𝐻
𝑑>𝐷

𝑑 |P (𝑃,𝑄)

𝑑𝑘 (𝑑𝑛) �𝐴
𝐻

log𝐴 𝑋
.

On the other hand, the contribution of 𝑑 ≤ 𝐷 to the left-hand side of equation (3.25) is by the triangle
inequality and Theorem 3.1��������

∑
𝑋<𝑛≤𝑋+𝐻

∑
𝑑≤𝐷

𝑑 |P (𝑃,𝑄)

𝜇(𝑑)1𝑛≡0 (mod 𝑑) (𝑑𝑘 (𝑛) − 𝑑♯𝑘 (𝑛))

��������
∗

�
∑
𝑑≤𝐷

����� ∑
𝑋<𝑛≤𝑋+𝐻

(𝑑𝑘 (𝑛) − 𝑑♯𝑘 (𝑛))

�����∗ �𝜀
𝐻

𝑋 𝜀/2000 +
𝐻

𝑋𝑐𝑘/2 . �

4. Reduction to type I, type 𝑰𝑰 and type 𝑰2 estimates

To complement the major arc estimates in Theorem 3.1, we will establish later in the paper some ‘inverse
theorems’ that provide discorrelation between an arithmetic function f and a nilsequence 𝐹 (𝑔(𝑛)Γ)
assuming that f is of9 ‘type I’, ‘type 𝐼 𝐼’ or ‘type 𝐼2’, and the nilsequence is ‘minor arc’ in a suitable
sense. To make this precise, we give some definitions:

9Informally, we use type 𝐼𝑘 to refer to expressions resembling 𝛼 ∗ 𝑑𝑘 for some arithmetic function 𝛼 supported on a relatively
short range, with the classical type I sums corresponding to the case 𝑘 = 1, and type 𝐼 𝐼 sums to refer to convolutions 𝛼 ∗ 𝛽 where
both 𝛼 and 𝛽 are supported away from 1.
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Definition 4.1 (Type I, 𝐼 𝐼, 𝐼2 sums). Let 0 < 𝛿 < 1 and 𝐴𝐼 , 𝐴−
𝐼 𝐼 , 𝐴+

𝐼 𝐼 , 𝐴𝐼2 ≥ 1.

(i) (Type I sum) A (𝛿, 𝐴𝐼 ) type I sum is an arithmetic function of the form 𝑓 = 𝛼 ∗ 𝛽, where 𝛼 is
supported in [1, 𝐴𝐼 ], and one has the bounds∑

𝑛≤𝐴
|𝛼(𝑛) |2 ≤ 1

𝛿
𝐴 (4.1)

and

‖𝛽‖TV(N;𝑞) ≤
1
𝛿

(4.2)

for all 𝐴 ≥ 1 and some 1 ≤ 𝑞 ≤ 1
𝛿 .

(ii) (Type 𝐼 𝐼 sum) A (𝛿, 𝐴−
𝐼 𝐼 , 𝐴+

𝐼 𝐼 ) type𝐼 𝐼 sum is an arithmetic function of the form 𝑓 = 𝛼 ∗ 𝛽, where
𝛼 is supported on [𝐴−

𝐼 𝐼 , 𝐴+
𝐼 𝐼 ], and one has the bound (4.1) and the bounds∑
𝑛≤𝐵

|𝛽(𝑛) |2 ≤ 1
𝛿

𝐵 and
∑
𝑛≤𝐵

|𝛽(𝑛) |4 ≤ 1
𝛿2 𝐵 (4.3)

for all 𝐴, 𝐵 ≥ 1. (The type 𝐼 𝐼 sums become vacuous if 𝐴−
𝐼 𝐼 > 𝐴+

𝐼 𝐼 .)
(iii) (Type 𝐼2 sum) A (𝛿, 𝐴𝐼2) type𝐼2 sum is an arithmetic function of the form 𝑓 = 𝛼 ∗ 𝛽1 ∗ 𝛽2, where 𝛼

is supported on [1, 𝐴𝐼2] and obeys the bound (4.1) for all 𝐴 ≥ 1, and 𝛽1, 𝛽2 obey the bound (4.2)
for some 1 ≤ 𝑞 ≤ 1

𝛿 .

We now state the inverse theorems we will establish here.

Theorem 4.2 (Inverse theorems). Let 𝑑, 𝐷 ≥ 1, 2 ≤ 𝐻 ≤ 𝑋 , 0 < 𝛿 < 1
log𝑋 , let 𝐺/Γ be a filtered

nilmanifold of degree at most d, dimension at most D, and complexity at most 1/𝛿. Let 𝐹 : 𝐺/Γ → C be
Lipschitz of norm at most 1/𝛿 and mean zero. Let 𝑓 : N→ C be an arithmetic function such that����� ∑

𝑋<𝑛≤𝑋+𝐻
𝑓 (𝑛)𝐹 (𝑔(𝑛)Γ)

�����∗ ≥ 𝛿𝐻. (4.4)

for some polynomial map 𝑔 : Z→ 𝐺.

(i) (Type I inverse theorem) If f is a (𝛿, 𝐴𝐼 ) type I sum for some 𝐴𝐼 ≥ 1, then either

𝐻 �𝑑,𝐷 𝛿−𝑂𝑑,𝐷 (1) 𝐴𝐼

or else there exists a nontrivial horizontal character 𝜂 : 𝐺 → R/Z of Lipschitz norm
𝑂𝑑,𝐷 (𝛿−𝑂𝑑,𝐷 (1) ) such that

‖𝜂 ◦ 𝑔‖𝐶∞ (𝑋,𝑋+𝐻 ] �𝑑,𝐷 𝛿−𝑂𝑑,𝐷 (1) .

(ii) (Type 𝐼 𝐼 inverse theorem, nonabelian case) If f is a (𝛿, 𝐴−
𝐼 𝐼 , 𝐴+

𝐼 𝐼 ) type 𝐼 𝐼 sum for some 𝐴+
𝐼 𝐼 ≥

𝐴−
𝐼 𝐼 ≥ 1, G is nonabelian with one-dimensional center, and F oscillates with a nonzero central

frequency 𝜉 of Lipschitz norm at most 1/𝛿, then either

𝐻 �𝑑,𝐷 𝛿−𝑂𝑑,𝐷 (1) max(𝐴+
𝐼 𝐼 , 𝑋/𝐴−

𝐼 𝐼 )

or else there exists a nontrivial horizontal character 𝜂 : 𝐺 → R/Z of Lipschitz norm
𝑂𝑑,𝐷 (𝛿−𝑂𝑑,𝐷 (1) ) such that

‖𝜂 ◦ 𝑔‖𝐶∞ (𝑋,𝑋+𝐻 ] �𝑑,𝐷 𝛿−𝑂𝑑,𝐷 (1) . (4.5)
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(iii) (Type 𝐼 𝐼 inverse theorem, abelian case) If f is a (𝛿, 𝐴−
𝐼 𝐼 , 𝐴+

𝐼 𝐼 ) type 𝐼 𝐼 sum for some 𝐴+
𝐼 𝐼 ≥ 𝐴−

𝐼 𝐼 ≥ 1
and 𝐹 (𝑔(𝑛)Γ) = 𝑒(𝑃(𝑛)) for some polynomial 𝑃 : Z→ R of degree at most d, then either

𝐻 �𝑑 𝛿−𝑂𝑑 (1) max(𝐴+
𝐼 𝐼 , 𝑋/𝐴−

𝐼 𝐼 )

or else there exists a real number 𝑇 �𝑑 𝛿−𝑂𝑑 (1) (𝑋/𝐻)𝑑+1 such that

‖𝑒(𝑃(𝑛))𝑛−𝑖𝑇 ‖TV( (𝑋,𝑋+𝐻 ]∩Z;𝑞) �𝑑 𝛿−𝑂𝑑 (1)

for some 1 ≤ 𝑞 �𝑑 𝛿−𝑂𝑑 (1) .
(iv) (Type 𝐼2 inverse theorem) If f is a (𝛿, 𝐴𝐼2 ) type 𝐼2 sum for some 𝐴𝐼2 ≥ 1, then either

𝐻 �𝑑,𝐷 𝛿−𝑂𝑑,𝐷 (1)𝑋1/3 𝐴2/3
𝐼2

(4.6)

or else there exists a nontrivial horizontal character 𝜂 : 𝐺 → R/Z of Lipschitz norm
𝑂𝑑,𝐷 (𝛿−𝑂𝑑,𝐷 (1) ) such that

‖𝜂 ◦ 𝑔‖𝐶∞ (𝑋,𝑋+𝐻 ] �𝑑,𝐷 𝛿−𝑂𝑑,𝐷 (1) .

In this section, we show how Theorem 4.2, when combined with the major arc estimates in Theo-
rem 3.1, gives Theorem 1.1.

4.1. Combinatorial decompositions

We start by describing the combinatorial decompositions that allow us to reduce sums involving 𝜇,Λ, 𝑑𝑘
to type I, type 𝐼 𝐼 and type 𝐼2 sums. Lemma 4.3 will be used to prove equations (1.5) and (1.6), Lemma
4.4 will be used to prove (1.7) and Lemma 4.5 will be used to prove equations (1.8) and (1.9).

The model function Λ♯ is not quite a type I sum, but we can approximate it well by the type I sum10

Λ♯
𝐼 (𝑛) :=

𝑃(𝑅)
𝜑(𝑃(𝑅))

∑
𝑑≤𝑋 𝜃/2

𝑑 | (𝑛,𝑃 (𝑅))

𝜇(𝑑). (4.7)

Indeed, by equation (1.1), Möbius inversion and Lemma 2.18, we have∑
𝑋<𝑛≤𝑋+𝐻

|Λ♯
𝐼 (𝑛) − Λ♯ (𝑛) | ≤ 𝑃(𝑅)

𝜑(𝑃(𝑅))
∑

𝑋<𝑑𝑛≤𝑋+𝐻
𝑑>𝑋 𝜃/2
𝑑 |𝑃 (𝑅)

1 � 𝐻 exp(−(log 𝑋)1/20). (4.8)

In practice, this bound allows us to substitute Λ♯ with the type I sum Λ♯
𝐼 with negligible cost.

Lemma 4.3 (Combinatorial decompositions of 𝜇,Λ, and Λ♯
𝐼 ). Let 𝑋 𝜃+𝜀 ≤ 𝐻 ≤ 𝑋 for 𝜃 = 5/8 and

some fixed 𝜀 > 0. For each 𝑔 ∈ {𝜇,Λ,Λ♯
𝐼 }, we may find a collection F of 𝑂 ((log 𝑋)𝑂 (1) ) functions

𝑓 : N→ R such that

𝑔(𝑛) =
∑
𝑓 ∈F

𝑓 (𝑛)

for each 𝑋/2 ≤ 𝑛 ≤ 4𝑋 , and each component 𝑓 ∈ F satisfies one of the following:
(i) f is a (log−𝑂 (1) 𝑋, 𝑂 (𝑋 𝜃 )) type I sum;

(ii) f is a (log−𝑂 (1) 𝑋, 𝑂 (𝑋 (3𝜃−1)/2)) type 𝐼2 sum;

10One could alternatively use a type I approximant coming from the 𝛽-sieve, using the fundamental lemma of the sieve (see,
e.g., [37, Lemma 6.3]) but the simper approximant Λ♯𝐼 is sufficient for us.
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(iii) f is a (log−𝑂 (1) 𝑋, 𝐴−
𝐼 𝐼 , 𝐴+

𝐼 𝐼 ) type 𝐼 𝐼 sum for some 𝑋1−𝜃 � 𝐴−
𝐼 𝐼 ≤ 𝐴+

𝐼 𝐼 � 𝑋 𝜃 , and it obeys the
bound

sup
(𝑋/𝐻 ) (log𝑋 )50𝐴≤ |𝑇 | ≤𝑋𝐴

����� ∑
𝑋<𝑛≤𝑋+𝐻

𝑓 (𝑛)𝑛𝑖𝑇
�����∗ �𝐴 𝐻 log−𝐴 𝑋 (4.9)

for all sufficiently large 𝐴 ≥ 1.

Lemma 4.4 (Combinatorial decompositions of 𝑑𝑘 and 𝑑♯𝑘 ). Let 𝑘 ≥ 2. Let 𝑋 𝜃+𝜀 ≤ 𝐻 ≤ 𝑋 for 𝜃 = 𝜃𝑘

and some fixed 𝜀 > 0, where 𝜃2 = 1/3, 𝜃3 = 5/9, and 𝜃𝑘 = 5/8 for 𝑘 ≥ 4. For each 𝑔 ∈ {𝑑𝑘 , 𝑑♯𝑘 }, we
may find a collection F of 𝑂 ((log 𝑋)𝑂 (1) ) functions 𝑓 : N→ R such that

𝑔(𝑛) =
∑
𝑓 ∈F

𝑓 (𝑛)

for each 𝑋/2 ≤ 𝑛 ≤ 4𝑋 , and each component 𝑓 ∈ F satisfies one of the following:

(i) f is a (log−𝑂 (1) 𝑋, 𝑂 (𝑋 𝜃 )) type I sum;
(ii) f is a (log−𝑂 (1) 𝑋, 𝑂 (𝑋 (3𝜃−1)/2)) type 𝐼2 sum;

(iii) f is a (log−𝑂 (1) 𝑋, 𝐴−
𝐼 𝐼 , 𝐴+

𝐼 𝐼 ) type 𝐼 𝐼 sum for some 𝑋1−𝜃 � 𝐴−
𝐼 𝐼 ≤ 𝐴+

𝐼 𝐼 � 𝑋 𝜃 and it obeys the
bound

sup
(𝑋/𝐻 )𝑋2𝑐≤ |𝑇 | ≤𝑋𝐴

����� ∑
𝑋<𝑛≤𝑋+𝐻

𝑓 (𝑛)𝑛𝑖𝑇
�����∗ �𝐴,𝑘 𝐻𝑋−𝑐 (4.10)

for all 𝐴 > 0, where 𝑐 = 𝑐𝑘,𝐴 > 0 is a sufficiently small constant.

Lemma 4.5 (Flexible combinatorial decompositions of 𝜇, 𝑑𝑘 , and 𝑑♯𝑘 ). Let 𝑋3/5+𝜀 ≤ 𝐻 ≤ 𝑋 for some
fixed 𝜀 > 0, let exp((log 𝑥)2/3+𝜀) ≤ 𝑃 ≤ 𝑄 ≤ 𝑋1/(log log𝑋 )2 and write P (𝑃, 𝑄) =

∏
𝑃<𝑝≤𝑄 𝑝. We can

find a collection F of functions, where |F | = 𝑂 ((log 𝑋)𝑂 (1) ), such that for any sequence {𝜔𝑛} with
|𝜔𝑛 | ≤ 1,∑

𝑋<𝑛≤𝑋+𝐻
1(𝑛,P (𝑃,𝑄))>1𝜇(𝑛)𝜔𝑛 =

∑
𝑓 ∈F

∑
𝑋<𝑛≤𝑋+𝐻

𝑓 (𝑛)𝜔𝑛 +𝑂

(
𝐻 log4 𝑋

𝑃
+ 𝐻

exp((log log 𝑋)2)

)
.

Moreover, each component 𝑓 ∈ F satisfies one of the following:

(i) f is a (log−𝑂 (1) 𝑋, 𝑋3/5+𝜀/10) type I sum;
(ii) f is a (log−𝑂 (1) 𝑋, 𝑋2/5+𝜀/10) type 𝐼2 sum;

(iii) f is a (log−𝑂 (1) 𝑋, 𝑋2/5−𝜀/10, 𝑋3/5+𝜀/10) type 𝐼 𝐼 sum and it obeys the bound

sup
(𝑋/𝐻 ) (log𝑋 )20𝐴≤ |𝑇 | ≤𝑋𝐴

����� ∑
𝑋<𝑛≤𝑋+𝐻

𝑓 (𝑛)𝑛𝑖𝑇
�����∗ �𝐴 𝐻 log−𝐴 𝑋 (4.11)

for all sufficiently large 𝐴 > 0.

Similarly, for fixed 𝑘 ≥ 2 we can find a collection F of functions, where |F | = 𝑂 ((log 𝑋)𝑂 (1) ), such
that for any sequence {𝜔𝑛} with |𝜔𝑛 | ≤ 1,∑

𝑋<𝑛≤𝑋+𝐻
𝑑𝑘 (𝑛)𝜔𝑛1(𝑛,P (𝑃,𝑄))>1 =

∑
𝑓 ∈F

∑
𝑋<𝑛≤𝑋+𝐻

𝑓 (𝑛)𝜔𝑛 +𝑂

(
𝐻 log4𝑘 𝑋

𝑃
+ 𝐻

exp((log log 𝑋)2)

)
.
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Moreover, each component 𝑓 ∈ F is one of (i), (ii) or (iii) above, and a similar decomposition holds
also with 𝑑♯𝑘 in place of 𝑑𝑘 .

We will prove Lemmas 4.3, 4.4 and 4.5 by first decomposing the relevant functions into certain
Dirichlet convolutions (using Lemma 2.16 in the proof of Lemma 4.3 and Lemma 2.19 in the proof of
Lemma 4.5). We then use Lemma 2.20 to arrange each convolution into either type I, type 𝐼 𝐼 or type 𝐼2
sums. In the case of type 𝐼 𝐼 sums, Lemma 2.20 also allows us to arrange them into a triple convolution
for which Lemma 3.5 is applicable.

Remark 4.6. Let us briefly discuss the type 𝐼 𝐼 conditions such as equation (4.9), concentrating on the
case of the von Mangoldt function.

One may observe from the proof of Theorem 1.1(ii) below that if our major arc estimate (Theorem
3.1(i)) held, for any 𝑇 ≤ 𝑋𝑂 (1) , with (Λ(𝑛) − Λ♯ (𝑛))𝑛𝑖𝑇 in place of Λ(𝑛) − Λ♯ (𝑛), we could prove
Theorem 1.1(ii) without the need to impose in Lemma 4.3 the condition (4.9) concerning type 𝐼 𝐼 sums.

Unfortunately, with current knowledge, one cannot obtain such a twisted version of Theorem 3.1, at
least not in the whole range 𝑋7/12+𝜀 ≤ 𝐻 ≤ 𝑋1−𝜀 . However, inserting special cases of our type I and
type 𝐼2 estimates into Section 3, it would be possible to obtain such a twisted variant in the relevant
range 𝑋5/8+𝜀 ≤ 𝐻 ≤ 𝑋1−𝜀 . If we did this, we would not need to impose the condition (4.9). However, we
found it more natural to work out the major arc estimates first using existing methods without needing
to appeal to the more involved 𝐼2 case.

Proof of Lemma 4.3. The function Λ♯
𝐼 is clearly a (log−𝑂 (1) 𝑋, 𝑂 (𝑋 𝜃 )) type I sum by definition (4.7).

For Λ and 𝜇, we apply Lemma 2.16 with 𝐿 = 10. Each component 𝑓 ∈ F takes the form

𝑓 = 𝑎 (1) ∗ · · · ∗ 𝑎 (ℓ) (4.12)

for some ℓ ≤ 20, where each 𝑎 (𝑖) is supported on (𝑁𝑖 , 2𝑁𝑖] for some 𝑁𝑖 ≥ 1/2, and each 𝑎 (𝑖) (𝑛) is either
1(𝑁𝑖 ,2𝑁𝑖 ] (𝑛), (log 𝑛)1(𝑁𝑖 ,2𝑁𝑖 ] (𝑛), or 𝜇(𝑛)1(𝑁𝑖 ,2𝑁𝑖 ] (𝑛). Moreover, 𝑁1𝑁2 · · · 𝑁ℓ � 𝑋 , and 𝑁𝑖 ≤ 𝑋1/10 for
each i with 𝑎 (𝑖) (𝑛) = 𝜇(𝑛)1(𝑁𝑖 ,2𝑁𝑖 ] (𝑛).

We can find 𝛼1, . . . , 𝛼ℓ ∈ [0, 1] with
∑ℓ
𝑖=1 𝛼𝑖 = 1 such that 𝑁𝑖 � 𝑋𝛼𝑖 for each i. If 𝛼𝑖 > 1/10 for

some i, then 𝑎 (𝑖) (𝑛) is either 1(𝑁𝑖 ,2𝑁𝑖 ] (𝑛) or (log 𝑛)1(𝑁𝑖 ,2𝑁𝑖 ] (𝑛), and hence ‖𝑎 (𝑖) ‖TV(N) � log 𝑋 .
Since 𝜃 = 5/8 ≥ 3/5, we may apply Lemma 2.20(i), (ii) to conclude that either (I) holds, or (𝐼2)

holds, or both (𝐼 𝐼min) and (𝐼 𝐼maj) hold.
First, consider the case (I) holds, that is, 𝛼𝑖 ≥ 1 − 𝜃 for some i. Since 𝛼𝑖 > 1/10, ‖𝑎 (𝑖) ‖TV(N) �

log 𝑋 , and equation (4.12) is a (log−𝑂 (1) 𝑋, 𝑂 (𝑋 𝜃 )) type I sum of the form 𝛼 ∗ 𝛽 with 𝛽 = 𝑎 (𝑖) and
𝛼 = 𝑎 (1) ∗ · · · ∗ 𝑎 (𝑖−1) ∗ 𝑎 (𝑖+1) ∗ · · · ∗ 𝑎 (𝑘) .

Henceforth, we may assume that 𝛼𝑖 < 1 − 𝜃 for each i. Next, consider the case (𝐼2) holds. Then
𝛼𝑖 + 𝛼 𝑗 ≥ 3

2 (1 − 𝜃) for some 𝑖 < 𝑗 . Since 𝛼𝑖 , 𝛼 𝑗 ≤ 1 − 𝜃, this implies that 𝛼𝑖 , 𝛼 𝑗 > 1/10 and thus
‖𝑎 (𝑖) ‖TV(N) , ‖𝑎 ( 𝑗) ‖TV(N) � log 𝑋 . Hence, equation (4.12) is a (log−𝑂 (1) 𝑋, 𝑂 (𝑋 (3𝜃−1)/2)) type 𝐼2 sum
of the form 𝑓 = 𝛼 ∗ 𝛽1 ∗ 𝛽2, with 𝛽1 = 𝑎 (𝑖) , 𝛽2 = 𝑎 ( 𝑗) .

Finally, consider the case when both (𝐼 𝐼min) and (𝐼 𝐼maj) hold. Let {1, . . . , ℓ} = 𝐽 � 𝐽 ′ be the partition
from (𝐼 𝐼min), so that 𝛼𝐽 , 𝛼𝐽 ′ ∈ [1 − 𝜃, 𝜃]. Then equation (4.12) is a (log−𝑂 (1) 𝑋, 𝐴−

𝐼 𝐼 , 𝐴+
𝐼 𝐼 ) type 𝐼 𝐼 sum

of the form 𝑓 = 𝛼 ∗ 𝛽, where 𝛼 (resp. 𝛽) is the convolution of those 𝑎 (𝑖) with 𝑖 ∈ 𝐽 (resp. 𝑖 ∈ 𝐽 ′), and
𝑋1−𝜃 � 𝐴−

𝐼 𝐼 ≤ 𝐴+
𝐼 𝐼 � 𝑋 𝜃 .

It remains to establish the bound (4.9). For any subinterval (𝑋1, 𝑋1 +𝐻1] ⊂ (𝑋, 𝑋 +𝐻], any residue
class 𝑎(mod 𝑞), any fixed 𝐴 > 0, and any (𝑋/𝐻) (log 𝑋)50𝐴 ≤ |𝑇 | ≤ 𝑋𝐴, we need to show that��� ∑

𝑋1<𝑛≤𝑋1+𝐻1
𝑛≡𝑎 (mod 𝑞)

𝑓 (𝑛)𝑛𝑖𝑇
��� �𝐴 𝐻 log−𝐴 𝑋.

We may assume that A is sufficiently large, 𝐻1 ≥ 𝐻 (log 𝑋)−2𝐴 and 𝑞 ≤ (log 𝑋)2𝐴. Let now {1, . . . , ℓ} =
𝐼 � 𝐽 � 𝐽 ′ be the partition from (𝐼 𝐼maj) so that
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2𝜃 − 1 ≤ 𝛼𝐼 ≤ 4𝜃 − 2, |𝛼𝐽 − 𝛼𝐽 ′ | ≤ 2𝜃 − 1.

Let {𝑎′𝑚1 }, {𝑏
′
𝑚2 }, {𝑣

′
ℓ } be the convolution of those 𝑎 (𝑖) with 𝑖 ∈ 𝐽, 𝑖 ∈ 𝐽 ′, 𝑖 ∈ 𝐼, respectively. Note

that they are supported on 𝑚1 � 𝑋𝛼𝐽
1 , 𝑚2 � 𝑋

𝛼𝐽′
1 , ℓ � 𝑋𝛼𝐼

1 , respectively. Thus, after dyadic division of
the ranges of 𝑚1, 𝑚2, ℓ, we need to show that��� ∑

𝑋1<𝑚1𝑚2ℓ<𝑋1+𝐻1
𝑚1∼𝑀1 ,𝑚2∼𝑀2 ,ℓ∼𝐿
𝑚1𝑚2ℓ≡𝑎 (mod 𝑞)

𝑎′𝑚1 𝑚𝑖𝑇
1 𝑏′𝑚2 𝑚𝑖𝑇

2 𝑣′ℓℓ
𝑖𝑇
��� �𝐴 𝐻 log−𝐴 𝑋

for 𝑀1 � 𝑋𝛼𝐽
1 , 𝑀2 � 𝑋

𝛼𝐽′
1 , 𝐿 � 𝑋𝛼𝐼

1 . In view of Lemma 3.5(ii) applied with 𝑊 = (log 𝑋)10𝐴 and 𝑣ℓ =
𝑣′ℓℓ

𝑖𝑇 , it suffices to verify the hypothesis (3.8). There exists 𝑖0 ∈ 𝐼 such that 𝛼𝑖0 ≥ (2𝜃 − 1)/20 = 1/80.
Now, equation (3.8) follows if we show that

max
𝑟 | (𝑎,𝑞)

max
𝜒 (mod 𝑞

(𝑎,𝑞) )
sup

|𝑡 | ≤ 𝑋1 (log𝑋 )40𝐴
𝐻1

��� ∑
𝑚�𝑋 𝛼𝑖0 /𝑟

𝑎 (𝑖0) (𝑚𝑟)𝜒(𝑚)
𝑚1/2+𝑖 (𝑡−𝑇 )

��� �𝐴
(𝑋𝛼𝑖0 /𝑟)1/2

(log 𝑋)10𝐴 .

