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Abstract

In this paper, we shall give some characterizations of the Hardy space associated with twisted convolution,
including Lusin area integral, Littlewood–Paley g-function and heat maximal function.
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1. Introduction

On Cn consider the 2n linear differential operators

Z j =
∂

∂z j

+
1
4

z j , Z j =
∂

∂z j

−
1
4

z j , j = 1, 2, . . . , n. (1)

Together with the identity they generate a Lie algebra hn which is isomorphic to the
2n + 1-dimensional Heisenberg algebra. The only nontrivial commutation relations
are [

Z j , Z j
]
=−

1
2 I, j = 1, 2, . . . , n. (2)

The operator L defined by

L =−
1
2

n∑
j=1

(
Z j Z j + Z j Z j

)
is nonnegative, self-adjoint and elliptic. Therefore it generates a diffusion semigroup
{T L

t }t>0 = {e−t L
}t>0. The operators in (1) generate a family of ‘twisted translations’
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τw on Cn defined on measurable functions by

(τw f )(z) = exp
(

1
2

n∑
j=1

(w j z j + w j z j )

)
f (z)

= f (z + w) exp
(

i

2
Im(z · w)

)
.

The ‘twisted convolution’ of two functions f and g on Cn can now be defined as

( f × g)(z) =
∫

Cn
f (w)τ−wg(z) dw

=

∫
Cn

f (z − w)g(w)ω(z, w) dw,

where ω(z, w)= exp
(
iIm(z · w)/2

)
. More about twisted convolution can be found

in [1, 7, 9].
In [8] the authors defined the Hardy space H1

L(C
n) associated with twisted

convolution. They gave several characterizations of H1
L(C

n), such as maximal
function, atomic decomposition and Riesz transform. The purpose of this paper is
to consider other characterizations, including Lusin area integral and Littlewood–
Paley g-function. In order to prove our result, we also give a heat maximal functon
characterization for H1

L(C
n).

We first give some basic notation for H1
L(C

n). Let B denote the class of C∞-
functions ϕ on Cn , supported on the ball B(0, 1) such that ‖ϕ‖∞ ≤ 1 and ‖∇ϕ‖∞ ≤ 2.
For t > 0, let ϕt (z)= t−2nϕ(z/t). Given σ > 0, 0< σ ≤+∞ and a tempered
distribution f , define the grand maximal function

Mσ f (z)= sup
ϕ∈B

sup
0<t<σ

|ϕt × f (z)|.

Then the Hardy space H1
L(C

n) can be defined by

H1
L(C

n)= { f ∈ L1(Cn) | M∞ f ∈ L1(Cn)}.

We define atoms for H1
L(C

n) as follows. A function a(z) is an atom for the Hardy
space H1

L(C
n) associated to a ball B(z0, r) if the following properties hold.

(1) supp a ⊂ B(z0, r).
(2) ‖a‖∞ ≤ |B(z0, r)|−1.
(3)

∫
a(w)ω(z0, w) dw = 0.

The atomic quasi-norm in H1
L(C

n) is defined by

‖ f ‖L-atom = inf{6|λ j |},

where the infimum is taken over all decompositions f =
∑
λ j a j and a j are atoms.

The following result has been proved in [8].
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PROPOSITION 1. For a tempered distribution f on Cn the following properties are
equivalent.

(i) M∞ f ∈ L1(Cn).
(ii) For some σ, 0< σ <+∞, Mσ f ∈ L1(Cn).
(iii) For some radial ϕ ∈ S , such that

∫
ϕ(z) dz 6= 0, we have

sup
0<t<1

|ϕt × f (z)| ∈ L1(Cn).

(iv) The distribution f can be decomposed as f =
∑
λ j a j , where a j are atoms and∑

|λ j |<+∞.

It is well known that there are many equivalent characterizations of the classical Hardy
spaces (see [4]), we shall consider other characterizations for H1

L(C
n) in this paper.

We define the Lusin area integral operator by

(SαL f )(z)=

(∫
+∞

0

∫
|z−w|<αt

|QL
t f (w)|2

dw dt

t2n+1

)1/2

,

where QL
t f (x)= t2(∂s T L

s |s=t2 f )(z).