Since 𝑎 (𝑖0) is either 1, log or 𝜇 on its support, this follows from Lemma 3.9 applied with
𝑇0 = (log 𝑋)45𝐴. �

Proof of Lemma 4.4. The function 𝑑♯𝑘 is clearly a (log−𝑂 (1) 𝑋, 𝑂 (𝑋 𝜃 )) type I sum by definition (1.2).
On the other hand, 𝑑𝑘 can be decomposed into a sum of log𝑘 𝑋 terms, each of which takes the form

𝑓 = 1(𝑁1 ,2𝑁1 ] ∗ · · · ∗ 1(𝑁𝑘 ,2𝑁𝑘 ]

for some 𝑁𝑖 ≥ 1/2 with 𝑁1𝑁2 · · · 𝑁𝑘 � 𝑋 . The 𝑘 ≥ 4 case of the lemma then follows in a similar way
as Lemma 4.3, with the only difference being that Lemma 3.5 is now applied with 𝑊 = 𝑋10𝑐 instead of
a power of log 𝑋 .

In the case 𝑘 = 2 and 𝜃 = 1/3, f is clearly a (log−𝑂 (1) 𝑋, 1) type 𝐼2 sum. In the case 𝑘 = 3 and
𝜃 = 5/9, at least one of the 𝑁𝑖’s (say 𝑁3) is � 𝑋1/3. Hence, f is a (log−𝑂 (1) 𝑋, 𝑂 (𝑋1/3)) type 𝐼2 sum
of the form 𝑓 = 𝛼 ∗ 𝛽1 ∗ 𝛽2, with 𝛼 = 1(𝑁3 ,2𝑁3 ] and 𝛽 𝑗 = 1(𝑁 𝑗 ,2𝑁 𝑗 ] (𝑛) for 𝑗 = 1, 2. �

Proof of Lemma 4.5. Let us first outline the proof for 𝜇. We first apply Lemma 2.19 and then Heath-
Brown’s identity (Lemma 2.16) with 𝐿 = 10 to 𝜇(𝑛) on the right-hand side; note that we now have extra
flexibility with the p variable. We obtain a collection of functions F , where each 𝑓 ∈ F takes the form

𝑓 = 𝑎 (0) ∗ 𝑎 (1) ∗ · · · ∗ 𝑎 (ℓ)

for some ℓ ≤ 21, where each 𝑎 (𝑖) is supported on (𝑁𝑖 , 2𝑁𝑖] for some 𝑁𝑖 ≥ 1/2, with

𝑃/2 ≤ 𝑁0 ≤ 𝑄, 𝑁1 ≤ 𝑋 𝜀/30, 𝑁0𝑁1 · · · 𝑁ℓ � 𝑋.

(Here, 𝑎 (0) comes from the p variable, 𝑎 (1) comes from the r variable and 𝑎 (2) ∗ · · · ∗ 𝑎 (ℓ) comes from
applying Heath-Brown’s identity to 𝜇(𝑛).) Moreover, 𝑎 (0) (𝑛) = 1𝑛 prime1(𝑁0 ,2𝑁0 ] (𝑛), 𝑎 (1) is divisor-
bounded, and for each 𝑖 ≥ 2, 𝑎 (𝑖) (𝑛) is either 1(𝑁𝑖 ,2𝑁𝑖 ] (𝑛) or 𝜇(𝑛)1(𝑁𝑖 ,2𝑁𝑖 ] (𝑛), and 𝑁𝑖 ≤ 𝑋1/10 for each
i with 𝑎 (𝑖) = 𝜇(𝑛)1(𝑁𝑖 ,2𝑁𝑖 ] (𝑛).

We can find 𝛼1, . . . , 𝛼ℓ ∈ [0, 1] with
∑ℓ
𝑖=1 𝛼𝑖 = 1 such that 𝑋𝛼𝑖−𝜀/20 ≤ 𝑁𝑖 � 𝑋𝛼𝑖 for each 1 ≤ 𝑖 ≤ ℓ.

We may apply Lemma 2.20(ii) to conclude that either (I) holds, or (𝐼2) holds, or (𝐼 𝐼min) holds.
As in the proof of Lemma 4.3, if (I) holds, then f is a desired type I sum; if (𝐼2) holds, then f is a

desired type 𝐼2 sum; and if (𝐼 𝐼min) holds, then f is a desired type 𝐼 𝐼 sum. It remains to establish the
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bound (4.11) in the type 𝐼 𝐼 case. Let {1, . . . , ℓ} = 𝐽�𝐽 ′ be the partition from (𝐼 𝐼min) so that |𝛼𝐽 −𝛼𝐽 ′ | ≤
1/5. In view of Lemma 3.5(ii) with 𝑊 = (log 𝑋)4𝐴, it suffices to verify the hypothesis (3.8) for the
sequence

𝑣ℓ = 𝑎 (0)ℓ ℓ𝑖𝑇 = 1ℓ primeℓ
𝑖𝑇 .

Since 𝑁0 � 𝑃, Lemma 3.9 implies that hypothesis (3.8) is satisfied when (log 𝑋)20𝐴𝑋/𝐻 ≤ |𝑇 | ≤ 𝑋𝐴

as required.
The claim for 𝑑𝑘 follows similarly.
In case 𝑑♯𝑘 , we use Möbius inversion to write∑

𝑋<𝑛≤𝑋+𝐻
𝑑♯𝑘 (𝑛)𝜔𝑛1(𝑛,P (𝑃,𝑄))>1 =

∑
𝑋<𝑛≤𝑋+𝐻

𝑑♯𝑘 (𝑛)𝜔𝑛 −
∑

𝑋<𝑛≤𝑋+𝐻
𝑑♯𝑘 (𝑛)𝜔𝑛1(𝑛,P (𝑃,𝑄))=1

=
∑

𝑋<𝑛≤𝑋+𝐻
𝑑♯𝑘 (𝑛)𝜔𝑛 −

∑
𝑋<𝑑𝑛≤𝑋+𝐻
𝑑 |P (𝑃,𝑄)

𝜇(𝑑)𝑑♯𝑘 (𝑑𝑛)𝜔𝑑𝑛.

Now, 𝑑♯𝑘 (𝑛) is immediately a (log−𝑂 (1) 𝑋, 𝑋3/5) type I sum by the definition (1.2). Using Lemma 2.18,
we can truncate the last sum above to 𝑑 ≤ 𝑋 𝜀/10 with an admissible error 𝑂 (𝐻/exp((log log 𝑋)2/20))
and it remains to show that

𝑓 (𝑛) =
∑

𝑑 | (𝑛,P (𝑃,𝑄))
𝑑≤𝑋 𝜀/10

𝜇(𝑑)𝑑♯𝑘 (𝑑𝑛)

is also a (log−𝑂 (1) 𝑋, 𝑋3/5) type I sum. But this follows easily from the definition (1.2) of 𝑑♯𝑘 . �

4.2. Deduction of Theorem 1.1

In this subsection, we deduce Theorem 1.1 from Theorem 4.2. We focus on establishing equation (1.6).
The other estimates in Theorem 1.1 are established similarly, and we mention the small differences at
the end of the section. In this section, we allow all implied constants to depend on 𝑑, 𝐷.

We induct on the dimension D of 𝐺/Γ. In view of the major arc estimates (Theorem 3.1), we
may assume that F has mean zero (after replacing F by 𝐹 −

∫
𝐹). In view of Proposition 2.9 with

𝛿 = log−𝐴 𝑋 , we may assume that F oscillates with a central frequency 𝜉 : 𝑍 (𝐺) → R. If the center
𝑍 (𝐺) has dimension larger than 1 or 𝜉 vanishes, then ker 𝜉 has positive dimension and the conclusion
follows from induction hypothesis applied to 𝐺/ker 𝜉 (via Lemma 2.8). Henceforth, we assume that G
has one-dimensional center and that 𝜉 is nonzero. (A zero-dimensional center is not possible since G is
nilpotent and nontrivial.)

Let 𝑋 𝜃+𝜀 ≤ 𝐻 ≤ 𝑋1−𝜀 for 𝜃 = 5/8 and 𝜀 > 0. Redefining 𝛿, we see that, to prove equation (1.6), it
suffices to show the following claim: There exists a small 𝑐 > 0 such that for any large A and 𝛿 = log−𝐴 𝑋 ,
if 𝐺/Γ has complexity at most 𝛿−𝑐 and F has Lipschitz norm at most 𝛿−𝑐 , then we have

|
∑

𝑋<𝑛≤𝑋+𝐻
(Λ(𝑛) − Λ♯ (𝑛))𝐹 (𝑔(𝑛)Γ) |∗ ≤ 𝛿𝐻. (4.13)

Suppose that equation (4.13) fails, that is,

|
∑

𝑋<𝑛≤𝑋+𝐻
(Λ(𝑛) − Λ♯ (𝑛))𝐹 (𝑔(𝑛)Γ) |∗ > 𝛿𝐻. (4.14)
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By equation (4.8) and the triangle inequality, we then have

|
∑

𝑋<𝑛≤𝑋+𝐻
(Λ(𝑛) − Λ♯

𝐼 (𝑛))𝐹 (𝑔(𝑛)Γ) |
∗ � 𝛿𝐻. (4.15)

By Lemma 4.3, for some component 𝑓 ∈ F as in that lemma, one has the bound

|
∑

𝑋<𝑛≤𝑋+𝐻
𝑓 (𝑛)𝐹 (𝑔(𝑛)Γ) |∗ � 𝛿𝑂 (1)𝐻. (4.16)

Consider first the case when f is a (log−𝑂 (1) 𝑋, 𝐴−
𝐼 𝐼 , 𝐴+

𝐼 𝐼 ) type 𝐼 𝐼 sum with 𝑋1−𝜃 � 𝐴−
𝐼 𝐼 ≤ 𝐴+

𝐼 𝐼 � 𝑋 𝜃

obeying equation (4.9), and G is abelian, hence one-dimensional since 𝐺 = 𝑍 (𝐺). Then we may identify
𝐺/Γ with the standard circleR/Z (increasing the Lipschitz constants for F, 𝜉 by 𝑂 (𝛿−𝑂 (1) ) if necessary)
and 𝜉 with an element of Z of magnitude 𝑂 (𝛿𝑂 (1) ), and we can write

𝐹 (𝑥) = 𝑏𝑒(𝜉𝑥)

for some 𝑏 = 𝑂 (𝛿−𝑂 (1) ) and all 𝑥 ∈ R/Z. We can write 𝜉 · 𝑔(𝑛)Γ = 𝑃(𝑛) mod 1 for some polynomial
𝑃 : Z→ R of degree at most d, thus by equation (4.14), equation (4.16) we have

|
∑

𝑋<𝑛≤𝑋+𝐻
𝑓 (𝑛)𝑒(−𝑃(𝑛)) |∗ ≥ 𝛿𝑂 (1)𝐻 (4.17)

and

|
∑

𝑋<𝑛≤𝑋+𝐻
(Λ(𝑛) − Λ♯ (𝑛))𝑒(−𝑃(𝑛)) |∗ ≥ 𝛿𝑂 (1)𝐻. (4.18)

Theorem 4.2(iii) implies that there exists a real number 𝑇 � 𝛿−𝑂 (1) (𝑋/𝐻)𝑑+1 such that

‖𝑒(𝑃(𝑛))𝑛−𝑖𝑇 ‖TV( (𝑋,𝑋+𝐻 ]∩Z;𝑞) � 𝛿−𝑂 (1) (4.19)

for some 1 ≤ 𝑞 ≤ 𝛿−𝑂 (1) . By Lemma 2.2(iii), we thus obtain����� ∑
𝑋<𝑛≤𝑋+𝐻

𝑓 (𝑛)𝑛−𝑖𝑇
�����∗ � 𝛿𝑂 (1)𝐻. (4.20)

By equation (4.9), we must have |𝑇 | ≤ 𝛿−𝑂 (1)𝑋/𝐻, and thus by equation (2.1) we have

‖𝑛𝑖𝑇 ‖TV( (𝑋,𝑋+𝐻 ]∩Z;𝑞) � 𝛿−𝑂 (1) .

Hence, by equations (4.19) and (2.2) we have

‖𝑒(𝑃(𝑛))‖TV( (𝑋,𝑋+𝐻 ]∩Z;𝑞) � 𝛿−𝑂 (1) .

From equation (4.18) and Lemma 2.2(iii), we conclude that

|
∑

𝑋<𝑛≤𝑋+𝐻
Λ(𝑛) − Λ♯ (𝑛) |∗ � 𝛿𝑂 (1)𝐻.

But this contradicts the major arc estimates (Theorem 3.1(i)).
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Hence, in case f is a type 𝐼 𝐼 sum we can assume that G is nonabelian with one-dimensional center.
We claim that in all the remaining cases arising from Lemma 4.3, Theorem 4.2 implies that there exists
a nontrivial horizontal character 𝜂 : 𝐺 → R/Z of Lipschitz norm 𝛿−𝑂 (1) such that

‖𝜂 ◦ 𝑔‖𝐶∞ (𝑋,𝑋+𝐻 ] � 𝛿−𝑂 (1) . (4.21)

Indeed, in the case when f is a (log−𝑂 (1) 𝑋, 𝐴𝐼 ) type I sum for some 𝐴𝐼 = 𝑂 (𝑋 𝜃 ), the bound
𝐻 � (log 𝑋)𝑂 (1) 𝐴𝐼 fails since 𝐻 ≥ 𝑋 𝜃+𝜀 . Hence, equation (4.21) follows from Theorem 4.2(i).

In the case when f is a (log−𝑂 (1) 𝑋, 𝐴𝐼2 ) type 𝐼2 sum for some 𝐴𝐼2 = 𝑂 (𝑋 (3𝜃−1)/2), the bound
𝐻 � (log 𝑋)𝑂 (1)𝑋1/3 𝐴2/3

𝐼2
fails since 𝐻 ≥ 𝑋 𝜃+𝜀 and 𝑋1/3 𝐴2/3

𝐼2
= 𝑂 (𝑋 𝜃 ). Hence, equation (4.21)

follows from Theorem 4.2(iv).
In the case when f is a (log−𝑂 (1) 𝑋, 𝐴−

𝐼 𝐼 , 𝐴+
𝐼 𝐼 ) type 𝐼 𝐼 sum for some 𝑋1−𝜃 � 𝐴−

𝐼 𝐼 � 𝐴+
𝐼 𝐼 � 𝑋 𝜃 ,

we can assume that G is nonabelian with one-dimensional center as discussed above to meet the
assumption in Theorem 4.2(ii). The bound 𝐻 � (log 𝑋)𝑂 (1) max(𝐴+

𝐼 𝐼 , 𝑋/𝐴−
𝐼 𝐼 ) fails since 𝐻 ≥ 𝑋 𝜃+𝜀

and max(𝐴+
𝐼 𝐼 , 𝑋/𝐴−

𝐼 𝐼 ) � 𝑋 𝜃 , and thus, equation (4.21) follows from Theorem 4.2(ii).
Now that we have equation (4.21), we can reduce the dimension (by passing to a proper subnilman-

ifold) and apply the induction hypothesis to conclude the proof. By equation (4.21) and Lemma 2.11,
we have a decomposition 𝑔 = 𝜀𝑔′𝛾 for some 𝜀, 𝑔′, 𝛾 ∈ Poly(Z→ 𝐺) such that

(i) 𝜀 is (𝛿−𝑂 (1) , (𝑋, 𝑋 + 𝐻])-smooth;
(ii) There is a 𝛿−𝑂 (1) -rational proper subnilmanifold 𝐺 ′/Γ′ of 𝐺/Γ such that 𝑔′ takes values in 𝐺 ′ (in

fact 𝐺 ′ = ker 𝜂); and
(iii) 𝛾 is 𝛿−𝑂 (1) -rational.

Let 𝑞 ≤ 𝛿−𝑂 (1) be the period of 𝛾Γ. Form a partition (𝑋, 𝑋 +𝐻] = 𝑃1∪· · ·∪𝑃𝑟 for some 𝑟 ≤ 𝛿−𝑂 (1) ,
where each 𝑃𝑖 is an arithmetic progression of modulus q and 𝑑𝐺 (𝜀(𝑛), 𝜀(𝑛′)) ≤ 𝛿4 whenever 𝑛, 𝑛′ ∈ 𝑃𝑖

(which can be ensured by the smoothness of 𝜀 as long as |𝑃𝑖 | ≤ 𝛿𝐶𝐻 for some sufficiently large constant
C). By the triangle inequality in Lemma 2.2(i), we have����� ∑

𝑋<𝑛≤𝑋+𝐻
(Λ − Λ♯) (𝑛)𝐹 (𝑔(𝑛)Γ)

�����∗ ≤ 𝑟∑
𝑖=1

�����∑
𝑛∈𝑃𝑖

(Λ − Λ♯) (𝑛)𝐹 (𝑔(𝑛)Γ)

�����∗.
For each i, fix any 𝑛𝑖 ∈ 𝑃𝑖 , and write 𝛾(𝑛𝑖)Γ = 𝛾𝑖Γ for some 𝛾𝑖 ∈ 𝐺 which is rational of height
𝑂 (𝛿−𝑂 (1) ). Let 𝑔𝑖 ∈ Poly(Z→ 𝐺) be the polynomial sequence defined by

𝑔𝑖 (𝑛) = 𝛾−1
𝑖 𝑔′(𝑛)𝛾𝑖 ,

which takes values in 𝛾−1
𝑖 𝐺 ′𝛾𝑖 . Let 𝐹𝑖 : 𝐺/Γ → C be the function defined by

𝐹𝑖 (𝑥Γ) = 𝐹 (𝜀(𝑛𝑖)𝛾𝑖𝑥Γ).

For each 𝑛 ∈ 𝑃𝑖 , we have

|𝐹 (𝑔(𝑛)Γ) − 𝐹𝑖 (𝑔𝑖 (𝑛)Γ) | = |𝐹 (𝑔(𝑛)Γ) − 𝐹 (𝜀(𝑛𝑖)𝑔′(𝑛)𝛾𝑖Γ) |
≤ ‖𝐹‖Lip · 𝑑𝐺 (𝜀(𝑛)𝑔′(𝑛)𝛾𝑖 , 𝜀(𝑛𝑖)𝑔′(𝑛)𝛾𝑖)
= ‖𝐹‖Lip · 𝑑𝐺 (𝜀(𝑛), 𝜀(𝑛𝑖)) ≤ 𝛿3.

It follows that����� ∑
𝑋<𝑛≤𝑋+𝐻

(Λ − Λ♯) (𝑛)𝐹 (𝑔(𝑛)Γ)

�����∗ ≤ 𝑟∑
𝑖=1

�����∑
𝑛∈𝑃𝑖

(Λ − Λ♯) (𝑛)𝐹𝑖 (𝑔𝑖 (𝑛)Γ)

�����∗ +𝑂 (𝛿2𝐻). (4.22)
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By Lemma 2.2(i) and the induction hypothesis, we have, for each 𝑖 = 1, . . . , 𝑟 ,�����∑
𝑛∈𝑃𝑖

(Λ − Λ♯) (𝑛)𝐹𝑖 (𝑔𝑖 (𝑛)Γ)

�����∗ ≤
����� ∑
𝑋<𝑛≤𝑋+𝐻

(Λ − Λ♯) (𝑛)𝐹𝑖 (𝑔𝑖 (𝑛)Γ)

�����∗ � 𝛿𝐶𝐻 (4.23)

for any sufficiently large constant C. Combining this with equation (4.22), we obtain����� ∑
𝑋<𝑛≤𝑋+𝐻

(Λ − Λ♯) (𝑛)𝐹 (𝑔(𝑛)Γ)

�����∗ � 𝛿2𝐻,

contradicting our assumption (4.14). This completes the proof of equation (1.6).
The proof of equation (1.5) is completely similar (with the role of Λ♯ and Λ♯

𝐼 both replaced by
𝜇♯ = 0). For the estimate (1.7) involving 𝑑𝑘 , one runs the argument above with 𝛿 = 𝑋−𝑐𝜀 for some
sufficiently small constant 𝑐 > 0, using Lemma 4.4, and with the role of Λ♯ and Λ♯

𝐼 both replaced by 𝑑♯𝑘 .
Let us now turn to the estimate (1.8). We choose

𝑃 = exp((log 𝑥)2/3+𝜀) and 𝑄 = 𝑥1/(log log 𝑥)2
(4.24)

and write P (𝑃, 𝑄) =
∏

𝑃<𝑝≤𝑄 𝑝. We first use Shiu’s bound (Lemma 2.17) to note that∑
𝑋<𝑛≤𝑋+𝐻

𝜇(𝑛)𝐹 (𝑔(𝑛)Γ) =
∑

𝑋<𝑛≤𝑋+𝐻
1(𝑛,P (𝑃,𝑄))>1𝜇(𝑛)𝐹 (𝑔(𝑛)Γ) +𝑂

(
𝐻

log 𝑃

log 𝑄

)
.

Now, one can repeat the previous arguments with 𝛿 = log−𝐴 𝑋 and 1(𝑛,P (𝑃,𝑄))>1𝜇(𝑛) in place of Λ and
0 in place of Λ♯ and Λ♯

𝐼 – this time we use Lemma 4.5 to replace 1(𝑛,P (𝑃,𝑄))>1𝜇(𝑛) by the approximant∑
𝑓 ∈F 𝑓 (𝑛) and Corollary 3.10 gives the required major arc estimate for 1(𝑛,P (𝑃,𝑄))>1𝜇(𝑛).
The estimate (1.9) follows similarly, noting first that, with 𝑃, 𝑄 as in equation (4.24) we have by

Shiu’s bound (Lemma 2.17)∑
𝑋<𝑛≤𝑋+𝐻

𝑑𝑘 (𝑛)𝐹 (𝑔(𝑛)Γ) =
∑

𝑋<𝑛≤𝑋+𝐻
1(𝑛,P (𝑃,𝑄))>1𝑑𝑘 (𝑛)𝐹 (𝑔(𝑛)Γ)

+𝑂

(
𝐻 (log 𝑋)𝑘−1

(
log 𝑃

log 𝑄

) 𝑘 )
and then arguing as for equation (1.8).

5. The type I case

In this section, we establish the type I case (i) of Theorem 4.2, basically following the arguments in
[18]. In this section, we allow all implied constants to depend on 𝑑, 𝐷.

Writing 𝑓 = 𝛼 ∗ 𝛽, we see from Lemma 2.2(i) that����� ∑
𝑋<𝑛≤𝑋+𝐻

𝑓 (𝑛)𝐹 (𝑔(𝑛)Γ)

�����∗ ≤ ∑
𝑎≤𝐴𝐼

|𝛼(𝑎) |

������ ∑
𝑋/𝑎<𝑏≤𝑋/𝑎+𝐻/𝑎

𝛽(𝑏)𝐹 (𝑔(𝑎𝑏)Γ)

������
∗

.

By the pigeonhole principle (and the hypothesis 𝛿 ≤ 1
log𝑋 ), we can thus find a scale 1 ≤ 𝐴 ≤ 𝐴𝐼 such

that
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∑
𝐴<𝑎≤2𝐴

|𝛼(𝑎) |

������ ∑
𝑋/𝑎<𝑏≤𝑋/𝑎+𝐻/𝑎

𝛽(𝑏)𝐹 (𝑔(𝑎𝑏)Γ)

������
∗

� 𝛿𝑂 (1)𝐻

and hence by equation (4.1) and the Cauchy–Schwarz inequality

∑
𝐴<𝑎≤2𝐴

��
������ ∑
𝑋/𝑎<𝑏≤𝑋/𝑎+𝐻/𝑎

𝛽(𝑏)𝐹 (𝑔(𝑎𝑏)Γ)

������
∗���

2

� 𝛿𝑂 (1)𝐻2/𝐴.

From Lemma 2.2(iii) and equation (4.2), we conclude that

∑
𝐴<𝑎≤2𝐴

��
������ ∑
𝑋/𝑎<𝑏≤𝑋/𝑎+𝐻/𝑎

𝐹 (𝑔(𝑎𝑏)Γ)

������
∗���

2

� 𝛿𝑂 (1)𝐻2/𝐴. (5.1)

We may assume that 𝐻 ≥ 𝐶𝛿−𝐶 𝐴 for some large constant C depending on 𝑑, 𝐷 since otherwise we
have 𝐻 ≤ 𝛿−𝑂 (1) 𝐴𝐼 and can conclude. Trivially,������ ∑

𝑋/𝑎<𝑏≤𝑋/𝑎+𝐻/𝑎
𝐹 (𝑔(𝑎𝑏)Γ)

������
∗

� 𝛿−1𝐻/𝐴

for all 𝐴 < 𝑎 ≤ 2𝐴, and hence by equation (5.1) we must have������ ∑
𝑋/𝑎<𝑏≤𝑋/𝑎+𝐻/𝑎

𝐹 (𝑔(𝑎𝑏)Γ)

������
∗

� 𝛿𝑂 (1)𝐻/𝐴

for � 𝛿𝑂 (1) 𝐴 choices of 𝑎 ∈ (𝐴, 2𝐴]. For each such a, we apply Theorem 2.7 to find a nontrivial
horizontal character 𝜂 : 𝐺 → R/Z of Lipschitz norm 𝑂 (𝛿−𝑂 (1) ) such that

‖𝜂 ◦ 𝑔(𝑎·)‖𝐶∞ (𝑋/𝑎,𝑋/𝑎+𝐻/𝑎] � 𝛿−𝑂 (1) . (5.2)

This character 𝜂 could initially depend on a, but the number of possible choices for 𝜂 is 𝑂 (𝛿−𝑂 (1) ),
hence by the pigeonhole principle we may refine the set of a under consideration to make 𝜂 independent
of a. The function 𝜂 ◦ 𝑔 : Z → R/Z is a polynomial of degree at most d, hence by Corollary 2.4 (and
the assumption 𝐻 ≥ 𝐶𝛿−𝐶 𝐴) we have

‖𝑞𝜂 ◦ 𝑔‖𝐶∞ (𝑋,𝑋+𝐻 ] � 𝛿−𝑂 (1)

for some 1 ≤ 𝑞 � 𝛿−𝑂 (1) . Replacing 𝜂 by 𝑞𝜂, we obtain Theorem 4.2(i) as required.
Remark 5.1. It should also be possible to establish Theorem 4.2(i) using the variant of Theorem 2.12
given in [26, Theorem 3.6].

6. The nonabelian type 𝑰𝑰 case

In this section, we establish the nonabelian type 𝐼 𝐼 case (ii) of Theorem 4.2. Let
𝑑, 𝐷, 𝐻, 𝑋, 𝛿, 𝐺/Γ, 𝐹, 𝑓 , 𝐴−

𝐼 𝐼 , 𝐴+
𝐼 𝐼 be as in that theorem. For the rest of this section, we allow all con-

stants to depend on 𝑑, 𝐷. We will need several constants

1 < 𝐶1 < 𝐶2 < 𝐶3 < 𝐶4

depending on 𝑑, 𝐷, with each 𝐶𝑖 assumed to be sufficiently large depending on the preceding constants.
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We first eliminate the role of 𝛼 by a standard Cauchy–Schwarz argument. By Definition 4.1(ii), we
can write 𝑓 = 𝛼 ∗ 𝛽, where 𝛼 is supported on [𝐴−

𝐼 𝐼 , 𝐴+
𝐼 𝐼 ], and one has the bounds (4.1), (4.3) for all

𝐴, 𝐵 ≥ 1. From equation (4.4), we have�����∑
𝑛∈𝑃

𝛼 ∗ 𝛽(𝑛)𝐹 (𝑔(𝑛)Γ)

����� ≥ 𝛿𝐻

for some arithmetic progression 𝑃 ⊂ (𝑋, 𝑋 + 𝐻]. By the triangle inequality, we have�����∑
𝑛∈𝑃

(𝛼 ∗ 𝛽) (𝑛)𝐹 (𝑔(𝑛)Γ)

����� ≤ ∑
𝐴−𝐼 𝐼 ≤𝑎≤𝐴

+
𝐼 𝐼

|𝛼(𝑎) |

����� ∑
𝑏:𝑎𝑏∈𝑃

𝛽(𝑏)𝐹 (𝑔(𝑎𝑏)Γ)

����� .
By the pigeonhole principle and the hypothesis 𝛿 ≤ 1

log𝑋 , one can thus find 𝐴−
𝐼 𝐼 ≤ 𝐴 ≤ 𝐴+

𝐼 𝐼 such that

∑
𝐴<𝑎≤2𝐴

|𝛼(𝑎) |

����� ∑
𝑏:𝑎𝑏∈𝑃

𝛽(𝑏)𝐹 (𝑔(𝑎𝑏)Γ)

����� � 𝛿𝑂 (1)𝐻. (6.1)

We may assume that

𝛿−𝐶4
𝑋

𝐻
≤ 𝐴 ≤ 𝛿𝐶4 𝐻 (6.2)

since otherwise the first conclusion of Theorem 4.2(ii) holds. Now, by equation (6.1), the Cauchy–
Schwarz inequality and equation (4.1)∑

𝐴<𝑎≤2𝐴

����� ∑
𝑏:𝑎𝑏∈𝑃

𝛽(𝑏)𝐹 (𝑔(𝑎𝑏)Γ)

����� 2 � 𝛿𝑂 (1) 𝐻2

𝐴
. (6.3)

Next, we dispose of the large values of 𝛽. Namely, we now show that the contribution of those b for
which |𝛽(𝑏) | > 𝛿−𝐶2 to the left-hand side is negligible. They contribute

� 𝛿−2
∑

𝐴<𝑎≤2𝐴

( ∑
𝑏:𝑎𝑏∈𝑃

1 |𝛽 (𝑏) |>𝛿−𝐶2 |𝛽(𝑏) |
)2
� 𝛿2𝐶2−2

∑
𝐴<𝑎≤2𝐴

( ∑
𝑏:𝑎𝑏∈𝑃

|𝛽(𝑏) |2
)2

� 𝛿2𝐶2−2
∑
𝑏1 ,𝑏2

|𝛽(𝑏1) |2 |𝛽(𝑏2) |2
∑

𝐴<𝑎≤2𝐴
𝑎𝑏1 ,𝑎𝑏2∈𝑃

1. (6.4)

Since 𝑃 ⊆ (𝑋, 𝑋 + 𝐻], the inner sum can be nonempty only if 𝑏 𝑗 � 𝑋/𝐴 and |𝑏1 − 𝑏2 | ≤ 𝐻/𝐴 and in
this case it has size � 𝐻/(𝑋/𝐴) = 𝐴𝐻/𝑋 . Using also the inequality |𝑥𝑦 |2 ≤ |𝑥 |4 + |𝑦 |4 and equation
(4.3), we see that equation (6.4) is

� 𝛿2𝐶2−2
∑

𝑏1�𝑋/𝐴
|𝛽(𝑏1) |4

∑
𝑏2

|𝑏1−𝑏2 | ≤𝐻/𝐴

𝐴𝐻

𝑋
� 𝛿2𝐶2−4 𝐻2

𝐴
.

From now on in this section, we allow all implied constants to depend on 𝐶2. Write

𝛽(𝑏) � 𝛽(𝑏)1 |𝛽 (𝑏) |≤𝛿−𝐶2 = 𝑂 (𝛿−𝑂 (1) ).

By above and the triangle inequality, (6.3) holds with 𝛽(𝑏) in place of 𝛽(𝑏). Hence, by Markov’s
inequality, we see that, for 𝐶2 large enough, we have
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𝑋/𝑎<𝑏≤(𝑋+𝐻 )/𝑎

𝛽(𝑏)𝐹 (𝑔(𝑎𝑏)Γ)

������
∗

� 𝛿𝑂 (1)𝐻/𝐴 (6.5)

for � 𝛿𝑂 (1) 𝐴 choices of 𝑎 ∈ (𝐴, 2𝐴]. We cover (𝐴, 2𝐴] by 𝑂 (𝑋/𝐻) boundedly overlapping intervals
of the form 𝐼𝐴′ � (𝐴′, (1 + 𝐻

𝑋 )𝐴
′] with 𝐴 ≤ 𝐴′ ≤ 2𝐴. Note that these intervals are nonempty by the

lower bound on A in equation (6.2). By the pigeonhole principle, we see that for � 𝛿𝑂 (1)𝑋/𝐻 of these
intervals, equation (6.5) holds for � 𝛿𝑂 (1) 𝐻

𝑋 𝐴 choices of 𝑎 ∈ 𝐼𝐴′ . For all such 𝐴′ and a, the interval
(𝑋/𝑎, (𝑋 + 𝐻)/𝑎] is contained in

𝐽𝐴′ �
((

1 − 10𝐻

𝑋

)
𝑋

𝐴′ ,

(
1 + 10𝐻

𝑋

)
𝑋

𝐴′

]
, (6.6)

hence ������ ∑𝑏∈𝐽𝐴′ 𝛽(𝑏)𝐹 (𝑔(𝑎𝑏)Γ)

������
∗

� 𝛿𝑂 (1)𝐻/𝐴

for � 𝛿𝑂 (1) 𝐻
𝑋 𝐴 choices of 𝑎 ∈ 𝐼𝐴′ . We can now apply Proposition 2.15 and the pigeonhole principle to

reach one of two conclusions for � 𝛿𝑂 (1)𝑋/𝐻 of the intervals 𝐼𝐴′:
(i) There exists a nontrivial horizontal character 𝜂 : 𝐺 → R/Z of Lipschitz norm 𝑂 (𝛿−𝑂 (1) ) such that

‖𝜂 ◦ 𝑔(𝑎·)‖𝐶∞ (𝐽𝐴′ ) � 𝛿−𝑂 (1) for � 𝛿𝑂 (1) |𝐼𝐴′ | values of 𝑎 ∈ 𝐼𝐴′ .
(ii) For � 𝛿𝑂 (1) |𝐼𝐴′ |2 pairs (𝑎, 𝑎′) ∈ 𝐼2

𝐴′ , there exists a factorization

𝑔(𝑎′·) = 𝜀𝑎𝑎′𝑔(𝑎·)𝛾𝑎𝑎′ , (6.7)

where 𝜀𝑎𝑎′ is (𝑂 (𝛿−𝑂 (1) ), 𝐽𝐴′ )-smooth and 𝛾𝑎𝑎′ is 𝑂 (𝛿−𝑂 (1) )-rational.
Suppose first that conclusion (i) holds for � 𝛿𝑂 (1)𝑋/𝐻 of the intervals 𝐼𝐴′ . By pigeonholing, we

may make 𝜂 independent of 𝐴′, and then by collecting all the a we see that

‖𝜂 ◦ 𝑔(𝑎·)‖𝐶∞ ( (𝑋/𝑎, (𝑋+𝐻 )/𝑎]) � 𝛿−𝑂 (1)

for � 𝛿𝑂 (1) 𝐴 values of a with 𝑎 � 𝐴. Applying Corollary 2.4, we see that either 𝐻 � 𝛿−𝑂 (1) 𝐴, or else
there is another nontrivial horizontal character 𝜂′ : 𝐺 → R/Z of Lipschitz norm 𝑂 (𝛿−𝑂 (1) ) such that

‖𝜂′ ◦ 𝑔‖𝐶∞ ( (𝑋,𝑋+𝐻 ]) � 𝛿−𝑂 (1) .

In either case, the conclusion of Theorem 4.2(ii) is satisfied.
Now, suppose that conclusion (ii) holds for some 𝐴′ which we now fix (discarding the information

collected for all other choices of 𝐴′). We will formalize the argument that follows as a proposition, as
we will need this precise proposition also in our followup work [46].
Proposition 6.1 (Abstract nonabelian Type II inverse theorem). Let 𝐶 ≥ 1, 𝑑, 𝐷 ≥ 1, 2 ≤ 𝐻, 𝐴 ≤ 𝑋 ,
0 < 𝛿 < 1

log𝑋 , and let 𝐺/Γ be a filtered nilmanifold of degree at most d, dimension at most D and
complexity at most 1/𝛿, with G nonabelian. Let 𝑔 : Z→ 𝐺 be a polynomial map. Cover (𝐴, 2𝐴] by at
most 𝐶𝑋/𝐻 intervals 𝐼𝐴′ = (𝐴′, (1 + 𝐻

𝑋 )𝐴
′) with 𝐴 ≤ 𝐴′ ≤ 2𝐴, with each point belonging to at most C

of these intervals. Suppose that for at least 1
𝐶 𝛿𝐶𝑋/𝐻 of the intervals 𝐼𝐴′ , there exist at least 1

𝐶 𝛿𝐶 |𝐼𝐴′ |2
pairs (𝑎, 𝑎′) ∈ 𝐼2

𝐴′ for which there exists a factorization

𝑔(𝑎′·) = 𝜀𝑎𝑎′𝑔(𝑎·)𝛾𝑎𝑎′ ,

where 𝜀𝑎𝑎′ is (𝐶𝛿−𝐶 , 𝐽𝐴′ )-smooth and 𝛾𝑎𝑎′ is 𝐶𝛿−𝐶 -rational, with 𝐽𝐴′ defined by equation (6.6).
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Then either

𝐻 �𝑑,𝐷,𝐶 𝛿−𝑂𝑑,𝐷,𝐶 (1) max(𝐴, 𝑋/𝐴) (6.8)

or there exists a nontrivial horizontal character 𝜂 : 𝐺 → R/Z having Lipschitz norm
𝑂𝑑,𝐷,𝐶 (𝛿−𝑂𝑑,𝐷,𝐶 (1) ) such that

‖𝜂 ◦ 𝑔‖𝐶∞ (𝑋,𝑋+𝐻 ] �𝑑,𝐷,𝐶 𝛿−𝑂𝑑,𝐷,𝐶 (1) .

Indeed, applying this proposition (with a suitable choice of 𝐶 = 𝑂 (1), and the other parameters given
their obvious values), the conclusion (6.8) is not compatible with equation (6.2) for 𝐶4 large enough, so
we obtain the desired conclusion (4.5).

It remains to establish the proposition. We allow all implied constants to depend on 𝑑, 𝐷, 𝐶. We will
now proceed by analyzing the equidistribution properties of the four-parameter polynomial map

(𝑎, 𝑏, 𝑎′, 𝑏′) ↦→ (𝑔(𝑎𝑏), 𝑔(𝑎𝑏′), 𝑔(𝑎′𝑏), 𝑔(𝑎′𝑏′)).

The one-parameter equidistribution theorem in Theorem 2.12 is not directly applicable for this purpose.
Fortunately, we may apply the multiparameter equidistribution theory in Theorem 2.13 instead. We
conclude that either

min(|𝐼𝐴′ |, |𝐽𝐴′ |) �𝐶3 𝛿−𝑂𝐶3 (1) , (6.9)

or else there exists

𝛿−𝐶3 ≤ 𝑀 � 𝛿−𝑂𝐶3 (1) (6.10)

and a factorization

(𝑔(𝑎𝑏), 𝑔(𝑎𝑏′), 𝑔(𝑎′𝑏), 𝑔(𝑎′𝑏′)) = 𝜀(𝑎, 𝑎′, 𝑏, 𝑏′)𝑔′(𝑎, 𝑎′, 𝑏, 𝑏′)𝛾(𝑎, 𝑎′, 𝑏, 𝑏′), (6.11)

where 𝜀, �̃�, 𝛾 ∈ Poly(Z4 → 𝐺4) are such that
(i) (𝜀 smooth) For all (𝑎, 𝑎′, 𝑏, 𝑏′) ∈ 𝐼𝐴′ × 𝐼𝐴′ × 𝐽𝐴′ × 𝐽𝐴′ , we have the smoothness estimates

𝑑𝐺 (𝜀(𝑎, 𝑎′, 𝑏, 𝑏′), 1) ≤ 𝑀

𝑑𝐺 (𝜀(𝑎 + 1, 𝑎′, 𝑏, 𝑏′), 𝜀(𝑎, 𝑎′, 𝑏, 𝑏′)) ≤ 𝑀/|𝐼𝐴′ |
𝑑𝐺 (𝜀(𝑎, 𝑎′ + 1, 𝑏, 𝑏′), 𝜀(𝑎, 𝑎′, 𝑏, 𝑏′)) ≤ 𝑀/|𝐼𝐴′ |
𝑑𝐺 (𝜀(𝑎, 𝑎′, 𝑏 + 1, 𝑏′), 𝜀(𝑎, 𝑎′, 𝑏, 𝑏′)) ≤ 𝑀/|𝐽𝐴′ |
𝑑𝐺 (𝜀(𝑎, 𝑎′, 𝑏, 𝑏′ + 1), 𝜀(𝑎, 𝑎′, 𝑏, 𝑏′)) ≤ 𝑀/|𝐽𝐴′ |.

(ii) (𝑔′ equidistributed) There is an M-rational subnilmanifold 𝐺 ′/Γ′ of 𝐺4/Γ4 such that 𝑔′ takes
values in 𝐺 ′ and one has the total equidistribution property��� ∑

(𝑎,𝑎′,𝑏,𝑏′) ∈𝑃1×𝑃2×𝑃3×𝑃4

𝐹 (𝑔′(𝑎, 𝑎′, 𝑏, 𝑏′)Γ′′)
��� ≤ |𝐼𝐴′ |2 |𝐽𝐴′ |2

𝑀𝐶2
3

‖𝐹‖Lip

for any arithmetic progressions 𝑃1, 𝑃2 ⊂ 𝐼𝐴′ , 𝑃3, 𝑃4 ⊂ 𝐽𝐴′ , any finite index subgroup Γ′′ of Γ′ of
index at most 𝑀𝐶2

3 and any Lipschitz function 𝐹 : 𝐺 ′/Γ′′ → C of mean zero.
(iii) (𝛾 rational) There exists 1 ≤ 𝑟 ≤ 𝑀 such that 𝛾𝑟 (𝑎, 𝑎′, 𝑏, 𝑏′) ∈ Γ4 for all 𝑎, 𝑎′, 𝑏, 𝑏′ ∈ Z.

The alternative equation (6.9) of course implies equation (6.8), so we may assume we are in the
opposite alternative. Thus, we may assume that we have a scale M and a factorization (6.11) with the
claimed properties.
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We know that equation (6.7) holds for � 𝑀−𝑂 (1) |𝐼𝐴′ |2 pairs (𝑎, 𝑎′) ∈ 𝐼2
𝐴′ . By pigeonholing, we may

assume there is a fixed 1 ≤ 𝑟 � 𝑀𝑂 (1) such that 𝛾𝑎𝑎′ (𝑏)𝑟 ∈ Γ for all such pairs (𝑎, 𝑎′) and all b,
and also such that 𝛾𝑟 (𝑎, 𝑎′, 𝑏′, 𝑏′) ∈ Γ4. This implies that there is some lattice Γ̃ independent of 𝑎, 𝑎′

that contains Γ as an index 𝑂 (𝛿−𝑂 (1) ) subgroup such that 𝛾𝑎𝑎′ (𝑏) ∈ Γ̃ for all such pairs (𝑎, 𝑎′), and
𝛾(𝑎, 𝑎′, 𝑏, 𝑏′) ∈ Γ̃4; indeed, by [19, Lemma A.8(i), Lemma A.11(iii)], we could take Γ̃ to be generated
by exp( 1

𝑄′ 𝑋𝑖) for the Mal’cev basis 𝑋1, . . . , 𝑋𝐷 of 𝐺/Γ, and some 𝑄 ′ � 𝑀𝑂 (1) . From equation (6.7),
we then have

𝑔(𝑎′𝑏)Γ̃ = 𝜀𝑎𝑎′ (𝑏)𝑔(𝑎𝑏)Γ̃

for all such pairs (𝑎, 𝑎′) and all 𝑏 ∈ Z. If we introduce the subinterval

𝐽 ′𝐴′ �
(

𝑋

𝐴′ ,

(
1 + 1

𝑀𝐶3

𝐻

𝑋

)
𝑋

𝐴′

]
of 𝐽𝐴′ , then from the smoothness of 𝜀𝑎𝑎′ we have

𝜀𝑎𝑎′ (𝑏′) = 𝑂𝐺 (𝑀−𝐶3+𝑂 (1) )𝜀𝑎𝑎′ (𝑏) = 𝑂𝐺 (𝑀𝑂 (1) )

whenever 𝑏, 𝑏′ ∈ 𝐽 ′𝐴′ , where 𝑂𝐺 (𝑟) denotes an element of G at a distance 𝑂 (𝑟) from the identity. This
implies that

(𝑔(𝑎𝑏)Γ̃, 𝑔(𝑎𝑏′)Γ̃, 𝑔(𝑎′𝑏)Γ̃, 𝑔(𝑎′𝑏′)Γ̃) ∈ Ω,

where Ω ⊂ (𝐺/Γ̃)4 consists of all quadruples of the form

(𝑥, 𝑦, 𝜀𝑥, 𝜅𝜀𝑦) (6.12)

for some 𝑥, 𝑦 ∈ 𝐺/Γ and 𝜀, 𝜅 ∈ 𝐺 with 𝜀 = 𝑂𝐺 (𝑀𝑂 (1) ) and 𝜅 = 𝑂𝐺 (𝑀−𝐶3+𝑂 (1) ) (with appropriate
choices of implied constants). We conclude that∑

𝑎,𝑎′ ∈𝐼𝐴′ ;𝑏,𝑏′ ∈𝐽 ′𝐴′

1Ω (𝑔(𝑎𝑏)Γ̃, 𝑔(𝑎𝑏′)Γ̃, 𝑔(𝑎′𝑏)Γ̃, 𝑔(𝑎′𝑏′)Γ̃) � 𝑀−𝑂 (1) |𝐼𝐴′ |2 |𝐽 ′𝐴′ |
2.

Applying equation (6.11), we conclude that∑
𝑎,𝑎′ ∈𝐼𝐴′ ;𝑏,𝑏′ ∈𝐽 ′𝐴′

1Ω (𝜀(𝑎, 𝑎′, 𝑏, 𝑏′)𝑔′(𝑎, 𝑎′, 𝑏, 𝑏′)Γ̃4) � 𝑀−𝑂 (1) |𝐼𝐴′ |2 |𝐽 ′𝐴′ |
2.

By the pigeonhole principle, we can find intervals 𝐼 ′𝐴′ , 𝐼 ′′𝐴′ in 𝐼𝐴′ of length 𝑀−𝐶3 𝐼𝐴′ such that∑
𝑎∈𝐼 ′

𝐴′ ,𝑎
′ ∈𝐼 ′′

𝐴′ ;𝑏,𝑏
′ ∈𝐽 ′

𝐴′

1Ω (𝜀(𝑎, 𝑎′, 𝑏, 𝑏′)𝑔′(𝑎, 𝑎′, 𝑏, 𝑏′)Γ̃4) � 𝑀−𝑂 (1) |𝐼 ′𝐴′ | |𝐼
′′
𝐴′ | |𝐽

′
𝐴′ |

2.

By the smoothness of 𝜀, we have

𝜀(𝑎, 𝑎′, 𝑏, 𝑏′) = 𝑂𝐺 (𝑀−𝐶3+𝑂 (1) )𝜀(𝑎0, 𝑎′0, 𝑏0, 𝑏0) = 𝑂𝐺 (𝑀𝑂 (1) ),

where 𝑎0, 𝑎′0, 𝑏0 are the left endpoints of 𝐼 ′𝐴′ , 𝐼 ′′𝐴′ , 𝐽 ′𝐴′ , respectively. Let 𝜑 be a bump function11 supported
on Ω̃ that equals 1 on Ω, with Lipschitz norm 𝑂 (𝑀𝑂 (𝐶3) ), where Ω̃ is defined similarly to Ω in equation
(6.12) but with slightly larger choices of implied constants 𝑂 (1) in the definition of 𝜀, 𝜅. This implies
that

11Indeed, one could set 𝜑 (𝑥) = max(1 − 𝐾dist(𝑥,Ω) , 0) for some 𝐾 = 𝑂 (𝑀𝑂 (𝐶3 ) ) .

https://doi.org/10.1017/fmp.2023.28 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2023.28


64 K. Matomäki et al.

1Ω (𝜀(𝑎, 𝑎′, 𝑏, 𝑏′)𝑔′(𝑎, 𝑎′, 𝑏, 𝑏′)Γ̃4) ≤ 𝜑(𝜀(𝑎0, 𝑎′0, 𝑏0, 𝑏0)𝑔′(𝑎, 𝑎′, 𝑏, 𝑏′)Γ̃4)

whenever 𝑎 ∈ 𝐼 ′𝐴′ , 𝑎′ ∈ 𝐼 ′′𝐴′; 𝑏, 𝑏′ ∈ 𝐽 ′𝐴′ . Abbreviating 𝜀0 � 𝜀(𝑎0, 𝑎′0, 𝑏0, 𝑏0) = 𝑂𝐺 (𝑀𝑂 (1) ), we
conclude that ∑

𝑎∈𝐼 ′
𝐴′ ,𝑎

′ ∈𝐼 ′′
𝐴′ ;𝑏,𝑏

′ ∈𝐽 ′
𝐴′

𝜑(𝜀0𝑔′(𝑎, 𝑎′, 𝑏, 𝑏′)Γ̃4) � 𝑀−𝑂 (1) |𝐼 ′𝐴′ | |𝐼
′′
𝐴′ | |𝐽

′
𝐴′ |

2.

Using the equidistribution properties of 𝑔′, we conclude that∫
𝐺′/(𝐺′∩Γ̃4)

𝜑(𝜀0𝑥) 𝑑𝜇𝐺′/(𝐺′∩Γ̃4) � 𝑀−𝑂 (1) . (6.13)

We now use this bound to obtain control on the group 𝐺 ′. Let us introduce the slice

𝐿 � {𝑔 ∈ 𝐺 : (1, 1, 1, 𝑔) ∈ 𝐺 ′}. (6.14)

This is a 𝑂 (𝑀𝑂 (1) )-rational subgroup of G. Suppose first that this group is nontrivial, then 𝐿 ∩ Γ′

contains a nontrivial element 𝛾 = 𝑂𝐺 (𝑀𝑂 (1) ). For 0 ≤ 𝑡 ≤ 1, the group element 𝛾𝑡 � exp(𝑡 log 𝛾) =
𝑂𝐺 (𝑀𝑂 (1) ) is such that (1, 1, 1, 𝛾𝑡 ) lies in 𝐺 ′, and hence from equation (6.13) and invariance of Haar
measure we have ∫

𝐺′/(𝐺′∩Γ̃4)
𝜑(𝜀0 (1, 1, 1, 𝛾𝑡 )𝑥) 𝑑𝜇𝐺′/(𝐺′∩Γ̃4) � 𝑀−𝑂 (1) .

Integrating this and using the Fubini–Tonelli theorem, we have∫
𝐺′/(𝐺′∩Γ̃4)

∫ 1

0
𝜑(𝜀0 (1, 1, 1, 𝛾𝑡 )𝑥) 𝑑𝑡 𝑑𝜇𝐺′/(𝐺′∩Γ̃4) � 𝑀−𝑂 (1) ,

and thus by the pigeonhole principle there exists 𝑥 ∈ (𝐺/Γ)4 such that∫ 1

0
𝜑(𝜀0 (1, 1, 1, 𝛾𝑡 )𝑥) 𝑑𝑡 � 𝑀−𝑂 (1) .

In particular, we have

𝜀0 (1, 1, 1, 𝛾𝑡 )𝑥 ∈ Ω̃ ⊂ (𝐺/Γ)4 (6.15)

for a set of 𝑡 ∈ [0, 1] of measure � 𝑀−𝑂 (1) . But if we let 𝑥1, 𝑥2, 𝑥3 be the first three components
of 𝜀0𝑥, we see from equation (6.12) that in order for equation (6.15) to hold, the fourth coordinate of
𝜀0 (1, 1, 1, 𝛾𝑡 )𝑥 must take the form 𝜅𝜀𝑥2, where 𝜀 = 𝑂 (𝑀𝑂 (1) ) is such that 𝑥3 = 𝜀𝑥1. Since the equation
𝑥3 = 𝜀𝑥1 fixes 𝜀 to a double coset of Γ̃, there are at most 𝑂 (𝑀𝑂 (1) ) choices for 𝜀, and for each such
choice, 𝜅𝜀𝑥2 is confined to a ball of radius 𝑂 (𝑀−𝐶3+𝑂 (1) ); thus, the fourth coordinate of 𝜀0 (1, 1, 1, 𝛾𝑡 )𝑥
is confined to the union of 𝑂 (𝑀𝑂 (1) ) balls of radius 𝑂 (𝑀−𝐶3+𝑂 (1) ). Since 𝛾 is nontrivial, 𝑡 ∈ [0, 1] is
thus confined to the union of 𝑂 (𝑀𝑂 (1) ) intervals of radius 𝑂 (𝑀−𝐶3+𝑂 (1) ). Thus, the set of 𝑡 ∈ [0, 1]
obeying equation (6.15) has measure at most 𝑂 (𝑀−𝐶3+𝑂 (1) ), leading to a contradiction for 𝐶3 large
enough. Thus, L must be trivial.