REMARK 2. It is easy to see that the definition of area integral operator is independent
of α in the sense of ‖(SαL f )‖L p ∼ ‖(SβL f )‖L p , for 0< α < β <∞ and 0< p <∞
(see [3]). In the following we use SL to denote S1

L .

We can characterize H1
L(C

n) as follows.

THEOREM 3. A function f ∈ H1
L(C

n) if and only if its area integral SL f ∈ L1(Cn)

and f ∈ L1(Cn) . Moreover,

‖ f ‖H1
L
∼ ‖SL f ‖L1 .

The Littlewood–Paley g-function is defined by

GL( f )(z)=

(∫
∞

0
|QL

t f (z)|2
dt

t

)1/2

.

The Hardy space H1
L(C

n) can also be characterized by GL as in the following
theorem.

THEOREM 4. A function f ∈ H1
L(C

n) if and only if GL f ∈ L1(Cn) and f ∈ L1(Cn).
Moreover,

‖ f ‖H1
L
∼ ‖GL f ‖L1 .

We also need some basic propositions about the tent space (see [3]).
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Let 0< p <∞, and 1≤ q ≤∞, then the tent space T p
q is defined as the space of

functions f on Cn
× R+, so that(∫

0(z)
| f (w, t)|q

dw dt

t2n+1

)1/q

∈ L p(Cn) when 1≤ q <∞,

and
sup

(w,t)∈0(z)
| f (w, t)| ∈ L p(Cn) when q =∞,

where 0(z) is the standard cone whose vertex is z ∈ Cn , that is,

0(z)= {(w, t) : |w − z|< t}.

Assume B(z0, r) is a ball in Cn , its tent B̂ is defined by

B̂ = {(w, t) : |w − z0| ≤ r − t}.

A function a(z, t) that supported in a tent B̂, B is a ball in Cn , is said to be an atom in
the tent space T p

q if and only if it satisfies(∫
B̂
|a(z, t)|2

dz dt

t

)1/2

≤ |B|1/2−1/p.

The atomic decomposition of T p
q is stated as in the following proposition.

PROPOSITION 5. When 0< p ≤ 1, then any f ∈ T p
2 can be written as f =

∑
λkak ,

where ak are atoms and
∑
|λk |

p
≤ C‖ f ‖p

T p
2

.

The paper is organized as follows: in Section 2, we give some estimates of the
kernels; in Section 3, we prove the main results of this paper.

Throughout the article, we shall use A and C to denote the positive constants, which
are independent of main parameters and may be different at each occurrence. By
B1 ∼ B2, we mean that there exists a constant C > 1 such that 1/C ≤ B1/B2 ≤ C .

2. Preliminaries

In this section, we give some estimates of the kernel of QL
t that we shall use

subsequently.
Let {T L

t }t>0 be the heat semigroup generated by the operator L , then, for f ∈
L2(Cn), the function e−t L f has the special Hermite expansion (see [11])

e−t L f (z)= (2π)−n
∞∑

k=0

e−(2k+n)t f × ϕk(z),
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where ϕk is the Laguerre function. Therefore e−t L f is given by twisted convolution
with the kernel

Kt (z)= (2π)−n
∞∑

k=0

e−(2k+n)tϕk(z). (3)

Let

Lαk (x)=
k∑

j=0

0(k + α + 1)
0(k − j + 1)0( j + α + 1)

(−x) j

j !

be the Laguerre polynomials of type α and degree k, then we have the following
generating function for Laguerre polynomials:

∞∑
k=0

Lαk (x)r
k
= (1− r)−α−1e−(r/(1−r))x . (4)

From (4) we obtain

Kt (z)= (4π)−n(sinh t)−ne−
1
4 |z|

2(coth t). (5)

It is easy to prove that the heat kernel Kt (z) has the following estimates (see the proof
of Lemma 7).

LEMMA 6. There exists a positive constant C > 0 such that the following inequalities
hold.

(i)
∣∣Kt (z)

∣∣≤ Ct−ne−C |z|2/t .

(ii)
∣∣∇Kt (z)

∣∣≤ Ct−n− 1
2 e−C |z|2/t .

Let QL
t (z) be the twisted convolution kernel of QL

t , then

QL
t (z)= t2∂s Ks(z)|s=t2 .

LEMMA 7. There exists a constant C > 0 such that the following inequalities hold.

(i)
∣∣QL

t (z)
∣∣≤ Ct−2ne−C t−2

|z|2 .

(ii)
∣∣∇QL

t (z)
∣∣≤ Ct−2n−1e−C t−2

|z|2 .

PROOF. It is easy to see that

∂t Kt (z) = (4π)−n(−n)(sinh t)−n−1(cosh t)e−
1
4 |z|

2(coth t)

+ (4π)−n(sinh t)−n−2(
−

1
4 |z|

2)e− 1
4 |z|

2(coth t).

Therefore

|∂t Kt (z)| ≤ C((sinh t)−n−1(cosh t)e−
1
4 |z|

2(coth t)

+ (sinh t)−n−2
|z|2e−

1
4 |z|

2(coth t)).
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Noting that there exists C1 > 0 such that for all t > 0 we have

sinh t ≥ C1t, coth t ≥ C1t−1 (6)

and

(sinh t)−n−1 cosh t ≤

{
C1(sinh t)−n−1

≤ C1t−n−1 if 0< t ≤ 1,
C1(sinh t)−n coth t ≤ C1t−n−1 if 1< t <∞.

(7)

From (6) and (7) we have

|∂t Kt (z)| ≤ C(t−n−1e−
1
4 t−1
|z|2
+ t−n−2

|z|2e−
1
4 t−1
|z|2)

≤ Ct−n−1e−Ct−1
|z|2 .

So, we have
|QL

t (z)| ≤ Ct−2ne−C t−2
|z|2 .

This proves part (i).
To prove part (ii), it is sufficient to prove

|∂z j ∂t Kt (z)| ≤ Ct−n− 3
2 e−Ct−1

|z|2, j = 1, 2, . . . , n. (8)

It is easy to calculate

∂z j ∂t Kt (z) = (4π)−n(−n)(sinh t)−n−1(cosh t)2z j
(
−

1
4 coth t

)
e−

1
4 |z|

2(coth t)

+ (4π)−n(sinh t)−n−2(
−

1
4 cosh t

)
2z j

(
−

1
4 coth t

)
×
(
−

1
4 |z|

2)e− 1
4 |z|

2(coth t)

+ (4π)−n(sinh t)−n−2(
−

1
2 z j

)
e−

1
4 |z|

2(coth t).

By (6) and (7),

|∂z j ∂t Kt (z)| ≤ C

(
t−n− 3

2
|z|
√

t
e−

1
4 t−1
|z|2
+ t−n− 3

2

(
|z|
√

t

)3

e−
1
4 t−1
|z|2

+ t−n− 3
2
|z|
√

t
e−

1
4 t−1
|z|2
)

≤ Ct−n− 3
2 e−Ct−1

|z|2 .

This completes the proof of (8) and so part (ii) is proved. 2

We can also consider the following operator Q2
t = t4∂2

s T L
s |s=t2 . If we use Q2

t (z) to
denote the twisted convolution kernel of Q2

t , then similarly as Lemma 7, we can prove
the following result.

LEMMA 8. There exists a constant C > 0 such that the following inequalities hold.

(i) |Q2
t (z)| ≤ Ct−2ne−C t−2

|z|2 .

(ii) |∇Q2
t (z)| ≤ Ct−2n−1e−C t−2

|z|2 .
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3. The proofs of the main results

In this section, we shall give the proofs of the main results of this paper.
We first give the maximal function characterization for H1

L(C
n). By Proposition 1,

we have the following lemma (see [8, p. 281]).

LEMMA 9. f ∈ H1
L(C

n) if and only if

M̃ f (z)= sup
0<t<1

|Kt × f (z)| ∈ L1(Cn)

and f ∈ L1(Cn).

Let
M f (z)= sup

t>0
|Kt × f (z)| ∈ L1(Cn),

then we can characterize H1
L(C

n) by the maximal function M f as follows.

THEOREM 10. f ∈ H1
L(C

n) if and only if M f ∈ L1(Cn) and f ∈ L1(Cn).

PROOF. By Lemma 9, we know f ∈ H1
L(C

n) if M f ∈ L1(Cn) and f ∈ L1(Cn).
For the reverse, we just need to prove that there exists C > 0 such that for any atom

a(z) of H1
L(C

n),
‖Ma‖L1 ≤ C.