Now, we apply a ‘Furstenberg–Weiss’ argument [15] (see also the argument attributed to Serre in
[57, Lemma 3.3]). Consider the groups

𝐿1 � {𝑔 ∈ 𝐺 : (1, 𝑔′, 1, 𝑔) ∈ 𝐺 ′ for some 𝑔′ ∈ 𝐺}
𝐿2 � {𝑔 ∈ 𝐺 : (1, 1, 𝑔′, 𝑔) ∈ 𝐺 ′ for some 𝑔′ ∈ 𝐺}.

https://doi.org/10.1017/fmp.2023.28 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2023.28


Forum of Mathematics, Pi 65

Taking logarithms, we have

log 𝐿1 � {𝑋 ∈ log 𝐺 : (𝑋, 𝑋 ′, 0, 𝑋) ∈ log 𝐺 ′ for some 𝑋 ′ ∈ log 𝐺}
log 𝐿2 � {𝑋 ∈ log 𝐺 : (0, 0, 𝑋 ′, 𝑋) ∈ log 𝐺 ′ for some 𝑋 ′ ∈ log 𝐺},

thus log 𝐿1, log 𝐿2 are projections of certain slices of log 𝐺 ′. Since 𝐺 ′ was a 𝑂 (𝑀𝑂 (1) )-rational subgroup
of 𝐺4, we conclude from linear algebra that 𝐿1, 𝐿2 are 𝑂 (𝑀𝑂 (1) )-rational subgroups of G; comparing
with equation (6.14), we also see that [𝐿1, 𝐿2] ⊂ 𝐿; since L is trivial, [𝐿1, 𝐿2] is trivial. Since G is
nonabelian by hypothesis, [𝐺, 𝐺] is nontrivial; thus, at least one of 𝐿1, 𝐿2 must be a proper subgroup
of G. For the sake of discussion, let us assume that 𝐿1 is a proper subgroup, as the other case is
similar. Then there exists a nontrivial horizontal character 𝜂4 : 𝐺 → R/Z on 𝐺/Γ̃ of Lipschitz norm
𝑂 (𝑀𝑂 (1) ) that annihilates 𝐿1, that is to say 𝜂4 (𝑔) = 0 whenever (1, 𝑔′, 1, 𝑔) ∈ 𝐺 ′ for some 𝑔′ ∈ 𝐺.
Thus, the homomorphism (1, 𝑔′, 1, 𝑔) ↦→ 𝜂4 (𝑔) on 1 × 𝐺 × 1 × 𝐺 annihilates the restriction of 𝐺 ′ to
this group, as well as 1 ×𝐺 × 1 × 1. Taking logarithms, we obtain a linear functional on the Lie algebra
0× log 𝐺×0× log 𝐺 (with all coefficients 𝑂 (𝑀𝑂 (1) ) in the Mal’cev basis) that annihilates the restriction
of log 𝐺 ′ to this Lie algebra, as well as to 0×log 𝐺×0×0; by composing with a suitable linear projection,
we can then extend this linear functional to a linear functional on all of (log 𝐺)4 that annihilates all
of log 𝐺 ′, again with all coefficients 𝑂 (𝑀𝑂 (1) ). Undoing the logarithm, we may find (possibly trivial)
additional horizontal characters 𝜂1, 𝜂3 : 𝐺 → R/Z on 𝐺/Γ̃ of Lipschitz norm 𝑂 (𝑀𝑂 (1) ) such that

𝜂1(𝑔1) + 𝜂3(𝑔3) + 𝜂4 (𝑔4) = 0

for all (𝑔1, 𝑔2, 𝑔3, 𝑔4) ∈ 𝐺 ′. In particular, writing 𝑔′ = (𝑔′1, 𝑔′2, 𝑔′3, 𝑔′4), we have

𝜂1 (𝑔′1 (𝑎, 𝑎′, 𝑏, 𝑏′)) + 𝜂3(𝑔′3 (𝑎, 𝑎′, 𝑏, 𝑏′)) + 𝜂4(𝑔′4 (𝑎, 𝑎′, 𝑏, 𝑏′)) = 0

for all 𝑎, 𝑎′, 𝑏, 𝑏′ ∈ Z. Applying the factorization (6.11), and noting that the horizontal characters
𝜂1, 𝜂3, 𝜂4 annihilate the components of 𝛾, we conclude that

𝜂1(𝑔(𝑎𝑏)) + 𝜂3 (𝑔(𝑎′𝑏)) + 𝜂4 (𝑔(𝑎′𝑏′)) = 𝜀(𝑎, 𝑎′, 𝑏, 𝑏′) (6.16)

for all 𝑎, 𝑎′, 𝑏, 𝑏′ ∈ Z, where

𝜀(𝑎, 𝑎′, 𝑏, 𝑏′) � 𝜂1(𝜀1 (𝑎, 𝑎′, 𝑏, 𝑏′)) + 𝜂3 (𝜀3 (𝑎, 𝑎′, 𝑏, 𝑏′)) + 𝜂4(𝜀4 (𝑎, 𝑎′, 𝑏, 𝑏′))

and 𝜀1, 𝜀2, 𝜀3, 𝜀4 are the components of 𝜀. From the smoothness properties of 𝜀, we see in particular that

‖𝜀(𝑎, 𝑎′, 𝑏, 𝑏′ + 1) − 𝜀(𝑎, 𝑎′, 𝑏, 𝑏′)‖R/Z � 𝑀𝑂 (1) /|𝐽𝐴′ |

for 𝑎, 𝑎′ ∈ 𝐼𝐴′ , 𝑏, 𝑏′ ∈ 𝐽𝐴′ , and hence from equation (6.16)

‖𝜂4 (𝑔(𝑎′(𝑏′ + 1))) − 𝜂4 (𝑔(𝑎′𝑏′))‖R/Z � 𝑀𝑂 (1) /|𝐽𝐴′ |

whenever 𝑎′ ∈ 𝐼𝐴′ , 𝑏′ ∈ 𝐽𝐴′ . For any 𝑎′ ∈ 𝐼𝐴′ , the map 𝑏′ ↦→ 𝜂4(𝑔(𝑎′𝑏′)) is a polynomial of degree at
most d, so by Vinogradov’s lemma (Lemma 2.3), for each such 𝑎′, we either have

|𝐽𝐴′ | � 𝑀𝑂 (1) ,

or else there exists 1 ≤ 𝑞 � 𝑀𝑂 (1) such that

‖𝑞𝜂4 (𝑔(𝑎′·))‖𝐶∞ (𝐽𝐴′ ) � 𝑀𝑂 (1) . (6.17)

The former possibility is not compatible with equation (6.2) if 𝐶4 is large enough, so we may assume
the latter possibility equation (6.17) holds for all 𝑎′ ∈ 𝐼𝐴′ . Currently, the quantity q may depend on 𝑎′,

https://doi.org/10.1017/fmp.2023.28 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2023.28


66 K. Matomäki et al.

but by the pigeonhole principle we may fix a q so that equation (6.17) holds for � 𝑀−𝑂 (1) |𝐼𝐴′ | choices
of 𝑎′ ∈ 𝐼𝐴′ . Applying Corollary 2.4, we conclude that either

|𝐼𝐴′ | � 𝑀𝑂 (1) ,

or else there exists 1 ≤ 𝑞′ � 𝑀𝑂 (1) such that

‖𝑞′𝜂4 ◦ 𝑔‖𝐶∞ ( [𝑋,𝑋+𝐻 ]) � 𝑀𝑂 (1) .

In either case, we obtain one of the conclusions of Proposition 6.1. The proof of Theorem 4.2(ii) is now
complete.

7. The abelian type 𝑰𝑰 case

In this section, we establish the abelian Type 𝐼 𝐼 case (iii) of Theorem 4.2 using arguments from [49].
We shall need the following variant of [49, Proposition 2.2].

Proposition 7.1. Let 𝛿 ∈ (0, 1/2), 𝑀 ≥ 2 and 𝐿 = 𝑋/𝑀 . Assume that 𝐻 ≥ 𝛿−𝐶 max(𝐿, 𝑀) for some
sufficiently large constant 𝐶 = 𝐶 (𝑘) > 0. Let 𝛼(ℓ), 𝛽(𝑚) ∈ C. Let 𝑘 ∈ N, and let

𝑔(𝑛) =
𝑘∑
𝑗=1

𝜈 𝑗 (𝑛 − 𝑋) 𝑗

be a polynomial of degree k with real coefficients 𝜈 𝑗 . If����� ∑
ℓ,𝑚
𝑚∼𝑀

𝑋<ℓ𝑚≤𝑋+𝐻

𝛼(ℓ)𝛽(𝑚)𝑒(𝑔(ℓ𝑚))

�����≥ 𝛿𝐻
�� 1

𝐿

∑
𝐿/2<ℓ≤2𝐿

|𝛼(ℓ) |2���
1/2 (

1
𝑀

∑
𝑚∼𝑀

|𝛽(𝑚) |4
)1/4

,

then there exists a positive integer 𝑞 ≤ 𝛿−𝑂𝑘 (1) such that

‖𝑞( 𝑗 𝜈 𝑗 + ( 𝑗 + 1)𝑋𝜈 𝑗+1)‖R/Z ≤ 𝛿−𝑂𝑘 (1) 𝑋

𝐻 𝑗+1

for all 1 ≤ 𝑗 ≤ 𝑘 , with the convention that 𝜈𝑘+1 = 0.

Proof. This follows from the same argument as [49, Proposition 2.2]. The only difference is that we do
not assume that the coefficients 𝛼(ℓ) and 𝛽(𝑚) are divisor bounded and due to this in the beginning of
the proof we do not estimate the sums

∑
𝐿/2<ℓ≤2𝐿 |𝛼(ℓ) |2 and

∑
𝑚∼𝑀 |𝛽(𝑚) |4 with bounds for averages

of divisor functions but keep them as they are. �

Let us get back to the proof of Theorem 4.2(iii). We can assume that

max{𝐴+
𝐼 𝐼 , 𝑋/𝐴−

𝐼 𝐼 } � 𝛿𝑂𝑑 (1)𝐻

since otherwise the claim is immediate. Note that in particular 𝐻 ≥ 𝛿−𝑂𝑑 (1)𝑋1/2. By assumption and
dyadic splitting (noting that 𝛿 < 1/log 𝑋),����� ∑

𝑥<ℓ𝑚≤𝑥+ℎ
𝑚∼𝑀

ℓ𝑚≡𝑢 (mod 𝑣)

𝛼(ℓ)𝛽(𝑚)𝑒(𝑃(ℓ𝑚))

����� ≥ 𝛿2𝐻 (7.1)
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for some (𝑥, 𝑥 + ℎ] ⊆ (𝑋, 𝑋 + 𝐻], some 𝑀 ∈ [𝑋/𝐴+
𝐼 𝐼 , 𝑋/𝐴−

𝐼 𝐼 ], some polynomial 𝑃(𝑥) of degree at
most d and some 𝑢, 𝑣 ∈ N with 𝑢 ≤ 𝑣. Before applying Proposition 7.1, we will show that equation
(7.1) can hold only if 𝑣 � 𝛿−8 and ℎ � 𝛿8𝐻. In order to show this, we give an upper bound for the
left-hand side using the Cauchy–Schwarz inequality. Using also equation (4.1) and denoting 𝐿 = 𝑋/𝑀 ,
we obtain, using the inequality |𝑥𝑦 | ≤ |𝑥 |2 + |𝑦 |2

𝛿4𝐻2 ≤

����� ∑
𝑥<ℓ𝑚≤𝑥+ℎ

𝑚∼𝑀
ℓ𝑚≡𝑢 (mod 𝑣)

𝛼(ℓ)𝛽(𝑚)𝑒(𝑃(ℓ𝑚))

�����2

�
∑

𝐿/2<ℓ≤2𝐿
|𝛼(ℓ) |2 ·

∑
𝐿/2<ℓ≤2𝐿

( ∑
𝑚∼𝑀

𝑥<ℓ𝑚≤𝑥+ℎ
ℓ𝑚≡𝑢 (mod 𝑣)

|𝛽(𝑚) |
)2

� 𝐿

𝛿

∑
𝑚1 ,𝑚2∼𝑀

|𝑚1−𝑚2 | ≤2ℎ/𝐿
(𝑚 𝑗 ,𝑣) |𝑢

|𝛽(𝑚1)𝛽(𝑚2) |
∑

𝐿/2<ℓ≤2𝐿
𝑥<ℓ𝑚1 ,ℓ𝑚2<𝑥+ℎ
ℓ𝑚 𝑗≡𝑢 (mod 𝑣)

1

� 𝐿

𝛿

∑
𝑚1 ,𝑚2∼𝑀

|𝑚1−𝑚2 | ≤2ℎ/𝐿
(𝑚2 ,𝑣) |𝑢

|𝛽(𝑚1) |2
(
1 + ℎ(𝑚2, 𝑣)

𝑀𝑣

)
.

Writing 𝑑 = (𝑚2, 𝑣) and 𝑚′
2 = 𝑚2/𝑑 and using equation (4.3), we obtain

𝛿4𝐻2 � 𝐿

𝛿

∑
𝑚1∼𝑀

|𝛽(𝑚1) |2
(

ℎ

𝐿
+ 1 +
∑
𝑑 |𝑢

∑
𝑚′

2
|𝑚1−𝑑𝑚′

2 | ≤2ℎ/𝐿

ℎ𝑑

𝑀𝑣

)

� ℎ𝑀

𝛿2 + 𝐿𝑀

𝛿2 + 𝐿𝑀

𝛿2

∑
𝑑 |𝑢

ℎ𝑑

𝑀𝑣

(
ℎ

𝐿𝑑
+ 1
)

� ℎ𝑀

𝛿2 + 𝐿𝑀

𝛿2 + ℎ2𝑑2(𝑢)
𝑣𝛿2 + ℎ𝐿

𝛿2𝑣
· 𝑢2

𝜑(𝑢) .

Since 𝐿, 𝑀 � 𝛿𝑂 (1)𝐻 and 𝐿𝑀 � 𝛿𝑂 (1)𝐻2, this is a contradiction unless 𝑣 � 𝛿−8 and ℎ � 𝛿8𝐻.
From equation (7.1) together with equations (4.1) and (4.3), we have����� ∑

𝑥<ℓ𝑚≤𝑥+ℎ
𝑚∼𝑀

ℓ𝑚≡𝑢 (mod 𝑣)

𝛼(ℓ)𝛽(𝑚)𝑒(𝑃(ℓ𝑚))

����� ≥ 𝛿9ℎ
�� 1

𝐿

∑
𝐿/2<ℓ≤2𝐿

|𝛼(ℓ) |2���
1/2 (

1
𝑀

∑
𝑚∼𝑀

|𝛽(𝑚) |4
)1/4

.

We can write, for some 𝜈 𝑗 ∈ R,

𝑃(𝑛) =
𝑑∑
𝑗=0

𝜈 𝑗 (𝑛 − 𝑋) 𝑗 .

We can assume that 𝜈0 = 0. Furthermore, we can spot the condition ℓ𝑚 = 𝑢 (mod 𝑣) using additive
characters so that, for some 𝑟(mod 𝑣) we have
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∑

𝑥<ℓ𝑚≤𝑥+ℎ
𝑚∼𝑀

𝛼(ℓ)𝛽(𝑚)𝑒
(
𝑃(ℓ𝑚) + 𝑟ℓ𝑚

𝑣

)������� ≥ 𝛿9ℎ
�� 1

𝐿

∑
𝐿/2<ℓ≤2𝐿

|𝛼(ℓ) |2���
1/2 (

1
𝑀

∑
𝑚∼𝑀

|𝛽(𝑚) |4
)1/4

.

Now, we are in the position to apply Proposition 7.1 to the polynomial 𝑃(𝑛) + 𝑟𝑛/𝑣. By multiplying
the resulting q by v, we see that the conclusion of the proposition holds also for the coefficients of 𝑃(𝑛),
ignoring 𝑟𝑛/𝑣. Hence, we get that there exists a positive integer 𝑞′ ≤ 𝛿−𝑂𝑑 (1) such that

‖𝑞′( 𝑗 𝜈 𝑗 + ( 𝑗 + 1)𝑋𝜈 𝑗+1)‖R/Z ≤ 𝛿−𝑂𝑑 (1) 𝑋

𝐻 𝑗+1

for all 1 ≤ 𝑗 ≤ 𝑑, with the convention that 𝜈𝑑+1 = 0.
Next, we use a variant of the argument in the treatment of type II sums in [49, Proof of Theorem 1.3

in Section 4]. We start by shifting each 𝜈 𝑗 by (𝑞′ 𝑗)−1𝑎 𝑗 for an appropriate 𝑎 𝑗 ∈ Z to get 𝜈′𝑗 such that

|𝑞′( 𝑗 𝜈′𝑗 + ( 𝑗 + 1)𝑋𝜈′𝑗+1) | ≤ 𝛿−𝑂𝑑 (1) 𝑋

𝐻 𝑗+1 (7.2)

for all 1 ≤ 𝑗 ≤ 𝑑. Let

𝑃1 (𝑛) =
𝑑∑
𝑗=1

𝜈′𝑗 (𝑛 − 𝑋) 𝑗

so that

𝑒(𝑃(𝑛)) = 𝑒(𝑃1 (𝑛))𝑒
��−

𝑑∑
𝑗=1

𝑎 𝑗

𝑞′ 𝑗
(𝑛 − 𝑋) 𝑗��� .

Choosing 𝑞 = 𝑞′𝑑!, we see that 𝑒(𝑃(𝑛) − 𝑃1 (𝑛)) is constant in any arithmetic progression (mod 𝑞) and
thus

‖𝑒(𝑃(𝑛) − 𝑃1 (𝑛))‖TV( [𝑋,𝑋+𝐻 )∩Z;𝑞) ≤ 𝑞 � 𝛿−𝑂𝑑 (1) . (7.3)

By induction, one can deduce from equation (7.2) that����𝜈′𝑗 − (−1) 𝑗−1

𝑗 𝑋 𝑗−1 𝜈′1

���� ≤ 𝛿−𝑂𝑑 (1) 1
𝐻 𝑗

(7.4)

for all 1 ≤ 𝑗 ≤ 𝑑 + 1. In particular, when 𝑗 = 𝑑 + 1 this gives

|𝜈′1 | ≤ 𝛿−𝑂𝑑 (1) 𝑋𝑑

𝐻𝑑+1 .

We set 𝑇 = 2𝜋𝑋𝜈′1 so that

|𝑇 | ≤ 𝛿−𝑂𝑑 (1)
(

𝑋

𝐻

)𝑑+1
. (7.5)

We write also

𝑃2(𝑛) =
𝑑∑
𝑗=1

(−1) 𝑗−1

𝑗 𝑋 𝑗−1 𝜈′1(𝑛 − 𝑋) 𝑗 = 𝑇

2𝜋

𝑑∑
𝑗=1

(−1) 𝑗−1

𝑗

(
𝑛 − 𝑋

𝑋

) 𝑗
.
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By equation (7.4), we have that

‖𝑒(𝑃1 (𝑛) − 𝑃2 (𝑛))‖TV( [𝑋,𝑋+𝐻 )∩Z;𝑞) ≤ 𝑞𝛿−𝑂𝑑 (1) � 𝛿−𝑂𝑑 (1) . (7.6)

By Taylor expansion, for any 𝑘 ≥ 0 and 𝑛 ∈ (𝑋, 𝑋 + 𝐻],

log
𝑛

𝑋
= log
(
1 + 𝑛 − 𝑋

𝑋

)
=

𝑑+𝑘∑
𝑗=1

(−1) 𝑗−1

𝑗

(
𝑛 − 𝑋

𝑋

) 𝑗
+𝑂

((
𝐻

𝑋

)𝑑+𝑘+1
)

so that, using equation (7.5),

𝑃2 (𝑛) =
𝑇

2𝜋
log

𝑛

𝑋
− 𝑇

2𝜋

𝑑+𝑘∑
𝑗=𝑑+1

(−1) 𝑗−1

𝑗

(
𝑛 − 𝑋

𝑋

) 𝑗
+𝑂

(
𝛿−𝑂𝑑 (1)

(
𝐻

𝑋

) 𝑘 )
.

Hence,

𝑒(𝑃2 (𝑛))𝑛−𝑖𝑇 = 𝑋−𝑖𝑇 𝑒
��− 𝑇

2𝜋

𝑑+𝑘∑
𝑗=𝑑+1

(−1) 𝑗−1

𝑗

(
𝑛 − 𝑋

𝑋

) 𝑗��� +𝑂

(
𝛿−𝑂𝑑 (1)

(
𝐻

𝑋

) 𝑘 )
.

Taking k large enough in terms of 𝜃, this implies that

‖𝑒(𝑃2 (𝑛))𝑛−𝑖𝑇 ‖TV( [𝑋,𝑋+𝐻 )∩Z;𝑞) � 𝛿−𝑂𝑑 (1) . (7.7)

Now, the claim follows by combining equations (7.3), (7.6) and (7.7) utilizing equation (2.2).

8. The type 𝑰2 case

In this section, we establish the type 𝐼2 case (iv) of Theorem 4.2. Our main tool will be the following
elementary partition12 of the hyperbolic neighborhood {(𝑚, 𝑛) ∈ Z2 : 𝑚 ∈ 𝐽; 𝑋 < 𝑛𝑚 ≤ 𝑋 +𝐻} into
arithmetic progressions, which is nontrivial when H is much larger than 𝑋1/3.

Theorem 8.1 (Partition of hyperbolic neighborhood). Let 𝑋, 𝐻, 𝑀 ≥ 1 be such that

𝑋1/3 ≤ 𝐻 ≤ 𝑋 and 𝑀 � 𝑋1/2,

and let J be a subinterval of (𝑀, 2𝑀]. Then the set

{(𝑚, 𝑛) ∈ Z2 : 𝑚 ∈ 𝐽; 𝑋 < 𝑛𝑚 ≤ 𝑋 + 𝐻} (8.1)

can be partitioned for any integer Q obeying

𝑀

𝐻
≤ 𝑄 ≤ 𝑀

(𝐻𝑋)1/4 (8.2)

as
𝑄⋃
𝑞=1

⋃
𝑎� 𝑋

𝑀2 𝑞

(𝑎,𝑞)=1

⋃
𝑃∈P𝑎,𝑞

𝑃,

12In this section, only, (𝑚, 𝑛) will denote the element of the lattice Z2 with coordinates 𝑚, 𝑛, rather than the greatest common
divisor of m and n. We hope that this collision of notation will not cause confusion.
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where for each pair 𝑎, 𝑞 of coprime integers with 1 ≤ 𝑞 ≤ 𝑄 and 𝑎 � 𝑋
𝑀 2 𝑞, P𝑎,𝑞 is a family of 𝑂 ( 𝑀 3

𝑋𝑄2𝑞
)

arithmetic progressions P in equation (8.1), each of spacing (𝑞,−𝑎) and length at most 𝐻𝑄
𝑀 .

In particular, the cardinality of the set (8.1) does not exceed

�
∑

1≤𝑞≤𝑄

∑
𝑎� 𝑋

𝑀2 𝑞

𝑀3

𝑋𝑄2𝑞

𝐻𝑄

𝑀
� 𝐻. (8.3)

Proof of Theorem 8.1. For future reference, we note from equation (8.2) and 𝑋1/3 ≤ 𝐻 ≤ 𝑋 that

𝑄 ≤ 𝑀

(𝐻𝑋)1/4 ≤ 𝑀

𝑋1/3 ≤ 𝑀𝐻1/2

𝑋1/2 ≤ 𝑀. (8.4)

Note that if (𝑚, 𝑛) lies in equation (8.1), then 𝑚 � 𝑀 and 𝑛𝑚 � 𝑋 , thus 𝑛
𝑚 � 𝑋

𝑀 2 . By the Dirichlet
approximation theorem, we then have

𝑛

𝑚
∈
[
𝑎

𝑞
− 1

𝑄𝑞
,

𝑎

𝑞
+ 1

𝑄𝑞

]
for some 1 ≤ 𝑞 ≤ 𝑄 and some 𝑎 � 𝑋

𝑀 2 𝑞 coprime to q. If for any such 𝑎, 𝑞, we define 𝐼𝑎,𝑞 to be the
portion of the interval [ 𝑎𝑞 − 1

𝑄𝑞 , 𝑎𝑞 + 1
𝑄𝑞 ] that is not contained in any other such interval 𝐼𝑎′,𝑞′ with

𝑞′ < 𝑞, we see that the 𝐼𝑎,𝑞 are disjoint intervals and that we can partition equation (8.1) into sets

{(𝑚, 𝑛) ∈ Z2 : 𝑚 ∈ 𝐽;
𝑛

𝑚
∈ 𝐼𝑎,𝑞; 𝑋 < 𝑛𝑚 ≤ 𝑋 + 𝐻}, (8.5)

where 𝑎, 𝑞 range over those coprime integers with

1 ≤ 𝑞 ≤ 𝑄;
𝑎

𝑞
� 𝑋

𝑀2 . (8.6)

It then suffices to show that each such set (8.5) can be partitioned into 𝑂 ( 𝑀 3

𝑋𝑄2𝑞
) arithmetic progressions

P in Z2, each of spacing (𝑞,−𝑎) and length at most 𝐻𝑄
𝑀 .

Fix 𝑎, 𝑞, and write 𝐼 = 𝐼𝑎,𝑞 . It in fact suffices to show that the set (8.5) can be partitioned into
𝑂 ( 𝑀 3

𝑋𝑄2𝑞
) arithmetic progressions P of spacing (𝑞,−𝑎) and arbitrary length, so long as we also show

that the total cardinality of equation (8.5) is 𝑂 ( 𝐻𝑀 2

𝑋𝑄𝑞 ). This is because any such progression P can be
partitioned into 𝑂 ( 𝑀

𝐻𝑄#𝑃+1) subprogressions of the same spacing (𝑞,−𝑎) and length at most 𝐻𝑄
𝑀 , and∑

𝑃

(
𝑀

𝐻𝑄
#𝑃 + 1

)
� 𝑀

𝐻𝑄

𝐻𝑀2

𝑋𝑄𝑞
+ 𝑀3

𝑋𝑄2𝑞
� 𝑀3

𝑋𝑄2𝑞
.

It remains to obtain such a partition. From Bezout’s theorem, we see that for any integer c, the set
{(𝑚, 𝑛) ∈ Z2 : 𝑞𝑛 + 𝑎𝑚 = 𝑐} is an infinite arithmetic progression of spacing (𝑞,−𝑎). The intersection
of equation (8.5) with this set is

𝐸𝑐 :=
{(

𝑚,
𝑐 − 𝑎𝑚

𝑞

)
: 𝑚,

𝑐 − 𝑎𝑚

𝑞
∈ Z; 𝑚 ∈ 𝐽;

𝑐

𝑚𝑞
− 𝑎

𝑞
∈ 𝐼; 𝑋 <

(𝑐 − 𝑎𝑚)𝑚
𝑞

≤ 𝑋 + 𝐻

}
. (8.7)

The constraints

𝑚 ∈ 𝐽;
𝑐

𝑚𝑞
− 𝑎

𝑞
∈ 𝐼; 𝑋 <

(𝑐 − 𝑎𝑚)𝑚
𝑞

≤ 𝑋 + 𝐻
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confine m to the union of at most two intervals in the real line, and hence the set 𝐸𝑐 is the union of at
most two arithmetic progressions in Z2 of spacing (𝑞,−𝑎). It thus suffices to show that 𝐸𝑐 is nonempty
for at most 𝑂 ( 𝑀 3

𝑋𝑄2𝑞
) choices of c and that∑

𝑐

#𝐸𝑐 �
𝐻𝑀2

𝑋𝑄𝑞
. (8.8)

We begin with the first claim. If (𝑚, 𝑛) ∈ 𝐸𝑐 , then 𝑐 = 𝑞𝑛 + 𝑎𝑚 and 𝑛𝑚 = 𝑋 +𝑂 (𝐻) and hence

𝑐2 − (𝑞𝑛 − 𝑎𝑚)2 = (𝑞𝑛 + 𝑎𝑚)2 − (𝑞𝑛 − 𝑎𝑚)2 = 4𝑎𝑞𝑛𝑚 = 4𝑎𝑞𝑋 +𝑂 (𝑎𝑞𝐻). (8.9)

On the other hand, we have

𝑞𝑛 − 𝑎𝑚 = 𝑚𝑞

(
𝑛

𝑚
− 𝑎

𝑞

)
� 𝑚𝑞

𝑞𝑄
� 𝑀

𝑄
. (8.10)

We thus have

𝑐2 = 4𝑎𝑞𝑋 +𝑂 (𝑎𝑞𝐻) +𝑂

(
𝑀2

𝑄2

)
.

From equations (8.6), (8.2), we have

𝑎𝑞𝐻 � 𝑋

𝑀2 𝑞2𝐻 � 𝑀2

𝑄2
𝑋𝐻𝑄4

𝑀4 � 𝑀2

𝑄2

and thus

𝑐2 = 4𝑎𝑞𝑋 +𝑂

(
𝑀2

𝑄2

)
.

Also, 𝑀 2

𝑄2 ≤ 𝑀2 � 𝑋 ≤ 𝑎𝑞𝑋 . Thus, on taking square roots we have

𝑐 =
√

4𝑎𝑞𝑋 +𝑂

(
1

√
𝑎𝑞𝑋

𝑀2

𝑄2

)
and hence by equation (8.6)

𝑐 =
√

4𝑎𝑞𝑋 +𝑂

(
𝑀3

𝑋𝑄2𝑞

)
giving the first claim.

It remains to prove equation (8.8). We first consider the contribution of those c for which

𝑐 =
√

4𝑎𝑞𝑋 +𝑂

(
1

√
𝑎𝑞𝑋

𝑎𝑞𝐻 + 1
)

,

so the total number of possible c here is 𝑂 ( 1√
𝑎𝑞𝑋

𝑎𝑞𝐻 + 1). For a fixed such c, we then have from
equation (8.9) that

𝑞𝑛 − 𝑎𝑚 = 𝑂 (
√

𝑎𝑞𝐻).

But once one fixes 𝑐 = 𝑞𝑛 + 𝑎𝑚, the residue class of 𝑞𝑛 − 𝑎𝑚 modulo q and modulo a are both fixed,
thus by the Chinese remainder theorem 𝑞𝑛− 𝑎𝑚 is restricted to a single residue class modulo 𝑎𝑞. Thus,
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the number of possible values of 𝑞𝑛− 𝑎𝑚 is 𝑂 (
√
𝑎𝑞𝐻
𝑎𝑞 + 1). The net contribution of this case to equation

(8.8) is then

�
(

1
√

𝑎𝑞𝑋
𝑎𝑞𝐻 + 1

) (√
𝑎𝑞𝐻

𝑎𝑞
+ 1
)

which expands out to

� 𝐻3/2

𝑋1/2 + 𝑎1/2𝑞1/2𝐻

𝑋1/2 + 𝐻1/2

𝑎1/2𝑞1/2 + 1.

Using equation (8.6), this becomes

� 𝐻3/2

𝑋1/2 + 𝑞𝐻

𝑀
+ 𝐻1/2𝑀

𝑞𝑋1/2 + 1.

Thus, we need to show that

𝐻3/2

𝑋1/2 ,
𝑞𝐻

𝑀
,

𝐻1/2𝑀

𝑞𝑋1/2 , 1 � 𝐻𝑀2

𝑋𝑄𝑞

which on using 1 ≤ 𝑞 ≤ 𝑄 rearranges to

𝑄 � 𝑀

𝐻1/4𝑋1/4 ,
𝑀

𝑋1/3 ,
𝐻1/2𝑀

𝑋1/2 ,
𝐻1/2𝑀

𝑋1/2

and the claim now follows from equation (8.4).
Now, we consider the contribution of the opposite case, in which |𝑐−

√
4𝑎𝑞𝑋 | exceeds a large multiple

of 1√
𝑎𝑞𝑋

𝑎𝑞𝐻 + 1. Then |𝑐2 − 4𝑎𝑞𝑋 | exceeds a large multiple of 𝑎𝑞𝐻, so from equation (8.9) we have

𝑐2 = 4𝑎𝑞𝑋 +𝑂 ((𝑞𝑛 − 𝑎𝑚)2)

and thus if we restrict to a dyadic range 𝑞𝑛 − 𝑎𝑚 ∈ ±[𝐴, 2𝐴] for some 1 ≤ 𝐴 � 𝑀
𝑄 that is a power of

two (the upper bound coming from equation (8.10)) we have

𝑐 =
√

4𝑎𝑞𝑋 +𝑂

(
1

√
𝑎𝑞𝑋

𝐴2
)

.

Thus, for a fixed A, the total number of possible c here is 𝑂 ( 1√
𝑎𝑞𝑋

𝐴2) (note that we have already
excluded those c that lie within 𝑂 (1) of

√
4𝑎𝑞𝑋). On the other hand, once c is fixed, we see from

equation (8.9) that (𝑞𝑛 − 𝑎𝑚)2 is constrained to an interval of length 𝑂 (𝑎𝑞𝐻). The quantity 𝑞𝑛 − 𝑎𝑚 is
also constrained to lie in ±[𝐴, 2𝐴] and to a single residue class modulo 𝑎𝑞, so the squares (𝑞𝑛 − 𝑎𝑚)2

are separated by � 𝐴𝑎𝑞 when 𝑞𝑛 − 𝑎𝑚 is positive, and similarly when 𝑞𝑛 − 𝑎𝑚 is negative. Thus, the
total number of possible values of 𝑞𝑛 − 𝑎𝑚 available is 𝑂 ( 𝑎𝑞𝐻𝐴𝑎𝑞 + 1) = 𝑂 ( 𝐻𝐴 ) since from equation (8.2)
one has 𝐻

𝐴 � 𝐻
𝑀/𝑄 ≥ 1. Thus, the total contribution of this case to equation (8.8) is

�
∑

1≤𝐴�𝑀
𝑄

𝐴=2 𝑗

𝐴2
√

𝑎𝑞𝑋
· 𝐻

𝐴
� 1

√
𝑎𝑞𝑋

𝐻
𝑀

𝑄

which after applying equation (8.6) gives 𝑂 ( 𝐻𝑀 2

𝑋𝑄𝑞 ) as required. �

Combining this with the pigeonhole principle we obtain the following.
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Corollary 8.2 (Pigeonholing on a hyperbola neighborhood). Let 𝑋, 𝐻, 𝑀, 𝑄 ≥ 1 be such that

𝑋1/3 ≤ 𝐻 ≤ 𝑋, 𝑀 � 𝑋1/2, and
𝑀

𝐻
≤ 𝑄 ≤ 𝑀

(𝐻𝑋)1/4 ,

and let J be a subinterval of [𝑀, 2𝑀].
Let 𝑃0 be an arithmetic progression in (𝑋, 𝑋 + 𝐻], and let 𝛽1, 𝛽2 : N→ C be functions obeying the

bounds

‖𝛽1‖TV(N;𝑞0) , ‖𝛽2‖TV(N;𝑞0) ≤ 1/𝛿

for some 1 ≤ 𝑞0 ≤ 1/𝛿 and some13 0 < 𝛿 < 1/(log 𝑋). Let 𝑓 : Z2 → C be a 1-bounded function such
that ������∑𝑚∈𝐽

∑
𝑛

𝑋<𝑛𝑚≤𝑋+𝐻

𝛽1 (𝑚)𝛽2(𝑛)1𝑃0 (𝑛𝑚) 𝑓 (𝑛, 𝑚)

������ ≥ 𝛿𝐻. (8.11)

Then for � 𝛿𝑂 (1) 𝑋𝑄2

𝑀 2 pairs of coprime integers 𝑞, 𝑎 with 𝛿𝑂 (1)𝑄 � 𝑞 ≤ 𝑄 and 𝑎 � 𝑋
𝑀 2 𝑞, one can find

an arithmetic progression P in equation (8.1) of spacing (𝑞,−𝑎) and length at most 𝐻𝑄
𝑀 such that������ ∑(𝑚,𝑛) ∈𝑃 𝑓 (𝑛, 𝑚)

������
∗

� 𝛿𝑂 (1) 𝐻𝑄

𝑀
.

Here, we extend the maximal sum notation (1.4) to sums over arithmetic progressions in Z2 in the
obvious fashion.

Proof. Let 𝑞′0 be the spacing of 𝑃0. We first claim that 𝑞′0 � 𝛿−10. Indeed, by Shiu’s bound (Lemma
2.17) we have ∑

𝑚∈𝐽

∑
𝑋<𝑛𝑚≤𝑋+𝐻
𝑛𝑚≡𝑏 (𝑞′0)

1 ≤
∑

𝑋<𝑛≤𝑋+𝐻
𝑛≡𝑏 (𝑞′0)

𝑑2(𝑛) �𝜀 𝑑2(𝑞′0)
(
(log 𝑋) 𝐻

𝑞′0
+ 𝑋 𝜀

)
,

and if 𝑞′0 � 𝛿−10 then this together with the triangle inequality contradicts our assumption (8.11). Now,
we may assume that 𝑞′0 � 𝛿−10.

By Lemma 2.2(iii), the left-hand side of equation (8.11) is bounded by

1
𝛿

�������
∑
𝑚∈𝐽

���
∑
𝑛

𝑋<𝑛𝑚≤𝑋+𝐻

𝛽2 (𝑛)1𝑃0 (𝑛𝑚) 𝑓 (𝑛, 𝑚)
����
�������
∗

which by definition is equal to

1
𝛿

������∑𝑚∈𝐽

∑
𝑛

𝑋<𝑛𝑚≤𝑋+𝐻

1𝑃1 (𝑚)𝛽2(𝑛)1𝑃0 (𝑛𝑚) 𝑓 (𝑛, 𝑚)

������
13It is likely that with more effort the restriction on 𝛿 can be increased up to 1, but that we will not need to do so here.
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for some arithmetic progression 𝑃1 ⊂ 𝐽. Interchanging the n and m sums and using Lemma 2.2(iii)
again, we can bound this in turn by

1
𝛿2

������∑𝑚∈𝐽

∑
𝑛

𝑋<𝑛𝑚≤𝑋+𝐻

1𝑃1 (𝑚)1𝑃2 (𝑛)1𝑃0 (𝑛𝑚) 𝑓 (𝑛, 𝑚)

������
for some arithmetic progression 𝑃2. From Theorem 8.1 and the triangle inequality, we have∑

𝑚∈𝐽

∑
𝑛

𝑋<𝑛𝑚≤𝑋+𝐻

1𝑃1 (𝑚)1𝑃2 (𝑛)1𝑃0 (𝑛𝑚) 𝑓 (𝑛, 𝑚)

�
𝑄∑
𝑞=1

∑
𝑎� 𝑋

𝑀2 𝑞

(𝑎,𝑞)=1

𝑀3

𝑋𝑄2𝑞
sup

𝑃∈P𝑎,𝑞

������ ∑(𝑚,𝑛) ∈𝑃 1𝑃1 (𝑚)1𝑃2 (𝑛)1𝑃0 (𝑛𝑚) 𝑓 (𝑛, 𝑚)

������
and since the set {(𝑚, 𝑛) ∈ 𝑃 : 𝑚 ∈ 𝑃1, 𝑛 ∈ 𝑃2, 𝑛𝑚 ∈ 𝑃0} is the union of at most 𝑂 (𝛿−𝑂 (1) ) arithmetic
progressions in P (recalling that 𝑞′0 � 𝛿−𝑂 (1) ), we have������ ∑(𝑚,𝑛) ∈𝑃 1𝑃1 (𝑚)1𝑃2 (𝑛)1𝑃0 (𝑛𝑚) 𝑓 (𝑛, 𝑚)

������ � 𝛿−𝑂 (1)

������ ∑(𝑚,𝑛) ∈𝑃 𝑓 (𝑛, 𝑚)

������
∗

.

We conclude that

𝑄∑
𝑞=1

∑
𝑎� 𝑋

𝑀2 𝑞

(𝑎,𝑞)=1

𝑀3

𝑋𝑄2𝑞
sup

𝑃∈P𝑎,𝑞

������ ∑(𝑚,𝑛) ∈𝑃 𝑓 (𝑛, 𝑚)

������
∗

� 𝛿𝑂 (1)𝐻. (8.12)

As f is 1-bounded, we have here

𝑀3

𝑋𝑄2𝑞
sup

𝑃∈P𝑎,𝑞

������ ∑(𝑚,𝑛) ∈𝑃 𝑓 (𝑛, 𝑚)

������
∗

≤ 𝑀3

𝑋𝑄2𝑞

𝐻𝑄

𝑀
=

𝑀2𝐻

𝑋𝑄𝑞
; (8.13)

since the number of a associated to a fixed q is 𝑂 (𝑋𝑞/𝑀2), we conclude that, for any 𝑞 ≤ 𝑄,

∑
𝑎� 𝑋

𝑀2 𝑞

(𝑎,𝑞)=1

𝑀3

𝑋𝑄2𝑞
sup

𝑃∈P𝑎,𝑞

������ ∑(𝑚,𝑛) ∈𝑃 𝑓 (𝑛, 𝑚)

������
∗

� 𝐻

𝑄
.

Comparing this with equation (8.12), we conclude that

∑
𝑎� 𝑋

𝑀2 𝑞

(𝑎,𝑞)=1

𝑀3

𝑋𝑄2𝑞
sup

𝑃∈P𝑎,𝑞

������ ∑(𝑚,𝑛) ∈𝑃 𝑓 (𝑛, 𝑚)

������
∗

� 𝛿𝑂 (1) 𝐻

𝑄
(8.14)

for � 𝛿𝑂 (1)𝑄 choices of 1 ≤ 𝑞 ≤ 𝑄. By dropping small values of q, we may restrict attention to those q
with 𝛿𝑂 (1)𝑄 � 𝑞 � 𝑄. For each such q, we combine equation (8.13) with equation (8.14) to conclude
that
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𝑀3

𝑋𝑄2𝑞
sup

𝑃∈P𝑎,𝑞

������ ∑(𝑚,𝑛) ∈𝑃 𝑓 (𝑛, 𝑚)

������
∗

� 𝑀2

𝑋𝑞
𝛿𝑂 (1) 𝐻

𝑄

for � 𝛿𝑂 (1) 𝑋𝑞
𝑀 2 � 𝛿𝑂 (1) 𝑋𝑄

𝑀 2 choices of a, and the claim follows. �

We can now obtain a preliminary version of Theorem 4.2(iv) (which basically corresponds to the
case 𝐴𝐼2 = 1, after some dyadic decomposition):
Proposition 8.3 (Preliminary type 𝐼2 inverse theorem). Let 𝑋, 𝐻, 𝑀 ≥ 1 be such that

𝑋1/3 ≤ 𝐻 ≤ 𝑋 and 𝑀 � 𝑋1/2,

and let J be a subinterval of (𝑀, 2𝑀]. Let 0 < 𝛿 < 1/(log 𝑋), let 𝑃0 be an arithmetic progression in
(𝑋, 𝑋 + 𝐻] and let 𝛽1, 𝛽2 : N→ C be functions obeying the bounds

‖𝛽1‖TV(N;𝑞0) , ‖𝛽2‖TV(N;𝑞0) ≤ 1/𝛿

for some 1 ≤ 𝑞0 ≤ 1/𝛿.
Let 𝐺/Γ be a filtered nilmanifold of degree d, dimension D and complexity at most 1/𝛿 for some

𝑑, 𝐷 ≥ 1, and let 𝐹 : 𝐺/Γ → C be a Lipschitz function of norm 1/𝛿 and mean zero, and 𝑔 : Z → 𝐺 a
polynomial map. Suppose that������∑𝑚∈𝐽

∑
𝑛

𝑋<𝑛𝑚≤𝑋+𝐻

𝛽1 (𝑚)𝛽2(𝑛)1𝑃0 (𝑛𝑚)𝐹 (𝑔(𝑛𝑚)Γ)

������ ≥ 𝛿𝐻.

Then either

𝐻 �𝑑,𝐷 𝛿−𝑂𝑑,𝐷 (1)𝑋1/3 (8.15)

or else there exists nontrivial horizontal character 𝜂 : 𝐺 → R of Lipschitz norm 𝑂𝑑,𝐷 (𝛿−𝑂𝑑,𝐷 (1) ) such
that

‖𝜂 ◦ 𝑔‖𝐶∞ (𝑋,𝑋+𝐻 ] �𝑑,𝐷 𝛿−𝑂𝑑,𝐷 (1) .

Proof. We allow all implied constants to depend on 𝑑, 𝐷. We apply Corollary 8.2 with

𝑄 �
⌊

𝑀

(𝐻𝑋)1/4

⌋
.

This gives that for � 𝛿𝑂 (1)𝑋𝑄2/𝑀2 pairs 𝑎, 𝑞 with 𝑞 = 𝑂 (𝑄) and 𝑎 = 𝑂 (𝑋𝑄/𝑀2), we have����� 𝐾∑
𝑘=1

𝐹 (𝑔((𝑛0 − 𝑘𝑎) (𝑚0 + 𝑘𝑞))Γ)

�����∗ � 𝛿𝑂 (1) 𝐻𝑄

𝑀

for some integers 𝑛0, 𝑚0 and some 1 ≤ 𝐾 ≤ 𝐻𝑄
𝑀 .

Applying the quantitative Leibman equidistribution theorem (Theorem 2.7), we can find a nontrivial
horizontal character 𝜂 : 𝐺 → R of Lipschitz norm 𝑂 (𝛿−𝑂 (1) ) such that

‖𝜂 ◦ 𝑔((𝑛0 − ·𝑎) (𝑚0 + ·𝑞))‖𝐶∞ ( [𝐻𝑄/𝑀 ]) � 𝛿−𝑂 (1) . (8.16)

By pigeonholing, we can make 𝜂 independent of 𝑎, 𝑞 so that equation (8.16) holds for � 𝛿𝑂 (1)𝑋𝑄2/𝑀2

pairs 𝑎, 𝑞 with 𝑞 = 𝑂 (𝑄) and 𝑎 = 𝑂 (𝑋𝑄/𝑀2). Fix this choice of 𝜂. The map 𝑃 = 𝜂 ◦ 𝑔 : Z → R is a
polynomial of degree at most d; say
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𝑃(𝑛) = 𝜂 ◦ 𝑔(𝑛) =
∑

0≤ 𝑗≤𝑑
𝛼 𝑗 (𝑛 − 𝑋) 𝑗 .

Now, suppose that equation (8.15) fails. We will show that

‖𝑞0𝛼 𝑗 ‖R/Z � 𝛿−𝑂 (1)𝐻− 𝑗 (8.17)

for some 1 ≤ 𝑞0 � 𝛿−𝑂 (1) and all 1 ≤ 𝑗 ≤ 𝑑.
We use downward induction on j. Extracting out the top degree coefficient 𝛼𝑑 of P, we see that

‖𝛼𝑑 (𝑞𝑎)𝑑 ‖R/Z � 𝛿−𝑂 (1) (𝐻𝑄/𝑀)−2𝑑 .

We apply the polynomial Vinogradov lemma (Lemma 2.3) twice. Since 𝐻𝑄/𝑀 � 𝛿−𝑂 (1) implies
equation (8.15), we must have

‖𝑞0𝛼𝑑 ‖R/Z � 𝛿−𝑂 (1) (𝐻𝑄/𝑀)−2𝑑𝑄−𝑑 (𝑋𝑄/𝑀2)−𝑑 = 𝛿−𝑂 (1)𝐻−2𝑑𝑋−𝑑𝑄−4𝑑𝑀4𝑑 = 𝛿−𝑂 (1)𝐻−𝑑

for some 1 ≤ 𝑞0 � 𝛿−𝑂 (1) by choice of Q. This proves equation (8.17) for 𝑗 = 𝑑.
For the induction step, let 1 ≤ 𝑗0 < 𝑑, and assume that equation (8.17) has already been proved for

𝑗 ∈ { 𝑗0 + 1, · · · , 𝑑}. Then the polynomials 𝑛 ↦→ 𝑞0𝛼 𝑗 (𝑛− 𝑋) 𝑗 has 𝐶∞((𝑋, 𝑋 +𝐻])-norm � 𝛿−𝑂 (1) for
𝑗 ∈ { 𝑗0 + 1, · · · , 𝑑}, and thus the polynomial Q defined by

𝑄(𝑛) = 𝑞0

(
𝑃(𝑛) −

𝑑∑
𝑗= 𝑗0+1

𝛼 𝑗 (𝑛 − 𝑋) 𝑗
)
= 𝑞0

∑
0≤ 𝑗≤ 𝑗0

𝛼 𝑗 (𝑛 − 𝑋) 𝑗

also satisfies the bound (8.16). By repeating the analysis above with inspecting the top degree coefficient
𝑞0𝛼 𝑗0 of Q and applying twice the polynomial Vinogradov lemma, we deduce that

‖𝑞1 · 𝑞0𝛼 𝑗0 ‖R/Z � 𝛿−𝑂 (1)𝐻− 𝑗0

for some 1 ≤ 𝑞1 � 𝛿−𝑂 (1) . This completes the induction step after replacing 𝑞0 by 𝑞0𝑞1.
Now that we have equation (8.17), it follows that 𝑞0𝑃 has 𝐶∞((𝑋, 𝑋 + 𝐻])-norm � 𝛿−𝑂 (1) , and the

claim follows after replacing 𝜂 by 𝑞0𝜂. �

Now, we are ready to establish Theorem 4.2(iv) in full generality, using an argument similar to that
employed in Section 5. Let 𝑑, 𝐷, 𝐻, 𝑋, 𝛿, 𝐺/Γ, 𝐹, 𝑓 , 𝐴𝐼2 be as in Theorem 4.2(iv). Henceforth, we allow
implied constants to depend on 𝑑, 𝐷. By Definition 4.1, we can write 𝑓 = 𝛼 ∗ 𝛽1 ∗ 𝛽2, where 𝛼 is
supported on [1, 𝐴𝐼2 ] and obeys equation (4.1) for all A, and 𝛽1, 𝛽2 obey equation (4.2). From equation
(4.4), we have�������

∑
1≤𝑎≤𝐴𝐼2

𝛼(𝑎)
∑
𝑚

∑
𝑛

𝑋/𝑎<𝑛𝑚≤𝑋/𝑎+𝐻/𝑎

𝛽1 (𝑚)𝛽2(𝑛)1𝑃0 (𝑎𝑛𝑚)𝐹 (𝑔(𝑎𝑛𝑚)Γ)

������� ≥ 𝛿𝐻

for some arithmetic progression 𝑃0 ⊂ (𝑋, 𝑋 + 𝐻]. Applying a dyadic decomposition in the 𝑎, 𝑚, 𝑛
variables, we may assume that 𝛼, 𝛽1, 𝛽2 are supported in (𝐴, 2𝐴], (𝑀, 2𝑀], (𝑁, 2𝑁] for some 1 ≤ 𝐴 ≤
𝐴𝐼2 and 𝑀, 𝑁 ≥ 1/2, at the cost of worsening the above bound to
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∑

𝑎∈(𝐴,2𝐴]
𝛼(𝑎)

∑
𝑚∈(𝑀,2𝑀 ]

∑
𝑁<𝑛≤2𝑁

𝑋/𝑎<𝑛𝑚≤𝑋/𝑎+𝐻/𝑎

𝛽1 (𝑚)𝛽2(𝑛)1𝑃0 (𝑎𝑛𝑚)𝐹 (𝑔(𝑎𝑛𝑚)Γ)

�������� ≥ 𝛿𝑂 (1)𝐻. (8.18)

(Here, we use the hypothesis 𝛿 ≤ 1
log𝑋 .) By symmetry, we may assume that 𝑀 ≤ 𝑁 . We may also

assume that 𝐴𝑀𝑁 � 𝑋 since the sum is empty otherwise; this implies in particular that 𝑀 � (𝑋/𝐴)1/2.
We may also assume that

𝐻/𝐴 ≥ 𝛿−𝐶 (𝑋/𝐴)1/3 (8.19)

for some large constant C (depending only on 𝑑, 𝐷) since otherwise we have equation (4.6) after some
algebra. By equation (8.18), Cauchy–Schwarz and the bound (4.1), we obtain

∑
𝑎∈(𝐴,2𝐴]

��������
∑

𝑚∈(𝑀,2𝑀 ]

∑
𝑁<𝑛≤2𝑁

𝑋/𝑎<𝑛𝑚≤𝑋/𝑎+𝐻/𝑎

𝛽1 (𝑚)𝛽2(𝑛)1𝑃0 (𝑎𝑛𝑚)𝐹 (𝑔(𝑎𝑛𝑚)Γ)

�������� 2 ≥ 𝛿𝑂 (1)𝐻2/𝐴. (8.20)

For each 𝑎 ∈ (𝐴, 2𝐴], we see from the triangle inequality and equation (4.2) that∑
𝑚∈(𝑀,2𝑀 ]

∑
𝑁<𝑛≤2𝑁

𝑋/𝑎<𝑛𝑚≤𝑋/𝑎+𝐻/𝑎

𝛽1 (𝑚)𝛽2(𝑛)1𝑃0 (𝑎𝑛𝑚)𝐹 (𝑔(𝑎𝑛𝑚)Γ)

� 𝛿−𝑂 (1)
∑

𝑚∈(𝑀,2𝑀 ]

∑
𝑛

𝑋/𝑎<𝑛𝑚≤𝑋/𝑎+𝐻/𝑎

1

and hence by the bound (8.3)∑
𝑚∈(𝑀,2𝑀 ]

∑
𝑛∈(𝑁 ,2𝑁 ]

𝑋/𝑎<𝑛𝑚≤𝑋/𝑎+𝐻/𝑎

𝛽1 (𝑚)𝛽2(𝑛)1𝑃0 (𝑎𝑛𝑚)𝐹 (𝑔(𝑎𝑛𝑚)Γ) � 𝛿−𝑂 (1)𝐻/𝐴.

Combining this with equation (8.20) implies that��������
∑

𝑚∈(𝑀,2𝑀 ]

∑
𝑛∈(𝑁 ,2𝑁 ]

𝑋/𝑎<𝑛𝑚≤𝑋/𝑎+𝐻/𝑎

𝛽1(𝑚)𝛽2 (𝑛)1𝑃0 (𝑎𝑛𝑚)𝐹 (𝑔(𝑎𝑛𝑚)Γ)

�������� � 𝛿𝑂 (1)𝐻/𝐴

for � 𝛿𝑂 (1) 𝐴 values of 𝑎 ∈ (𝐴, 2𝐴]. Applying Proposition 8.3 (and equation (8.19)), we conclude that
for each such a there exists a nontrivial horizontal character 𝜂 : 𝐺 → R of Lipschitz norm 𝑂 (𝛿−𝑂 (1) )
such that

‖𝜂 ◦ 𝑔(𝑎·)‖𝐶∞ (𝑋/𝑎,𝑋/𝑎+𝐻/𝑎] � 𝛿−𝑂 (1) .

This 𝜂 currently is permitted to vary in a, but there are only 𝑂 (𝛿−𝑂 (1) ) choices for 𝜂, so by the pigeonhole
principle we may assume without loss of generality that 𝜂 is independent of a. Applying Corollary 2.4
(and equation (8.19)), we conclude that there exists 1 ≤ 𝑞 � 𝛿−𝑂 (1) such that

‖𝑞𝜂 ◦ 𝑔‖𝐶∞ (𝑋,𝑋+𝐻 ] � 𝛿−𝑂 (1)

and the claim follows.
At this point, we have proved all cases of Theorem 4.2 which are necessary for our main Theorem

(Theorem 1.1).
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9. Controlling the Gowers uniformity norms

In order to deduce our Gowers uniformity result in short intervals (Theorem 1.5) from Theorem 1.1,
we wish to apply the inverse theorem for the Gowers norms to Λ − Λ♯, 𝑑𝑘 − 𝑑♯𝑘 , 𝜇. However, before
we can apply the inverse theorem, we need to show that the functions Λ − Λ♯, 𝑑𝑘 − 𝑑♯𝑘 possess
pseudorandom majorants even when localized to short intervals. In the case of long intervals, the
existence of pseudorandom majorants for these functions follows from existing works [17], [52], and the
main purpose of this section is to show that these long interval majorants also work over short intervals
(𝑋, 𝑋 + 𝑋 𝜃 ].

We begin by defining what we mean by pseudorandomness localized to a short range.14

Definition 9.1 (Pseudorandomness over short intervals). Let 𝑥, 𝐻 ≥ 1. Let 𝐷 ∈ N and 0 < 𝜂 < 1. We
say that a function 𝜈 : Z → R≥0 is (𝐷, 𝜂)-pseudorandom at location x and scale H if the function
𝜈𝑥 (𝑛) := 𝜈(𝑥 +𝑛) satisfies the following. Let 𝜓1, . . . , 𝜓𝑡 be affine-linear forms, where each 𝜓𝑖 : Z𝑑 → Z
has the form 𝜓𝑖 (x) = �𝜓𝑖 · x + 𝜓𝑖 (0), with �𝜓𝑖 ∈ Z𝑑 and 𝜓𝑖 (0) ∈ Z satisfying 𝑑, 𝑡 ≤ 𝐷, | �𝜓𝑖 | ≤ 𝐷 and
|𝜓𝑖 (0) | ≤ 𝐷𝐻, and with �𝜓𝑖 and �𝜓 𝑗 linearly independent whenever 𝑖 ≠ 𝑗 . Then, for any convex body
𝐾 ⊂ [−𝐻, 𝐻]𝑑 , �����∑

n∈𝐾
𝜈𝑥 (𝜓1 (n)) · · · 𝜈𝑥 (𝜓𝑡 (n)) − vol(𝐾)

����� ≤ 𝜂𝐻𝑑 .

Remark 9.2. We note that the (𝐷, 𝜂)-pseudorandomness of 𝜈 at location x and scale H directly implies
the short interval Gowers uniformity bound ‖𝜈 − 1‖𝑈𝐷 (𝑥,𝑥+𝐻 ] �𝐷 𝜂1/2𝐷 , just by the definition of the
Gowers norm as a correlation along linear forms.

Our notion of pseudorandomness in the ‘long interval’ case 𝑥 = 0 differs from that of Green–Tao [17,
Section 6] in two ways. Firstly, we do not need to impose the correlation condition [17, Definition 6.3]
(making use of the later work of Dodos and Kanellopoulos [8]). Secondly, we work with pseudorandom
functions defined on the integers, as opposed to those defined on cyclic groups. The latter is only a
minor technical convenience, as then we do not need to extend majorants defined on the integers into
a cyclic group. The next lemma shows that the notion of pseudorandomness over the integers is very
closely related to pseudorandomness over a cyclic group.

Lemma 9.3. Let 𝑥, 𝐻 ≥ 1, 𝐷 ∈ N, and 0 < 𝜂 < 1. Suppose that 𝜈 : Z→ R≥0 is (𝐷, 𝜂)-pseudorandom
at location x and scale H. Then there exists a prime 𝐻 < 𝐻 ′ �𝐷 𝐻 and a function �̃� : Z/𝐻 ′Z→ R≥0
such that 𝜈(𝑥 + 𝑛) ≤ 2�̃�(𝑛) for all 𝑛 ∈ [0, 𝐻] (where [0, 𝐻] is embedded into Z/𝐻 ′Z in the natural way)
and such that �̃� satisfies the following. Let 𝜓1, . . . , 𝜓𝑡 be affine-linear forms, where each 𝜓𝑖 : Z𝑑 → Z
has the form 𝜓𝑖 (x) = �𝜓𝑖 · x + 𝜓𝑖 (0), with �𝜓𝑖 ∈ Z𝑑 and 𝜓𝑖 (0) ∈ Z satisfying 𝑡 ≤ 𝐷, | �𝜓𝑖 | ≤ 𝐷. Then∑

n∈(Z/𝐻 ′Z)𝑑
�̃�(𝜓1 (n)) · · · �̃�(𝜓𝑡 (n)) = (1 +𝑂𝐷 (𝜂)) (𝐻 ′)𝑑 , (9.1)

where the affine-linear forms 𝜓 𝑗 : (Z/𝐻 ′Z)𝑑 → Z/𝐻 ′Z are induced from their global counterparts in
the obvious way.

Proof. Let 𝐻 ′ ∈ [𝐶𝐷𝐻, 2𝐶𝐷𝐻] be a prime for large enough 𝐶𝐷 ≥ 1. Take �̃�(𝑛) = ( 1
2 + 1

2 𝜈(𝑥 +
𝑛))1𝑛∈[0,𝐻 ] + 1(𝐻,𝐻 ′) (𝑛), extended to an 𝐻 ′-periodic function. Then the claim (9.1) follows from the
(𝐷, 𝜂)-pseudorandomness of 𝜈 at location x and scale H by splitting �̃� into its components. �

We then state the inverse theorem for unbounded functions that we are going to use.

14Strictly speaking, H does not need to be small in terms of x in Definition 9.1, but that is the regime we are most interested in.
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Proposition 9.4 (An inverse theorem for pseudorandomly bounded functions). Let 𝑠 ∈ N and 0 < 𝜂 < 1.
Let I be an interval of length ≥ 2. Let 𝑓 : 𝐼 → C be a function, and suppose that the following hold.

• There exists a function 𝜈 : 𝐼 → R≥0 such that ‖𝜈 − 1‖𝑈2𝑠 (𝐼 ) ≤ 𝜂 and | 𝑓 (𝑛) | ≤ 𝜈(𝑛).
• For any filtered (𝑠 − 1)-step nilmanifold 𝐺/Γ and any Lipschitz function 𝐹 : 𝐺/Γ → C, we have

sup
𝑔∈Poly(Z→𝐺)

����� 1|𝐼 |∑
𝑛∈𝐼

𝑓 (𝑛)𝐹 (𝑔(𝑛)Γ)

����� �‖𝐹 ‖Lip ,𝐺/Γ 𝜂.

Then we have the Gowers uniformity estimate

‖ 𝑓 ‖𝑈 𝑠 (𝐼 ) = 𝑜𝑠;𝜂→0 (1).

Proof. Let 𝐼 = (𝑋, 𝑋 + 𝐻], where without loss of generality X and H are integers. The desired result
follows from the work of Dodos and Kanellopoulos [8, Theorem 5.1] (which gives the inverse theorem of
[17, Proposition 10.1] under weaker hypotheses). Indeed, we can apply [8, Theorem 5.1] to the function
𝑛 ↦→ 𝑓 (𝑋 + 𝑛) on [1, 𝐻], noting that the interval Gowers norm estimate ‖𝜈 − 1‖𝑈2𝑠 (𝐼 ) = 𝑜𝜂→0 (1)
is equivalent to the cyclic group Gowers norm estimate ‖ �̃� − 1‖𝑈2𝑠 (Z/𝑁 ′Z) = 𝑜𝜂→0 (1) for all primes
𝑁 ′ ∈ [100𝑠𝐻, 200𝑠𝐻], where �̃�(𝑛) is defined as 𝜈(𝑋 + 𝑛)1𝑛∈[1,𝐻 ] for 0 ≤ 𝑛 < 𝑁 ′ and extended
periodically to Z/𝑁 ′Z. �

The following lemma tells us that if a function has a pseudorandom majorant over a long interval,
and if the majorant is given by a type I sum, then it in fact has a pseudorandom majorant over short
intervals as well. This allows us to conveniently reduce the concept of pseudorandom majorants over
short intervals to that over long intervals.

Lemma 9.5 (Pseudorandomness over long intervals implies pseudorandomness over short intervals).
Let 𝜀 ∈ (0, 1), 𝐷, 𝑘 ∈ N be fixed. Let 𝐶 ≥ 1 be large enough in terms of k and D. Let 𝐻 ∈ [𝑋 𝜀 , 𝑋/2]
and 𝜂 ∈ ((log 𝑋)−𝐶 , 1/2), with 𝑋 ≥ 3 large enough. Let 𝜈 : Z → R≥0 be (𝐷, 𝜂)-pseudorandom at
location 0 and scale H. Also, let 1 ≤ 𝐴, 𝐵 ≤ log 𝑋 be integers.

Suppose that there is an exceptional set 𝒮 ⊂ Z and a sequence 𝜆𝑛 such that

𝜈(𝑛) =
∑

𝑑 |𝐴𝑛+𝐵
𝑑≤𝑋 𝜀/(2𝐷)

𝜆𝑑 for 𝑛 ∉ 𝒮,

|𝜆𝑛 | ≤ (log 𝑋)𝑘𝑑 (𝑛)𝑘 for all 𝑛, (9.2)
|𝜈(𝑛) | ≤ (log 𝑋)𝑘𝑑 (𝐴𝑛 + 𝐵)𝑘 for 𝑛 ∈ 𝒮.

Also, suppose that 𝒮 is small in the sense that

|𝒮 ∩ [𝑦 − 2𝐷𝐻, 𝑦 + 2𝐷𝐻] | � 𝐻/(log 𝑋)4𝐶 for 𝑦 ∈ {0, 𝑋}. (9.3)

Then 𝜈 is (𝐷, 2𝜂)-pseudorandom at location X and scale H.

Proof. By equation (9.2), we can write

𝜈(𝑛) = 1𝑛∉𝒮
∑

𝑑 |𝐴𝑛+𝐵
𝑑≤𝑋 𝜀/(2𝐷)

𝜆𝑑 +𝑂 ((log 𝑋)𝑘𝑑 (𝐴𝑛 + 𝐵)𝑘1𝑛∈𝒮)

=
∑

𝑑 |𝐴𝑛+𝐵
𝑑≤𝑋 𝜀/(2𝐷)

𝜆𝑑 +𝑂 ((log 𝑋)𝑘𝑑 (𝐴𝑛 + 𝐵)𝑘+11𝑛∈𝒮).
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Hence, for any convex body 𝐾 ⊂ [−𝐻, 𝐻]𝑑 and for 𝑥 ∈ {0, 𝑋}, we can split the sum∑
n∈𝐾

𝑡∏
𝑖=1

𝜈𝑥 (𝜓𝑖 (n))

(where 𝜈𝑥 (𝑛) := 𝜈(𝑥 + 𝑛)) as the main term∑
𝑒1 ,...,𝑒𝑡 ≤𝑋 𝜀/(2𝐷)

𝜆𝑒1 · · · 𝜆𝑒𝑡
∑
n∈𝐾

𝑡∏
𝑖=1

1𝑒𝑖 |𝐴(𝑥+𝜓𝑖 (n))+𝐵, (9.4)

and 2𝑡 − 1 error terms whose contribution is for some 𝑗 ≤ 𝑡 bounded using equation (9.2) by

� (log 𝑋)𝑘𝑡
∑
n∈𝐾

𝑡∏
𝑖=1

𝑑 (𝐴(𝑥 + 𝜓𝑖 (n)) + 𝐵)𝑘+11𝑥+𝜓𝑗 (n) ∈𝒮. (9.5)

Now, using Cauchy–Schwarz, the inequality
∏𝑡

𝑖=1 𝑥𝑖 ≤
∑𝑡
𝑖=1 𝑥𝑡𝑖 , equation (9.3) and Shiu’s bound (Lemma

2.17), equation (9.5) is

� (log 𝑋)𝑘𝑡
(∑

n∈𝐾
1𝑥+𝜓𝑗 (n) ∈𝒮

)1/2 (∑
n∈𝐾

𝑡∏
𝑖=1

𝑑 (𝐴(𝑥 + 𝜓𝑖 (n)) + 𝐵)2(𝑘+1)

)1/2

� (log 𝑋)𝑘𝑡
(∑

n∈𝐾
1𝑥+𝜓𝑗 (n) ∈𝒮

)1/2 (∑
n∈𝐾

𝑡∑
𝑖=1

𝑑 (𝐴(𝑥 + 𝜓𝑖 (n)) + 𝐵)2(𝑘+1)𝑡

)1/2

� 𝐻𝑑 (log 𝑋)𝑘𝑡−2𝐶 (log 𝑋)𝑀𝐷,𝑘

for some constant 𝑀𝐷,𝑘 ≥ 1. If C is large enough in terms of D and k, this is � 𝐻𝑑 (log 𝑋)−3𝐶/2.
We lastly estimate the main term in equation (9.4). A lattice point counting argument as in [17,

Appendix A] gives us∑
n∈𝐾

𝑡∏
𝑖=1

1𝑒𝑖 |𝐴(𝑥+𝜓𝑖 (n))+𝐵 = 𝛼𝐴,𝐵 (𝑒1, . . . , 𝑒𝑡 )vol(𝐾) +𝑂 (𝐻𝑑−1)

for some 𝛼𝐴,𝐵 (𝑒1, . . . , 𝑒𝑡 ) ∈ [0, 1] independent of x and H (since the left-hand side is counting elements
of K in some shifted lattice qZ + a). Combining this with the estimates 𝑒1 · · · 𝑒𝑡 ≤ 𝑋 𝜀/2 ≤ 𝐻1/2 and
|𝜆𝑑 | � 𝑋𝑜 (1) , we see that∑

n∈𝐾

𝑡∏
𝑖=1

𝜈𝑥 (𝜓𝑖 (n)) =
∑

𝑒1 ,...,𝑒𝑡 ≤𝑋 𝜀/(2𝐷)

𝜆𝑒1 · · · 𝜆𝑒𝑡𝛼𝐴,𝐵 (𝑒1, . . . , 𝑒𝑡 )vol(𝐾) +𝑂 (𝐻𝑑 (log 𝑋)−3𝐶/2). (9.6)

Since the main term on the right-hand side of equation (9.6) is independent of 𝑥 ∈ {0, 𝑋}, we see that∑
n∈𝐾

𝑡∏
𝑖=1

𝜈𝑋 (𝜓𝑖 (n)) =
∑
n∈𝐾

𝑡∏
𝑖=1

𝜈0(𝜓𝑖 (n)) +𝑂 (𝐻𝑑 (log 𝑋)−3𝐶/2).

Hence, using the assumption that 𝜈 is (𝐷, 𝜂)-pseudorandom at location 0 and scale H, 𝜈 must also be
(𝐷, 2𝜂)-pseudorandom at location X and scale H. �

Lemma 9.5 leads to the existence pseudorandom majorants over short intervals for W-tricked versions
of our functions of interest. Let us recall that, for any 𝑤 ≥ 2,

Λ𝑤 (𝑛) :=
𝑊

𝜑(𝑊) 1(𝑛,𝑊 )=1,
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where 𝑊 =
∏

𝑝≤𝑤 𝑝. We note for later use that in this notation our model function Λ♯ equals to Λ𝑅,
where 𝑅 = exp((log 𝑋)1/10).

Lemma 9.6 (Pseudorandom majorants over short intervals for Λ−Λ𝑤 , 𝑑𝑘−𝑑♯𝑘 ). Let 𝜀 > 0 and 𝐷, 𝑘 ∈ N
be fixed. Let 𝑋 ≥ 𝐻 ≥ 𝑋 𝜀 ≥ 2. Let 2 ≤ 𝑤 ≤ 𝑤(𝑋), where 𝑤(𝑋) is a slowly growing function of X, and
denote 𝑊 =

∏
𝑝≤𝑤 𝑝. Also, let 𝑤 ≤ 𝑤 ≤ exp((log 𝑋)1/10).

1. There exists a constant 𝐶0 ≥ 1 such that each of the functions

𝜑(𝑊)
𝑊

Λ(𝑊𝑛 + 𝑏)/𝐶0,
𝜑(𝑊)

𝑊
Λ𝑤 (𝑊𝑛 + 𝑏) (9.7)

for 1 ≤ 𝑏 ≤ 𝑊 with (𝑏, 𝑊) = 1, is majorized on (𝑋, 𝑋 + 𝐻] by a (𝐷, 𝜂)-pseudorandom function
at location X and scale H for some 𝜂 = 𝑜𝑤→∞(1). In fact, the latter of the two functions is (𝐷, 𝜂)-
pseudorandom at location X and scale H.

2. Let 𝑊 ′ be such that 𝑊 | 𝑊 ′ | 𝑊 �𝑤 � . Suppose that 𝐻 ≥ 𝑋1/5+𝜀 . There exists a constant 𝐶𝑘 ≥ 1 such
that each of the functions

(log 𝑋) 𝜑(𝑊)
𝑊

∏
𝑤≤𝑝≤𝑋

(
1 + 𝑘

𝑝

)−1
𝑑𝑘 (𝑊 ′𝑛 + 𝑏)/𝐶𝑘 ,

(log 𝑋) 𝜑(𝑊)
𝑊

∏
𝑤≤𝑝≤𝑋

(
1 + 𝑘

𝑝

)−1
𝑑♯𝑘 (𝑊

′𝑛 + 𝑏)/𝐶𝑘 (9.8)

for 1 ≤ 𝑏 ≤ 𝑊 ′ with (𝑏, 𝑊 ′) = 1, is majorized on (𝑋, 𝑋 + 𝐻] by a (𝐷, 𝜂)-pseudorandom function at
location X and scale H for some 𝜂 = 𝑜𝑤→∞(1).

Remark 9.7. Note that if ‖𝜈1 − 1‖𝑈𝐷 (𝑥,𝑥+𝐻 ] ≤ 𝜂 and ‖𝜈2 − 1‖𝑈𝐷 (𝑥,𝑥+𝐻 ] ≤ 𝜂, then by the triangle
inequality for the Gowers norms also ‖(𝜈1+𝜈2)/2−1‖𝑈𝐷 (𝑥,𝑥+𝐻 ] ≤ 𝜂. Hence, by Remark 9.2, Lemma 9.5
in particular provides us a majorant 𝜈 for the difference of the two functions in equation (9.7) or equation
(9.8) satisfying ‖𝜈 − 1‖𝑈𝐷 (𝑥,𝑥+𝐻 ] = 𝑜𝑤→∞(1), allowing us to apply the inverse theorem (Proposition
9.4).

Proof. (1) Let us first consider the function 𝜑 (𝑊 )
𝑊 Λ(𝑊𝑛 + 𝑏)/𝐶0. Let 𝑅′ = 𝑋𝛾 with 𝛾 > 0 small

enough in terms of 𝜀, 𝐷. Let 𝜓 be a smooth function supported on [−2, 2] with 𝜓(0) = −1 and∫ ∞
0 |𝜓 ′(𝑦) |2 𝑑𝑦 = 1. Define

Λ𝑅′,𝜓 (𝑛) := −(log 𝑅′)
∑
𝑑 |𝑛

𝜇(𝑑)𝜓
(

log 𝑑

log 𝑅′

)
.

Put

𝜈𝑏 (𝑛) :=
𝜑(𝑊)

𝑊
(log 𝑅′)−1Λ𝑅′,𝜓 (𝑊𝑛 + 𝑏)2 + 2(log 𝑋)1𝑊𝑛+𝑏∈𝑆 ,

where S is the set of perfect powers. Then

𝜑(𝑊)
𝑊

Λ(𝑊𝑛 + 𝑏) ≤ 2𝛾−1𝜈𝑏 (𝑛)

for 𝑋/2 ≤ 𝑛 ≤ 𝑋 since 𝑊𝑛 + 𝑏 being prime implies that 𝑊𝑛 + 𝑏 has no divisors 1 < 𝑑 ≤ 𝑋2𝛾 .
From [17, Theorem D.3], we see that 𝜈𝑏 is (𝐷, 𝑜𝑤→∞(1))-pseudorandom at location 0 and scale

H (since the term 2(log 𝑋)1𝑊𝑛+𝑏∈𝑆 has negligible contribution to the correlations that arise in the
definition of pseudorandomness). Moreover, 𝜈𝑏 (𝑛) can be expanded out as
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𝑑 |𝑊𝑛+𝑏
𝑑≤𝑋4𝛾

𝜆𝑑 + 2(log 𝑋)1𝑊𝑛+𝑏∈𝑆

for some

|𝜆𝑛 | � (log 𝑋)
∑

𝑑1 ,𝑑2≥1
𝑛=[𝑑1 ,𝑑2 ]

1 � (log 𝑋)𝑑 (𝑛)2.

Hence, by Lemma 9.5, 𝜈𝑏 is (𝐷, 𝑜𝑤→∞(1))-pseudorandom also at location X and scale H (since the set
𝒮 := {𝑛 : 𝑊𝑛 + 𝑏 ∈ 𝑆} certainly obeys equation (9.3)).

For the case of 𝜑 (𝑊 )
𝑊 Λ𝑤 (𝑊𝑛 + 𝑏), we can apply [61, Proposition 5.2] to directly deduce that

this function is (𝐷, 𝑜𝑤→∞(1))-pseudorandom at location 0 and scale X. To prove the (𝐷, 𝑜𝑤→∞(1))-
pseudorandomness of this function also at location X and scale H, we show that it is well-approximated
by a type I sum. By Möbius inversion,

𝜑(𝑊)
𝑊

Λ𝑤 (𝑊𝑛 + 𝑏) = 𝜑(𝑊)
𝑊

∏
𝑝≤𝑤

(
1 − 1

𝑝

)−1 ∑
𝑑 |𝑊𝑛+𝑏
𝑑 |𝑃 (𝑤)

𝜇(𝑑),

and by Lemma 2.18 we have∑
𝑋<𝑛≤𝑋+𝐻

��� ∑
𝑑 |𝑊𝑛+𝑏
𝑑 |𝑃 (𝑤)

𝑑≥𝑋 𝜀/(2𝐷)

𝜇(𝑑)
��� � 𝐻

(log 𝑋)2𝑒

exp( 𝜀
2𝐷

log𝑋
log 𝑤 )

� 𝐻 exp(−(log 𝑋)4/5),

say. Hence, 𝜑 (𝑊 )
𝑊 Λ𝑤 (𝑊𝑛 + 𝑏) = 𝜈(𝑛) + 𝜂(𝑛), where 𝜈 is of the form of Lemma 9.5 and∑

𝑋<𝑛≤𝑋+𝐻 |𝜂(𝑛) | � 𝐻 exp(−(log 𝑋)3/5), say. It suffices to show that 𝜈 is (𝐷, 𝑜𝑤→∞(1))-
pseudorandom at location X and scale H, and this follows from Lemma 9.5.

(2) Note that by equation (3.14), we have 𝑑♯𝑘 (𝑛) �𝑘 𝑑𝑘 (𝑛) for all 𝑛 ≥ 1, so by Lemma 9.5 it suffices
to show that the function

ℎ(𝑛) := (log 𝑋) 𝜑(𝑊)
𝑊

∏
𝑤≤𝑝≤𝑋

(
1 + 𝑘

𝑝

)−1
𝑑𝑘 (𝑊 ′𝑛 + 𝑏)/𝐶 ′

𝑘

is for some 𝐶 ′
𝑘 ≥ 1 majorized by a (𝐷, 𝑜𝑤→∞(1))-pseudorandom function at location 0 and scale H,

which is of the form equation (9.2) outside an exceptional set 𝒮 satisfying equation (9.3).
By [52, Proposition 9.4], for any 𝑋 ≥ 2 and 1 ≤ 𝑛 ≤ 2𝐷𝑋 , we have

ℎ(𝑛) � 𝜈(𝑛) + ℎ(𝑛)1𝑛∈𝒮,

where 𝜈 is a certain (𝐷, 𝑜𝑋→∞(1))-pseudorandom function at location 0 and scale X, and 𝒮 is defined
in [52, Section 7] as

𝒮 = 𝒮1 ∪𝒮2,

𝒮1 : =
{
𝑛 ≤ 2𝐷𝑥 : ∃ 𝑝 : 𝑣𝑝 (𝑛) ≥ max

{
2, 𝐶1

log log 𝑋

log 𝑝

}}
.

𝒮2 : =
⎧⎪⎪⎨⎪⎪⎩𝑛 ≤ 2𝐷𝑋 :

∏
𝑝≤𝑋1/(log log𝑋 )3

𝑝𝑣𝑝 (𝑛) ≥ 𝑋𝛾/log log𝑋
⎫⎪⎪⎬⎪⎪⎭

https://doi.org/10.1017/fmp.2023.28 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2023.28


Forum of Mathematics, Pi 83

Here, 𝐶1 can be taken arbitrarily large, so we may assume that 𝐶1 > 8𝐶 for any given constant C. To
show that 𝒮 satisfies equation (9.3), it suffices to show that for 𝑗 ∈ {1, 2} we have

|𝒮𝑗 ∩ [𝑋 − 2𝐷𝐻, 𝑋 + 2𝐷𝐻] | � 𝐻/(log 𝑋)4𝐶 , (9.9)

|𝒮𝑗 ∩ [−2𝐷𝐻, 2𝐷𝐻] | � 𝐻/(log 𝑋)4𝐶 . (9.10)

Let us prove equation (9.9), the proof of equation (9.10) is similar but easier.
We first prove equation (9.9) for 𝑗 = 1. By splitting into shorter intervals if necessary, we may

assume that 𝐻 ≤ 𝑋1/3, say. Note that the number of 𝑛 ∈ (𝑋 − 2𝐷𝐻, 𝑋 + 2𝐷𝐻] satisfying 𝑣𝑝 (𝑛) ≥
max{2, 𝐶1

log log𝑋
log 𝑝 } for some p is

�
∑

𝑝< (log𝑋 )4𝐶

𝐻 exp(−𝐶1 (log log 𝑋)) +
∑

(log𝑋 )4𝐶 ≤𝑝≤(4𝐷𝐻 )1/2

𝐻

𝑝2

+
∑

(4𝐷𝐻 )1/2<𝑝≤(2𝑋 )1/2

(⌊
𝑋 + 2𝐷𝐻

𝑝2

⌋
−
⌊

𝑋 − 2𝐷𝐻

𝑝2

⌋)
� 𝐻 (log 𝑋)−4𝐶 +

∑
(4𝐷𝐻 )1/2<𝑝≤(2𝑋 )1/2

(⌊
𝑋 + 2𝐷𝐻

𝑝2

⌋
−
⌊

𝑋 − 2𝐷𝐻

𝑝2

⌋)
since 𝐶1 > 8𝐶.

We can trivially bound∑
(4𝐷𝐻 )1/2<𝑝≤𝐻 (log𝑋 )−4𝐶

(⌊
𝑋 + 2𝐷𝐻

𝑝2

⌋
−
⌊

𝑋 − 2𝐷𝐻

𝑝2

⌋)
�

∑
(4𝐷𝐻 )1/2<𝑝≤𝐻 (log𝑋 )−4𝐶

1

� 𝐻 (log 𝑋)−4𝐶 .

Next, we bound ∑
𝐻 (log𝑋 )4𝐶<𝑝≤(4𝐷𝐻 )1/2

(⌊
𝑋 + 2𝐷𝐻

𝑝2

⌋
−
⌊

𝑋 − 2𝐷𝐻

𝑝2

⌋)
. (9.11)

Note that for any 𝑝 ≥ 𝐻 (log 𝑋)4𝐶 there is at most one multiple of 𝑝2 in (𝑋 − 2𝐷𝐻, 𝑋 + 2𝐷𝐻], so
equation (9.11) is at most |𝑆(𝐻 (log 𝑋)4𝐶 , (4𝐷𝐻)1/2) |, where

𝑆(𝑡1, 𝑡2) := {𝑑 ∈ (𝑡1, 𝑡2] : 𝑚𝑑2 ∈ [𝑋 − 2𝐷𝐻, 𝑋 + 2𝐷𝐻] for some 𝑚 ∈ N}.

In [11, p. 221], it is proven for 𝐻 ≥ 𝑋1/5+𝜀 that

|𝑆(𝐻 log 𝑋, 2
√

𝑋) | � 𝑋1/5 log 𝑋,

so equation (9.11) is � 𝐻 (log 𝑋)−4𝐶 .
Finally, we bound ∑

𝐻 (log𝑋 )−4𝐶 ≤𝑝≤𝐻 (log𝑋 )4𝐶

(⌊
𝑋 + 2𝐷𝐻

𝑝2

⌋
−
⌊

𝑋 − 2𝐷𝐻

𝑝2

⌋)
=

∑
𝐻 (log𝑋 )−4𝐶 ≤𝑝≤𝐻 (log𝑋 )4𝐶

(
4𝐷𝐻

𝑝2 −
{

𝑋 + 2𝐷𝐻

𝑝2

}
+
{

𝑋 − 2𝐷𝐻

𝑝2

})
. (9.12)
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The first term in the sum gives a negligible contribution of � (log 𝑋)4𝐶 . Pick two 1-periodic smooth
functions 𝑊−, 𝑊+ such that 𝑊−(𝑡) ≤ {𝑡} ≤ 𝑊+(𝑡) for all 𝑡 ∈ R and such that 𝑊±(𝑡) differs from {𝑡} only
in the region where ‖𝑡‖R/Z ≤ (log 𝑋)−8𝐶 , and 𝑊± satisfy the derivative bounds sup𝑡 | (𝑊±) (ℓ) (𝑡) | �
(log 𝑋)8𝐶ℓ for 1 ≤ ℓ ≤ 3. Then equation (9.12) is

≤ 𝑂
(
(log 𝑋)4𝐶

)
+

∑
𝐻 (log𝑋 )−4𝐶 ≤𝑝≤𝐻 (log𝑋 )4𝐶

(
−𝑊−
(

𝑋 + 2𝐷𝐻

𝑝2

)
+𝑊+
(

𝑋 − 2𝐷𝐻

𝑝2

))
.

By [45, Proposition 1.12(ii)] and the fact that for any 𝑢, ℎ ≥ 0 we have {𝑢 + ℎ} − {𝑢} = ℎ unless
‖𝑢‖R/Z ≤ ℎ, the main term here is∫ 𝐻 (log𝑋 )4𝐶

𝐻 (log𝑋 )−4𝐶

(
𝑊+
(

𝑋 − 2𝐷𝐻

𝑡2

)
−𝑊−

(
𝑋 + 2𝐷𝐻

𝑡2

))
𝑑𝑡

log 𝑡
+𝑂 (𝐻 (log 𝑋)−4𝐶)

� max
𝜎∈{−1,+1}

∫ 𝐻 (log𝑋 )4𝐶

𝐻 (log𝑋 )−4𝐶

(
4𝐷𝐻

𝑡2 + 1‖ (𝑋+2𝐷𝐻𝜎)/𝑡2 ‖R/Z≤(log𝑋 )−8𝐶

)
𝑑𝑡

log 𝑡
+ 𝐻 (log 𝑋)−4𝐶

� 𝐻 (log 𝑋)−4𝐶

since the condition ‖(𝑋 + 2𝐷𝐻𝜎)/𝑡2‖R/Z ≤ (log 𝑋)−8𝐶 for 𝑡 ∈ [𝐻 (log 𝑋)−4𝐶 , 𝐻 (log 𝑋)4𝐶 ] holds in a
union of intervals of total measure � 𝐻 (log 𝑋)−4𝐶 .

Putting the above estimates together, we obtain equation (9.9) for 𝑗 = 1.
Let us then prove equation (9.9) for 𝑗 = 2. We thus bound the number of integers 𝑛 ∈ 𝐼 :=

(𝑋 − 2𝐷𝐻, 𝑋 + 2𝐷𝐻] that satisfy
∏

𝑝≤𝑋1/(log log𝑋 )3 𝑝𝑣𝑝 (𝑛) ≥ 𝑋𝛾/log log𝑋 . Writing 𝑣 = 𝑋1/(log log𝑋 )3
, the

number of such 𝑛 ∈ 𝐼 is

�
∑
𝑎𝑏∈𝐼

𝑝 |𝑎 =⇒ 𝑝>𝑣
𝑝 |𝑏 =⇒ 𝑝≤𝑣
𝑏≥𝑋𝛾/log log𝑋

1 ≤
∑
𝑎𝑏∈𝐼

𝑝 |𝑎 =⇒ 𝑝>𝑣
𝑝 |𝑏 =⇒ 𝑝≤𝑣

(
𝑏

𝑋𝛾/log log𝑋

) 10𝐶 (log log𝑋 )2
𝛾 log𝑋

� 1
(log 𝑋)10𝐶

∑
𝑛∈𝐼

𝑔(𝑛), (9.13)

where g is the completely multiplicative function for which

𝑔(𝑝) =
{

1 if 𝑝 > 𝑣;

𝑝
10𝐶 (log log𝑋 )2

𝛾 log𝑋 if 𝑝 ≤ 𝑣.

Then Shiu’s bound (Lemma 2.17) implies that equation (9.13) is � 𝐻/(log 𝑋)4𝐶 . This proves equation
(9.9) for 𝑗 = 2.

Hence, |𝒮| � 𝐻/(log 𝑋)4𝐶 , and in particular arguing as in the beginning of the proof of Lemma 9.5
we see that the fact that 𝜈 is a (𝐷, 𝑜𝑋→∞(1))-pseudorandom function at location 0 and scale X implies
that so is 𝜈(𝑛) + ℎ(𝑛)1𝑛∈𝒮.

Hence, it suffices to show that 𝜈(𝑛) is of the form (9.2). The majorant 𝜈(𝑛) is defined in [52, Section
7], for some 𝛾 > 0 small enough in terms of 𝐷, 𝑘 , as

𝜈(𝑛) :=
∑
𝑢 |𝑛

𝑑𝑘 (𝑢)
�(log log𝑋 )3 �∑

𝜅=4/𝛾

�log( (log log𝑋 )3)/log 2�∑
𝜆= �log(𝜅)/log 2−2�

2𝑘𝜅1𝑢∈𝑈 (𝜆,𝜅)ℎ𝛾

(
𝑛∏

𝑝 |𝑢 𝑝𝑣𝑝 (𝑛)

)
, (9.14)
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where

• 𝑈 (𝜆, 𝜅), defined in [52, Section 7], is a set contained in [1, 𝑋10𝛾1/2] and satisfying

𝑢 ∈ 𝑈 (𝜆, 𝜅), 𝑢 > 1 =⇒ 𝜔(𝑢) ≥ 𝛾𝜅(𝜆 + 3 − (log 𝜅)/(log 2))
200

1 ∈ 𝑈 (𝜆, 𝜅) =⇒ 𝜅 = 4/𝛾;

• ℎ𝛾 (𝑛) =
∑
ℓ |𝑛 (𝑑𝑘 ∗ 𝜇) (ℓ)𝜒

(
log ℓ

log𝑋𝛾

)
, where 𝜒 : R → [0, 1] is some smooth function supported in

[−1, 1].

Therefore, in particular, in equation (9.14) we have

𝜅 ≤ (200/𝛾) (𝜔(𝑢) + 1)

so that

2𝑘𝜅 � 𝑑 (𝑢)𝑀

for some constant 𝑀 = 𝑀𝑘,𝛾 ≥ 1. Inserting the definition of ℎ𝛾 into the definition of 𝜈 and setting
𝑇 = 𝑋10𝛾1/2 , we see that for some |𝜆𝑢 | � 𝑑 (𝑢)𝑘+𝑀 (log log 𝑋)𝑂𝐷,𝑘 (1) we have

𝜈(𝑛) =
∑
𝑢 |𝑛
𝑢≤𝑇

𝜆𝑢
∑
ℓ |𝑛

ℓ≤𝑋𝛾

(𝑑𝑘 ∗ 𝜇) (ℓ)1(ℓ,𝑢)=1 𝜒

(
log ℓ

log 𝑋𝛾

)
.

Writing 𝑒 = ℓ𝑢, we see that for some |𝜆′𝑒 | � (log log 𝑋)𝑂𝐷,𝑘 (1)𝑑 (𝑒)𝑘+𝑀+1𝑑𝑘+1(𝑒) the function 𝜈 is of
the form

𝜈(𝑛) =
∑
𝑒 |𝑛

𝑒≤𝑋10𝛾1/2+𝛾

𝜆′𝑒 .

Taking 𝛾 small enough in terms of 𝐷, 𝑘 , this is of the form required in Lemma 9.5, so appealing to that
lemma we conclude that 𝜈 is (𝐷, 𝑜𝑤→∞(1))-pseudorandom at location X and scale H. �

We need two more lemmas before proving Theorem 1.5.

Lemma 9.8. Let 𝐷 ∈ N be fixed. Let 1 ≤ 𝑞 ≤ 𝐻1/4 be an integer. Let 𝑋 ≥ 𝐻 ≥ 2, and let
𝑓 : (𝑋, 𝑋 + 𝐻] → C be a function with | 𝑓 (𝑛) | � 𝐻1/2𝐷+2 . Then we have

‖ 𝑓 ‖𝑈𝐷 (𝑋,𝑋+𝐻 ] ≤
1
𝑞

∑
1≤𝑎≤𝑞

‖ 𝑓𝑞,𝑎‖𝑈𝐷 (𝑋/𝑞, (𝑋+𝐻 )/𝑞] +𝑂 (𝐻−1/2),

where 𝑓𝑞,𝑎 (𝑛) := 𝑓 (𝑞𝑛 + 𝑎).

Proof. Denote by 1𝑎 (𝑞) the indicator of the arithmetic progression 𝑎 (mod 𝑞). Then, by the triangle
inequality for the Gowers norms, we have

‖ 𝑓 ‖𝑈𝐷 (𝑋,𝑋+𝐻 ] ≤
∑

1≤𝑎≤𝑞
‖ 𝑓 1𝑎 (𝑞) ‖𝑈𝐷 (𝑋,𝑋+𝐻 ] .

The claim now follows by making a linear change of variables (𝑛, h) = (𝑞𝑛′ + 𝑎, 𝑞h′) in the definition
of ‖ 𝑓 1𝑎 (𝑞) ‖𝑈𝐷 (𝑋,𝑋+𝐻 ] . �
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Lemma 9.9. Let 𝐷, 𝑘 ∈ N and 𝜀 > 0 be fixed, with 𝜀 > 0 small enough. Let 𝑋 ≥ 𝐻 ≥ 𝑋 𝜀 , and let
1 ≤ 𝑞 ≤ 𝑋 𝜀2 be an integer. Let 𝑓 (𝑛) = (log 𝑋)1−𝑘𝑑𝑘 (𝑛). Then for 1 ≤ 𝑎 ≤ 𝑞 with (𝑎, 𝑞) = 1, we have

‖ 𝑓𝑞,𝑎‖𝑈𝐷 (𝑋,𝑋+𝐻 ] �
(
𝜑(𝑞)

𝑞

) 𝑘−1
,

where 𝑓𝑞,𝑎 (𝑛) := 𝑓 (𝑞𝑛 + 𝑎).

Proof. Let 𝑔𝑞,𝑎 (𝑛) := 𝑑𝑘 (𝑞𝑛 + 𝑎). By the definition of the interval Gowers norms and the fact that
‖1(𝑋,𝑋+𝐻 ] ‖2𝐷

𝑈𝐷 (Z) � 𝐻𝐷+1, we have

‖𝑔𝑞,𝑎‖2𝐷
𝑈𝐷 (𝑋,𝑋+𝐻 ] �

1
𝐻𝐷+1

∑
𝑛

∑
ℎ1 ,...,ℎ𝐷

∏
𝜔∈{0,1}𝐷

𝑑𝑘 (𝑞(𝑛 + 𝜔 · h) + 𝑎)1(𝑋,𝑋+𝐻 ] (𝑛 + 𝜔 · h)

� 1
𝐻𝐷+1

∑
𝑋<𝑛≤𝑋+𝐻

∑
|ℎ1 |,..., |ℎ𝐷 | ≤2𝐻

ℎ𝑖 distinct

∏
𝜔∈{0,1}𝐷

𝑑𝑘 (𝑞(𝑛 + 𝜔 · h) + 𝑎) + 𝐻−1/2. (9.15)

We can upper bound the correlation of these multiplicative functions using Henriot’s bound [30, Theorem
3] (taking 𝑥 → 𝑋, 𝑦 → 𝐻, 𝛿 → 2−𝐷−2, 𝑄(𝑛) →

∏
𝜔∈{0,1}𝐷 (𝑞(𝑛 + 𝜔 · h) + 𝑎) there), obtaining

1
𝐻

∑
𝑋<𝑛≤𝑋+𝐻

∏
𝜔∈{0,1}𝐷

𝑑𝑘 (𝑞(𝑛 + 𝜔 · h) + 𝑎)

� ΔD
∏
𝑝≤𝑋

(
1 −

𝜌𝑄 (𝑝)
𝑝

) ∏
𝜔∈{0,1}𝐷

∑
𝑛≤𝑋

(𝑛,D)=1

𝑑𝑘 (𝑛)𝜌𝑄𝜔 (𝑛)
𝑛

, (9.16)

where

𝑄𝜔 (𝑢) = 𝑞(𝑢 + 𝜔 · h) + 𝑎, 𝑄 =
∏

𝜔∈{0,1}𝐷
𝑄𝜔 ,

𝜌𝑃 (𝑛) = |{𝑢 (mod 𝑛) : 𝑃(𝑢) ≡ 0 (mod 𝑛)}|,

D = D(h) = (−1)2𝐷 (2𝐷−1)/2𝑞22𝐷−2𝐷
∏
𝜔≠𝜔′

( (𝜔 − 𝜔′) · h) =: (−1)2𝐷−1
𝑞22𝐷−2𝐷D′,

ΔD =
∏
𝑝 |D

�����
1 +

∑
0≤𝜈1 ,...,𝜈2𝐷 ≤1

(𝜈1 ,...,𝜈2𝐷 )≠(0,...,0)

𝑑𝑘 (𝑝𝜈1) · · · 𝑑𝑘 (𝑝𝜈2𝐷 )
|{𝑛 (mod 𝑝2) : 𝑝𝜈 𝑗 | | 𝑄𝜔 𝑗 (𝑛) ∀ 𝑗}|

𝑝2

������
�
∏
𝑝 |D′

(
1 +

𝑂𝐷,𝑘 (1)
𝑝

)
,

where 𝜔1, . . . , 𝜔2𝐷 is any ordering of {0, 1}𝐷 . In order to bound the various expressions above, note
that ∏

𝑝≤𝑋

(
1 −

𝜌𝑄 (𝑝)
𝑝

)
�
∏
𝑝≤𝑋
𝑝�D

(
1 − 2𝐷

𝑝

)
� (log 𝑋)−2𝐷

∏
𝑝 |D′

(
1 + 2𝐷

𝑝

)
·
(

𝑞

𝜑(𝑞)

)2𝐷
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and ∑
𝑛≤𝑋

(𝑛,D)=1

𝑑𝑘 (𝑛)𝜌𝑄𝜔 (𝑛)
𝑛

�
∏
𝑝≤𝑋
𝑝�𝑞

(
1 + 𝑘

𝑝

)
� (log 𝑋)𝑘

(
𝜑(𝑞)

𝑞

) 𝑘
.

We now conclude that equation (9.16) is

� (log 𝑋) (𝑘−1) ·2𝐷
(
𝜑(𝑞)

𝑞

) (𝑘−1) ·2𝐷 ∏
𝑝 |D′

(
1 +

𝑂𝐷,𝑘 (1)
𝑝

)
.

By the inequality
∏𝑘

𝑖=1 𝑥𝑖 ≤
∑𝑘
𝑖=1 𝑥𝑘𝑖 and an elementary upper bound for moments of 𝑛/𝜑(𝑛), we have∑

|ℎ1 |,..., |ℎ𝐷 | ≤2𝐻
ℎ𝑖 distinct

∏
𝑝 |D′ (h)

(
1 +

𝑂𝐷,𝑘 (1)
𝑝

)
�

∑
|ℎ1 |,..., |ℎ𝐷 | ≤2𝐻

ℎ𝑖 distinct

∑
𝜔∈{−1,0,1}𝐷\{0}

∏
𝑝 |𝜔 ·h

(
1 + 1

𝑝

)𝑂𝐷,𝑘 (1)
� 𝐻𝐷 .

The claim now follows by combining this with equation (9.15). �

We are now ready to prove Theorem 1.5.

Proof of Theorem 1.5. (i) Let H be as in Theorem 1.5(i). By the triangle inequality for the Gowers
norms, to prove equation (1.18) it suffices to show that

‖Λ♯ − Λ𝑤 ‖𝑈 𝑠 (𝑋,𝑋+𝐻 ] = 𝑜𝑤→∞(1). (9.17)

and

‖Λ − Λ♯‖𝑈 𝑠 (𝑋,𝑋+𝐻 ] = 𝑜𝑋→∞(1) (9.18)

The first claim (9.17) follows directly from Lemma 9.6 and Remark 9.2.
We are then left with proving equations (9.18) and (1.19). Let 1 ≤ 𝑏 ≤ 𝑊 ′ ≤ log 𝑋 be integers. For

𝑓 = Λ − Λ♯, by Theorem 1.1 for any 𝑥 ∈ [𝑋/(log 𝑋)𝐴, 𝑋 (log 𝑋)𝐴],𝐻 (log 𝑋)−𝐴 ≤ 𝐻 ′ ≤ 𝐻 and 𝐺/Γ,
F as in that theorem, we have

sup
𝑔∈Poly(Z→𝐺)

����� ∑
𝑥<𝑛≤𝑥+𝐻 ′

𝑓 (𝑊 ′𝑛 + 𝑏)𝐹 (𝑔(𝑛)Γ)

�����
= sup

𝑔∈Poly(Z→𝐺)

��������
∑

𝑊 ′𝑥+𝑏<𝑛≤𝑊 ′ (𝑥+𝐻 ′)+𝑏
𝑛≡𝑏 (mod 𝑊 ′)

𝑓 (𝑛)𝐹 (𝑔( 𝑛 − 𝑏

𝑊 ′ )Γ)

�������� (9.19)

�𝐴 𝐻 ′/(log 𝑋)𝐴

since there exists a polynomial sequence �̃� : Z → 𝐺 such that �̃�(𝑛) = 𝑔((𝑛 − 𝑏)/𝑊 ′) for all 𝑛 ≡
𝑏(mod 𝑊 ′).

Now, equation (1.19) follows by combining the inverse theorem (Proposition 9.4) with the estimate
(9.19), Lemma 9.6 and Remark 9.7. Lastly, equation (1.18) follows from equation (1.19) and Lemma 9.8.

(ii) We then turn to the case 𝑓 = 𝑑𝑘 − 𝑑♯𝑘 . Again, Theorem 1.1 gives us the bound (9.19). Together
with the inverse theorem (Proposition 9.4), Lemma 9.6 and Remark 9.7, this implies equation (1.21).

Let

ℎ(𝑛) := (log 𝑋)1−𝑘 (𝑑𝑘 (𝑛) − 𝑑♯𝑘 (𝑛)).
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Then, to prove equation (1.20), we must show that

‖ℎ‖𝑈𝐷 (𝑋,𝑋+𝐻 ] = 𝑜𝑋→∞(1).

Let 𝑊 := 𝑊𝑤 with w an integer tending to infinity slowly.15 By Lemma 9.8, we have

‖ℎ‖𝑈 𝑠 (𝑋,𝑋+𝐻 ] ≤
1
𝑊

∑
1≤𝑎≤𝑊

���ℎ𝑊 ,𝑎

���
𝑈 𝑠 (𝑋/𝑊 , (𝑋+𝐻 )/𝑊 ]

+𝑂 (𝐻−1/2)

=
1
𝑊

∑
1≤𝑎≤𝑊

(𝑎,𝑊 ) |𝑊 𝑤−1

���ℎ𝑊 ,𝑎

���
𝑈 𝑠 (𝑋/𝑊 , (𝑋+𝐻 )/𝑊 ]

+ 1
𝑊

∑
1≤𝑎≤𝑊

(𝑎,𝑊 )�𝑊 𝑤−1

���ℎ𝑊 ,𝑎

���
𝑈 𝑠 (𝑋/𝑊 , (𝑋+𝐻 )/𝑊 ]

+𝑂 (𝐻−1/2). (9.20)

The number of terms in the last sum is

�
∑
𝑝≤𝑤

𝑊

𝑝𝑤
� 𝑊

2𝑤
,

so by Lemma 9.9 the contribution of this sum is � 2−𝑤/2, say. The first sum over a in equation (9.20)
can further be written as ∑

ℓ |𝑊 𝑤−1

𝑑𝑘 (ℓ)
∑

1≤𝑎≤𝑊
(𝑎,𝑊 )=ℓ

���� ℎ𝑊 ,𝑎

𝑑𝑘 (ℓ)

����
𝑈 𝑠 (𝑋/𝑊 , (𝑋+𝐻 )/𝑊 ]

. (9.21)

Since 𝑑♯𝑘 (𝑚) � 𝑑𝑘 (𝑚), for (𝑎, 𝑊) = ℓ, we have(
𝑊

𝜑(𝑊)

) 𝑘−1 ℎ𝑊 ,𝑎 (𝑛)
𝑑𝑘 (ℓ)

�
(

𝑊

𝜑(𝑊)

) 𝑘−1
(log 𝑋)1−𝑘 𝑑𝑘 (𝑊𝑛 + 𝑎)

𝑑𝑘 (ℓ)

=

(
𝑊

𝜑(𝑊)

) 𝑘−1
(log 𝑋)1−𝑘𝑑𝑘

(
𝑊

ℓ
𝑛 + 𝑎

ℓ

)
,

and since 𝑊 | 𝑊ℓ , by Lemma 9.6 and Mertens’s theorem this function is pseudorandomly majorized by
a (𝐷, 𝑜𝑋→∞(1))-pseudorandom function at location 0 and scale 𝐻/𝑊 . This combined with equation
(9.19) (with 𝑊/ℓ in place of 𝑊 ′) and Proposition 9.4 yields���� ℎ𝑊 ,𝑎

𝑑𝑘 (ℓ)

����
𝑈𝐷 (𝑋/𝑊 , (𝑋+𝐻 )/𝑊 ]

= 𝑜𝑤→∞

((
𝜑(𝑊)

𝑊

) 𝑘−1
)

, (9.22)

uniformly in 1 ≤ 𝑎 ≤ 𝑊 with (𝑊, 𝑎) = ℓ.

15Let us explain why we perform the W-trick for the divisor function with the modulus𝑊 := 𝑊 𝑤 rather than with the modulus
W. In order to apply the inverse theorem, we wish to find a modulus 𝑊 ′ such that ℎ (𝑊 ′𝑛 + 𝑎) is pseudorandomly majorized
for almost all 1 ≤ 𝑎 ≤ 𝑊 ′. Since |ℎ (𝑊𝑛 + 𝑎) | � 𝑑𝑘 ( (𝑊 ′, 𝑎))𝑑𝑘 ( 𝑊 ′

(𝑊 ′,𝑎) 𝑛 +
𝑎

( (𝑊 ′,𝑎) ) ) , we want to show that this latter
function is pseudorandomly majorized for almost all 1 ≤ 𝑎 ≤ 𝑊 ′. By Lemma 9.6, we thus want that 𝑊 | 𝑊 ′

(𝑊 ′,𝑎) for almost all
1 ≤ 𝑎 ≤ 𝑊 . This property fails if 𝑊 ′ = 𝑊 but holds if 𝑊 ′ = 𝑊 𝑤 with 𝑤 →∞.
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Now, the bound (1.20) follows from equations (9.21), (9.22), and the estimate∑
ℓ |𝑊 𝑤−1

𝑑𝑘 (ℓ)
∑

1≤𝑎≤𝑊
(𝑎,𝑊 )=ℓ

(
𝜑(𝑊)

𝑊

) 𝑘−1
�
∑

ℓ |𝑊 𝑤−1

𝑑𝑘 (ℓ)
𝑊

ℓ

(
𝜑(𝑊)

𝑊

) 𝑘

� 𝑊
∏
𝑝 |𝑤

(
1 + 𝑘

𝑝
+𝑂

(
1
𝑝2

)) (
𝜑(𝑊)

𝑊

) 𝑘
� 𝑊.

(iii) This case follows directly from the inverse theorem (Proposition 9.4 with 𝜈 = 1) and Theo-
rem 1.1(iv). �

10. Applications

In this section, we shall prove the applications stated in Section 1.

Proof of Corollary 1.3. Parts (i) and (iii) follow immediately from Theorem 1.1, as polynomial phases
are special cases of nilsequences. By Theorem 1.1 and the triangle inequality, the proof of part (ii)
reduces to proving that ����� ∑

𝑋<𝑛≤𝑋+𝐻
Λ♯ (𝑛)𝑒(𝑃(𝑛))

����� � 𝐻

(log 𝑋)𝐴

implies equation (1.10). Recalling from equation (4.8) that Λ♯ (𝑛) = Λ♯
𝐼 (𝑛) + 𝐸 (𝑛), where Λ♯

𝐼 is a
((log 𝑋)𝑂 (1) , 𝑋 𝜀) type I sum and

∑
𝑋<𝑛≤𝑋+𝐻 |𝐸 (𝑛) | �𝐴 𝐻 log−𝐴 𝑋 , the claim follows from the type I

estimate in [49, Proposition 2.1]. �

Proof of Theorem 1.6. First, note that, since log 𝑝 = (1 + 𝑜(1)) log 𝑁 for 𝑝 ∈ (𝑁, 𝑁 + 𝑁 𝜅 ] and since
the contribution of higher prime powers is negligible, we have

E𝑁<𝑝≤𝑁+𝑁 𝜅 𝑓1 (𝑇ℎ1 𝑝𝑥) · · · 𝑓𝑘 (𝑇ℎ𝑘 𝑝𝑥) = E𝑁<𝑛≤𝑁+𝑁 𝜅Λ(𝑛) 𝑓1(𝑇ℎ1𝑛𝑥) · · · 𝑓𝑘 (𝑇ℎ𝑘𝑛𝑥) + 𝑜𝑁→∞(1).
(10.1)

Hence, it suffices to show that the right-hand side of equation (10.1) converges in 𝐿2 (𝜇).
Let w be a large parameter (which we will eventually send to infinity), and let 𝑊 =

∏
𝑝≤𝑤 𝑝. Let

𝜖 (𝑛) := Λ(𝑛) − Λ𝑤 (𝑛);

this is a function that has small Gowers norms over short intervals by Theorem 1.5.
We first claim that∫

𝑋

��E𝑁<𝑛≤𝑁+𝑁 𝜅 𝜖 (𝑛) 𝑓1(𝑇ℎ1𝑛𝑥) · · · 𝑓𝑘 (𝑇ℎ𝑘𝑛𝑥)
�� 2 𝑑𝜇(𝑥) = 𝑜𝑤→∞(1). (10.2)

Since the average over n in equation (10.2) is bounded, it is enough to show for all bounded 𝑓0 : 𝑋 → C
that ∫

𝑋
E𝑁<𝑛≤𝑁+𝑁 𝜅 𝜖 (𝑛) 𝑓0(𝑥) 𝑓1(𝑇ℎ1𝑛𝑥) · · · 𝑓𝑘 (𝑇ℎ𝑘𝑛𝑥) 𝑑𝜇(𝑥) = 𝑜𝑤→∞(‖ 𝑓0‖𝐿2 (𝜇) ). (10.3)

To prove this, we first make the changes of variables 𝑛′ = 𝑛 + 𝑁 , 𝑥 = 𝑇𝑚𝑦, with m arbitrary, and use
the T-invariance of 𝜇 to rewrite the left-hand side of equation (10.3) as∫

𝑋
E𝑚≤𝑁 𝜅E𝑛′ ≤𝑁 𝜅 𝜖𝑁 (𝑛′) 𝑓0(𝑇𝑚𝑦) 𝑓 (𝑇𝑚+ℎ1𝑛

′
𝑇ℎ1𝑁 𝑦) · · · 𝑓 (𝑇𝑚+ℎ𝑘𝑛′𝑇ℎ𝑘𝑁 𝑦) 𝑑𝜇(𝑦), (10.4)
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where 𝜖𝑁 (𝑛′) := 𝜖 (𝑛′ + 𝑁). Since 𝑓𝑖 : 𝑋 → C are bounded, we can appeal to the generalized von
Neumann theorem in the form of [13, Lemma 2] (after embedding [𝑁 𝜅 ] to Z/𝑀Z for some 𝑀 � 𝑁 𝜅 )
to bound (10.4) as

� ‖𝜖𝑁 ‖𝑈 𝑘 ( [𝑁 𝜅 ]) ‖ 𝑓0‖𝐿2 (𝜇) = 𝑜𝑤→∞(‖ 𝑓0‖𝐿2 (𝜇) ),

where for the second estimate we used Theorem 1.5. Now, equation (10.2) has been proved. Then let
𝑤′ > 𝑤. By an argument identical to the proof of equation (10.2), but using in the end the fact that
‖Λ𝑤 −Λ𝑤′ ‖𝑈 𝑘 [𝑁 ,𝑁+𝑁 𝜅 ] = 𝑜𝑤→∞(1) (which follows from Theorem 1.5 and the triangle inequality, but
could also be proved more directly), we see that also∫

𝑋

��E𝑁<𝑛≤𝑁+𝑁 𝜅 (Λ𝑤 (𝑛) − Λ𝑤′ (𝑛)) 𝑓1(𝑇ℎ1𝑛𝑥) · · · 𝑓𝑘 (𝑇ℎ𝑘𝑛𝑥)
�� 2 𝑑𝜇(𝑥) = 𝑜𝑤→∞(1). (10.5)

Consider now

E𝑁<𝑛≤𝑁+𝑁 𝜅Λ𝑤 (𝑛) 𝑓1(𝑇ℎ1𝑛𝑥) · · · 𝑓𝑘 (𝑇ℎ𝑘𝑛𝑥).

This can be rewritten as

𝑊

𝜑(𝑊)
∑

1≤𝑏≤𝑊
(𝑏,𝑊 )=1

E𝑁 /𝑊<𝑛≤(𝑁+𝑁 𝜅 )/𝑊 𝑓1(𝑇ℎ1 (𝑊𝑛+𝑏)𝑥) · · · 𝑓𝑘 (𝑇ℎ𝑘 (𝑊𝑛+𝑏)𝑥) + 𝑜𝑁→∞(1).

Since the sequence ((𝑁/𝑊, (𝑁 + 𝑁 𝜅 )/𝑊])𝑁 of intervals are translates of a Følner sequence, from [2,
Theorem 1.1] it follows that there exists 𝜙𝑤,𝑏 : 𝑋 → C such that∫

𝑋

���E𝑁 /𝑊<𝑛≤(𝑁+𝑁 𝜅 )/𝑊 𝑓1(𝑇ℎ1 (𝑊𝑛+𝑏)𝑥) · · · 𝑓𝑘 (𝑇ℎ𝑘 (𝑊𝑛+𝑏)𝑥) − 𝜙𝑤,𝑏 (𝑥)
��� 2𝑑𝜇(𝑥) = 𝑜𝑁→∞,𝑤 (1).

Hence, there exists also 𝜙𝑤 : 𝑋 → C such that∫
𝑋

��E𝑁<𝑛≤𝑁+𝑁 𝜅Λ𝑤 (𝑛) 𝑓1(𝑇ℎ1𝑛𝑥) · · · 𝑓𝑘 (𝑇ℎ𝑘𝑛𝑥) − 𝜙𝑤 (𝑥)
�� 2𝑑𝜇(𝑥) = 𝑜𝑁→∞,𝑤 (1). (10.6)

By equation (10.5), for 𝑤′ > 𝑤 we have

‖𝜙𝑤 − 𝜙𝑤′ ‖𝐿2 (𝜇) = 𝑜𝑤→∞(1),

so the sequence (𝜙𝑤 )𝑤 is Cauchy in 𝐿2 (𝜇). Let 𝜙 ∈ 𝐿2 (𝜇) be its limit. Then, denoting

𝐹 (𝑥) = E𝑁<𝑛≤𝑁+𝑁 𝜅Λ(𝑛) 𝑓1(𝑇ℎ1𝑛𝑥) · · · 𝑓𝑘 (𝑇ℎ𝑘𝑛𝑥),

from the triangle inequality and equations (10.2) and (10.6), we have

‖𝐹 − 𝜙‖𝐿2 (𝜇) = ‖𝜙𝑤 − 𝜙‖𝐿2 (𝜇) + 𝑜𝑤→∞(1) + 𝑜𝑁→∞;𝑤 (1)
= 𝑜𝑤→∞(1) + 𝑜𝑁→∞;𝑤 (1).

By sending 𝑁, 𝑤 → ∞ with w tending to ∞ slowly enough and recalling equation (10.1), this proves
the claim of Theorem 1.6, with the limit being 𝜙. �

For proving Theorem 1.7, we need the generalized von Neumann theorem, so we state here a version
of it that is suitable for us.

Lemma 10.1 (Generalized von Neumann theorem). Let Let 𝑠, 𝑑, 𝑡, 𝐿 ≥ 1 be fixed, and let D be large
enough in terms of 𝑠, 𝑑, 𝑡, 𝐿. Let 𝜈 be (𝐷, 𝑜𝑁→∞(1))-pseudorandom at location 0 and scale N, and let
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𝑓1, . . . , 𝑓𝑡 : Z→ R satisfy | 𝑓𝑖 (𝑥) | ≤ 𝜈(𝑥) for all 𝑖 ∈ [𝑡] and 𝑥 ∈ [𝑁]. Let Ψ = (𝜓1, . . . , 𝜓𝑡 ) be a system
of affine-linear forms with integer coefficients in s-normal form such that all the linear coefficients
of 𝜓𝑖 are bounded by L in modulus and |𝜓𝑖 (0) | ≤ 𝐷𝑁 . Let 𝐾 ⊂ [−𝑁, 𝑁]𝑑 be a convex body with
Ψ(𝐾) ⊂ (0, 𝑁]𝑑 . Suppose that for some 𝛿 > 0 we have

min
1≤𝑖≤𝑡

‖ 𝑓𝑖 ‖𝑈 𝑠+1 [𝑁 ] ≤ 𝛿.

Then we have ∑
n∈𝐾

𝑡∏
𝑖=1

𝑓𝑖 (𝜓𝑖 (n)) = 𝑜𝛿→0 (𝑁𝑑).

Proof. Note that by Lemma 9.3 there exists a prime 𝑁 ′ � 𝑁 such that we have a majorant for 𝑓𝑖 on the
cyclic group Z/𝑁 ′Z satisfying the (𝐷, 𝐷, 𝐷)-linear forms condition of [17, Definition 6.2]. Then the
claim follows from [17, Proposition 7.1], observing that its proof only used the (𝐷, 𝐷, 𝐷)-linear forms
condition of [17, Definition 6.2] and not the correlation condition. �

Proof of Theorem 1.7. Let w be a sufficiently slowly growing function of X, and let 𝑊 =
∏

𝑝≤𝑤 𝑝. Let
N = (𝑋, . . . , 𝑋) ∈ R𝑑 . We can write 𝐾 = N + 𝐾 ′, where 𝐾 ′ ⊂ (0, 𝐻]𝑑 is a convex body. Now, the sum
(1.25) becomes ∑

n∈𝐾 ′∩Z𝑑

𝑡∏
𝑖=1

Λ(𝜓𝑖 (n) + �𝜓𝑖 · N). (10.7)

Writing Λ = Λ𝑤 + (Λ − Λ𝑤 ), this splits as the main term∑
n∈𝐾 ′∩Z𝑑

𝑡∏
𝑖=1

Λ𝑤 (𝜓𝑖 (n) + �𝜓𝑖 · N)

and 2𝑡 − 1 error terms ∑
n∈𝐾 ′∩Z𝑑

𝑡∏
𝑖=1

Λ𝑖 (𝜓𝑖 (n) + �𝜓𝑖 · N), (10.8)

where Λ𝑖 ∈ {Λ𝑤 ,Λ − Λ𝑤 } and at least one Λ𝑖 equals to Λ − Λ𝑤 . Following [17, Section 5] verbatim,
we see that the main term is

vol(𝐾 ∩ Ψ−1(R𝑡>0))
∏
𝑝

𝛽𝑝 + 𝑜𝑋→∞(𝐻𝑑).

Following [17, Section 4], we may assume that the system of linear forms involved in equation (10.8) is
in s-normal form for some 𝑠 �𝐷 1.

We make the change of variables n = 𝑊m + b with b ∈ [0, 𝑊)𝑑 in equation (10.8) and abbreviate
𝑀b,𝑖 := �𝜓𝑖 · b + 𝜓𝑖 (0) to rewrite that sum as∑

b∈[0,𝑊 )𝑑

∑
m∈Z𝑑

𝑊m+b∈𝐾 ′

𝑡∏
𝑖=1

Λ𝑖 (𝜓𝑖 (𝑊m + b) + �𝜓𝑖 · N)

=
∑

b∈[0,𝑊 )𝑑

∑
m∈Z𝑑

𝑊m+b∈𝐾 ′

𝑡∏
𝑖=1

Λ𝑖 (𝑊 �𝜓𝑖 · m + �𝜓𝑖 · b + 𝜓𝑖 (0)).
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=

(
𝑊

𝜑(𝑊)

) 𝑡 ∑
b∈[0,𝑊 )𝑑

(𝑀b,𝑖 ,𝑊 )=1 ∀𝑖≤𝑡

∑
m∈Z𝑑

m∈(𝐾 ′−b)/𝑊

∏
1≤𝑖≤𝑡

Λ𝑖=Λ−Λ𝑤

(
𝜑(𝑊)

𝑊
Λ(𝑊 �𝜓𝑖 · m + 𝑀b,𝑖) − 1

)
+ 𝑜𝑋→∞(𝐻𝑑), (10.9)

where the error term comes from the contribution of integers in the support of Λ that are not w-rough.
By Theorem 1.5(i), uniformly for integers 1 ≤ 𝑀 ≤ 𝑋 with (𝑀, 𝑊) = 1 we have

max
1≤𝑎≤𝑊
(𝑎,𝑊 )=1

����𝜑(𝑊)
𝑊

Λ(𝑊 · +𝑀) − 1
����
𝑈 𝑠+1 [0,𝐻/𝑊 ]

= 𝑜𝑋→∞;𝑠 (1).

Moreover, by Lemma 9.6 the function 𝜑 (𝑊 )
𝑊 Λ(𝑊 · +𝑀) − 1 is majorized by a (𝐷, 𝑜𝑋→∞(1))-

pseudorandom measure 𝜈𝑀 at location 0 and scale 𝐻/𝑊 for any fixed 𝐷 ≥ 1. Hence, applying the
generalized von Neumann theorem (Lemma 10.1, with 𝜈 = 1

𝑡

∑
𝑖≤𝑡 𝜈𝑀b,𝑖 ), we conclude that equation

(10.9) is

�
(

𝑊

𝜑(𝑊)

) 𝑡
·𝑊𝑑

(
𝜑(𝑊)

𝑊

) 𝑡
· 𝑜𝑋→∞

((
𝐻

𝑊

)𝑑)
= 𝑜𝑋→∞(𝐻𝑑),

completing the proof. �

Proof of Corollary 1.9. This follows directly from Theorem 1.7 since the assumptions imply that 𝛽𝑝 > 0
for all p, and on the other hand 𝛽𝑝 = 1 + 𝑂𝑡 ,𝑑,𝐿 (1/𝑝2) by [17, Lemmas 1.3 and 1.6], so we have∏

𝑝 𝛽𝑝 > 0. �

A. Variants of the main result

In this appendix, we discuss in more detail the variants of the main results described in Remark 1.4.

A.1. Results for the Liouville function

It is an easy matter to replace the Möbius function 𝜇 by the Liouville function 𝜆 in our main results:

Proposition A.1. The results in Theorem 1.1(i), (iv) (and hence also Corollary 1.3(i), (iv)) continue to
hold if 𝜇 is replaced by 𝜆.

Proof. We illustrate the argument for the estimate (1.5), as the other estimates are proven similarly.
Under the hypotheses of Theorem 1.1(i), we wish to show that

sup
𝑔∈Poly(Z→𝐺)

����� ∑
𝑋<𝑛≤𝑋+𝐻

𝜆(𝑛)𝐹 (𝑔(𝑛)Γ)

�����∗ �𝐴,𝜀,𝑑,𝐷 𝛿−𝑂𝑑,𝐷 (1)𝐻 log−𝐴 𝑋.

Writing 𝜆(𝑛) =
∑
𝑚≤

√
2𝑋 :𝑚2 |𝑛 𝜇(𝑛/𝑚2) for 𝑛 ≤ 2𝑋 and using the triangle inequality, we can bound the

left-hand side by

∑
𝑚≤

√
2𝑋

sup
𝑔∈Poly(Z→𝐺)

������ ∑
𝑋/𝑚2<𝑛≤𝑋/𝑚2+𝐻/𝑚2

𝜇(𝑛)𝐹 (𝑔(𝑚2𝑛)Γ)

������
∗

.

If 𝑚 ≤ 𝑋 𝜀/10 (say), then by Theorem 1.1(i) (with 𝑋, 𝐻, 𝑔 replaced by 𝑋/𝑚2, 𝐻/𝑚2, 𝑔(𝑚2·), and 𝜀
reduced slightly) we have
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sup
𝑔∈Poly(Z→𝐺)

������ ∑
𝑋/𝑚2<𝑛≤𝑋/𝑚2+𝐻/𝑚2

𝜇(𝑛)𝐹 (𝑔(𝑚2𝑛)Γ)

������
∗

�𝐴,𝜀,𝑑,𝐷 𝑚−2𝛿−𝑂𝑑,𝐷 (1)𝐻 log−𝐴 𝑋.

For 𝑋 𝜀/10 < 𝑚 �
√

𝑋 , we simply use the triangle inequality and the trivial bound |𝐹 (𝑔(𝑛)Γ) | ≤ 1/𝛿 to
conclude

sup
𝑔∈Poly(Z→𝐺)

������ ∑
𝑋/𝑚2<𝑛≤𝑋/𝑚2+𝐻/𝑚2

𝜇(𝑛)𝐹 (𝑔(𝑚2𝑛)Γ)

������
∗

� 1
𝛿

(
𝐻

𝑚2 + 1
)

.

Summing in m, we obtain the claim after a brief calculation (since H is significantly larger than 𝑋1/2). �

A.2. Results for the indicator function of the primes

It is also easy to replace the von Mangoldt function Λ with the indicator function 1P of the primes P:
Proposition A.2. The results in Theorem 1.1(ii) (and hence also Corollary 1.3(ii)) continue to hold if
Λ is replaced by 1P , and Λ♯ (𝑛) is replaced by 1

log 𝑛Λ
♯ (𝑛).

Proof. From equation (1.6) and Lemma 2.2(iii), we have

sup
𝑔∈Poly(Z→𝐺)

����� ∑
𝑋<𝑛≤𝑋+𝐻

(
1

log 𝑛
Λ(𝑛) − 1

log 𝑛
Λ♯ (𝑛)
)

𝐹 (𝑔(𝑛)Γ)

�����∗ �𝐴,𝜀,𝑑,𝐷 𝛿−𝑂𝑑,𝐷 (1)𝐻 log−𝐴 𝑋

and so by the triangle inequality it will suffice to show that∑
𝑋<𝑛≤𝑋+𝐻

����1P (𝑛) − 1
log 𝑛

Λ(𝑛)
���� �𝐴 𝐻 log−𝐴 𝑋.

But the summand is supported on prime powers 𝑝 𝑗 with 2 ≤ 𝑗 � log 𝑋 and 𝑝 �
√

𝑋 , so there are at
most 𝑂 (

√
𝑋 log 𝑋) terms, each of which gives a contribution of 𝑂 (1). Since H is significantly larger

than 𝑋1/2, the claim follows. �

A.3. Results for the counting function of sums of two squares

It is a classical fact that the counting function

𝑟2(𝑛) �
∑
𝑎,𝑏∈Z
𝑎2+𝑏2=𝑛

1

can be factorized as 𝑟2(𝑛) = 4(1 ∗ 𝜒4) (𝑛), where 𝜒4 is the nonprincipal Dirichlet character of modulus
4. This is formally very similar to the divisor function 𝑑2 (𝑛) = (1 ∗ 1) (𝑛). In this paper, we use the
Dirichlet hyperbola method to expand 𝑑2(𝑛) for 𝑋 < 𝑛 ≤ 𝑋 + 𝐻 as

𝑑2(𝑛) =
∑

𝑅2≤𝑛1≤𝑛/𝑅2
𝑛1 |𝑛

1 +
∑
𝑛1<𝑅2
𝑛1 |𝑛

2

with 𝑅2 � 𝑋1/20 and approximate this function by the type I sum

𝑑♯2 (𝑛) =
∑

𝑅2≤𝑛1<𝑅
2
2

𝑛1 |𝑛

log 𝑛 − log 𝑅2
2

log 𝑅2
+
∑
𝑛1<𝑅2
𝑛1 |𝑛

2
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(these are the 𝑘 = 2 cases of equations (3.15), (1.2), respectively). In a similar vein, we can expand

𝑟2 (𝑛) =
∑

𝑅2≤𝑛1≤𝑛/𝑅2
𝑛1 |𝑛

4𝜒4(𝑛1) +
∑
𝑛1<𝑅2
𝑛1 |𝑛

4(𝜒4 (𝑛1) + 𝜒4(𝑛/𝑛1))

and then introduce the twisted type I approximant

𝑟♯2 (𝑛) =
∑

𝑅2≤𝑛1<𝑅
2
2

𝑛1 |𝑛

4𝜒4(𝑛1)
log 𝑛 − log 𝑅2

2
log 𝑅2

+
∑
𝑛1<𝑅2
𝑛1 |𝑛

4(𝜒4(𝑛1) + 𝜒4(𝑛/𝑛1)).

We then have

Proposition A.3. The 𝑘 = 2 results in Theorem 1.1(iii) continue to hold if 𝑑2, 𝑑♯2 are replaced by 𝑟2, 𝑟♯2,
respectively.

This proposition is established by repeating the arguments used to establish Theorem 1.1(iii) but
by inserting ‘twists’ by the character 𝜒4 at various junctures. However, such twists are quite harmless
(for instance, since ‖𝜒4‖TV(𝑃;4) � 1 for any arithmetic progression P, Proposition 2.2(iii) allows one
to insert this character into maximal sum estimates without difficulty), and there is no difficulty in
modifying the arguments to accommodate this twist.

A.4. Potential result for the indicator function of the sums of two squares

Let 𝑆 = {𝑛2 +𝑚2 : 𝑛, 𝑚 ∈ Z} be the set of numbers representable as sums of two squares. The Dirichlet
series for S is equal to 𝜁 (𝑠)1/2𝐿(𝑠, 𝜒4)1/2 times a holomorphic function near 𝑠 = 1 and in particular
extends into the classical zero-free region after making a branch cut to the left of 𝑠 = 1 on the real axis.

By a standard Perron formula calculation, one can then obtain asymptotics of the form∑
𝑛≤𝑥

1𝑆 (𝑛) = 𝑥
𝐴−1∑
𝑗=0

𝐵 𝑗 log− 𝑗−1/2 𝑥 +𝑂𝐴(𝑥 log−𝐴−1/2 𝑥)

for any 𝐴 > 0 and some real constants 𝐵 𝑗 which are in principle explicitly computable; see, for instance,
[7, Theorem 1.1] for a recent treatment (in significantly greater generality) using the Selberg–Delange
method. Similar calculations give asymptotics of the form∑

𝑛≤𝑥
𝑛=𝑎 (𝑞)

1𝑆 (𝑛) = 𝑥
𝐴−1∑
𝑗=0

𝐵 𝑗 ,𝑎,𝑞 log− 𝑗−1/2 𝑥 +𝑂𝐴(𝑥 log−𝐴−1/2 𝑥)

for any fixed residue class 𝑎 (𝑞) and some further real constants 𝐵 𝑗 ,𝑎,𝑞 . With further effort, one can
also localize such estimates to intervals {𝑋 < 𝑛 ≤ 𝑋 + 𝐻} with H not too small (e.g., 𝐻 = 𝑋5/8+𝜀 or
𝐻 = 𝑋7/12+𝜀).

This suggests the existence of an approximant 1♯,𝐴𝑆 for any given accuracy 𝐴 > 0 that is well
approximated by type I sums, and is such that one has the major arc estimate����� ∑

𝑋<𝑛≤𝑋+𝐻
1𝑆 (𝑛) − 1♯,𝐴𝑆 (𝑛)

�����∗ �𝐴 𝐻 log−𝐴 𝑥

(cf. Theorem 3.1). For small A, it seems likely that one could construct 1♯,𝐴𝑆 by a variant of the Cramér–
Granville construction used to form Λ♯; but for large A it appears that the approximant is more difficult
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to construct (for instance, one may have to use Fourier-analytic methods such as the delta method).
However, once such an approximant is constructed, we conjecture that the methods of this paper will
produce analogues of Theorem 1.1(ii) (and hence also of Corollary 1.3(ii)) if Λ,Λ♯ are replaced by
1𝑆 , 1♯,𝐴

′

𝑆 respectively, with 𝐴′ sufficiently large depending on A. The main point is that a satisfactory
analogue of the Heath-Brown decompositions in Lemma 2.16 for 1𝑆 is known; see [59, Lemma 7.2].

We do not foresee any significant technical issues with the remaining portions of the argument,
though of course one would need to define the approximant 1♯,𝐴𝑆 more precisely before one could say
with certainty that the portions of the argument involving this approximant continue to be valid.

A.5. Potential result for the indicator function of smooth numbers

Let 0 < 𝜂 < 1
2 , let X be large, and let 𝑆𝜂 denote the set of 𝑋 𝜂-smooth integers, that is to say those

numbers whose prime factors are all less than 𝑋 𝜂 . Let 𝐻 ≥ 𝑋 𝜃+𝜀 with 𝜃 � 1
2 + 𝜂. As is well-known,

the density of 𝑆𝜂 in [𝑋, 𝑋 + 𝐻] is asymptotic to the Dickman function 𝜌(1/𝜂) evaluated at 1/𝜂. We
conjecture that the methods of this paper can be used to establish a bound of the form

sup
𝑔∈Poly(Z→𝐺)

����� ∑
𝑋<𝑛≤𝑋+𝐻

(1𝑆𝜂 (𝑛) − 𝜌(1/𝜂))𝐹 (𝑔(𝑛)Γ)

�����∗ �𝜀,𝑑,𝐷,𝜂 𝛿−𝑂𝑑,𝐷 (1)𝐻 log−𝑐 𝑋

for some absolute constant 𝑐 > 0 under the hypotheses of Theorem 1.1.
Indeed, a Heath-Brown type decomposition, involving only (1, 𝑥1/2−𝜂 , 𝑥1/2) type II sums and a

(somewhat) small exceptional set, was constructed in [40, Lemma 11.5]; the exceptional set was only
shown to be small on long intervals such as [1, 𝑋] in that paper, but it is likely that one can show the set
to also be small on the shorter interval {𝑋 < 𝑛 ≤ 𝑋 + 𝐻}.

There are, however, some further technical difficulties in implementing our methods here. The first
(and less serious) issue is that one would need to verify that the type II sums 𝑓 (𝑛) produced by [40,
Lemma 11.5] obey the bound (4.9); we believe that this is likely to be achievable after some computation.
The second and more significant difficulty is that one would need an approximant 1♯𝑆𝜂 obeying a major
arc estimate of the shape ����� ∑

𝑋<𝑛≤𝑋+𝐻
1𝑆𝜂 (𝑛) − 1♯𝑆𝜂 (𝑛)

�����∗ �𝐴 𝐻 log−𝐴 𝑋

for any 𝐴 > 0 (possibly after removing a small exceptional set from 𝑆𝜂), in the spirit of Theorem 3.1
and Corollary 3.10.

The constant 𝜌(1/𝜂) is an obvious candidate for such an approximant, but unfortunately such an
estimate is only valid for small values of A; see [31, Theorem 1.8]. Thus, as in the previous discussion
for the indicator of the sums of two squares, a more complicated approximant is likely to be required; the
functionΛ(𝑥, 𝑦) appearing in [31, Theorem 1.8] will most likely become involved. See also [53] for some
recent estimates on the distribution of smooth numbers in short intervals or arithmetic progressions (in
a slightly different regime in which the 𝑋 𝜂 threshold for smoothness is replaced by a smaller quantity).
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