Let a(z) be an atom of H1
L(C

n). By twisted translation, we can assume that supp a ⊂
B(0, r). Then, we have

∫
a(w) dw = 0.

By Lemma 6, we have∫
|w|≤2r

|Ma(w)| dw ≤ ‖MH−La‖L2(2r)n ≤ C,

where MH−L is the Hardy–Littlewood maximal function.
For |z|> 2r , we get

Kt × a(z) =
∫

Kt (z − w)a(w)ω(z, w) dw

=

∫
(Kt (z − w)− Kt (z))a(w)ω(z, w) dw + Kt (z)̂a

(
−

i

2
z

)
= I1 + I2.

By Lemma 6 again, we can prove

I1 ≤ C
∫

t−n− 1
2 e−Ct−1

|z−w|2
|w||a(w)| dw ≤ Cr |z|−2n−1.

Therefore ∫
|z|>2r

|I1| dz ≤ C.
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By Lemma 6 (i) and Hardy’s inequality (see [6, p. 341, Theorem 7.22]) , we get∫
|z|>2r

|I2| dz ≤ C
∫

Cn

|̂a(−(i/2)z)|

|z|2n
dz ≤ C.

Therefore we have ‖Ma‖L1 ≤ C and Theorem 10 is proved. 2

In order to get our results, we need the following lemma.

LEMMA 11. The operators SL and GL are isometries on L2(Cn) up to constant
factors. Exactly,

‖GL f
∥∥

L2 =
1
2
‖ f ‖L2, ‖SL f ‖L2 =

√
cn

2
‖ f ‖L2 .

PROOF. The L2 equality for GL is established in [12, Proposition 3.1]. As a
consequence we have

‖SL f ‖2L2 =

∫
Cn

∫
Cn×R+

|QL
t f (w)|2 χ

0(z)(w, t)
dw dt

t2n+1 dz

= cn

∫
Cn×R+

|QL
t f (w)|2

dw dt

t
= cn ‖GL f ‖2L2

=
cn

4
‖ f ‖2L2 . 2

PROOF OF THEOREM 3. As in the proof of Theorem 10, by Lemma 7, we can prove
that there exists a constant C > 0 such that for any atom a(z) of H1

L(C
n) we have

‖SLa‖L1 ≤ C. (9)

Now we prove that f ∈ H1
L(C

n) when SL f ∈ L1(Cn) and f ∈ L1(Cn).
We first assume that f ∈ L1(Cn) ∩ L2(Cn). When SL f ∈ L1(Cn), we know that

QL
t f ∈ T 1

2 . By Proposition 5 we get

QL
t f (z)=

∑
j

λ j a j (z, t), (10)

where a j (z, t) are atoms of T 1
2 and

∑
j |λ j |<∞. By the spectral theorem (see [10]),

we can prove

f (z)= 4
∫
∞

0
QL

t (Q
L
t f (z))

dt

t
. (11)

By (10) and (11), we get

f (z)= 4
∫
+∞

0
QL

t

(∑
j

λ j a j (z, t)

)
dt

t
= C

∑
j

λ j

∫
+∞

0
QL

t a j (z, t)
dt

t
.
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Therefore it is sufficient to prove that the functions

α j =

∫
+∞

0
QL

t a j (z, t)
dt

t
, i = 1, 2, . . . ,

are bounded in H1
L(C

n) uniformly; that is, there exists a constant C > 0 such that for
any atom a(z, t) in T 1

2 ,

‖α‖H1
L
=

∥∥∥∥∫ +∞
0

QL
t a(z, t)

dt

t

∥∥∥∥
H1

L

≤ C.

We assume that a(z, t) is supported in B̂(z0, r), where B̂(z0, r) denotes the tent of the
ball B(z0, r), then∥∥∥∥sup

t>0
|e−t Lα(z)|

∥∥∥∥
L1
≤

∥∥∥∥(sup
t>0
|e−t Lα(z)|

)
χB∗

∥∥∥∥
L1
+

∥∥∥∥(sup
t>0
|e−t Lα(z)|

)
χ(B∗)c

∥∥∥∥
L1

= I1 + I2,

where B∗ = B(z0, 2r).
By the Hölder inequality, we get

I1 ≤ |B
∗
|
1/2
(∫

Cn

(
sup
t>0
|e−t Lα(z)|

)2

dz

)1/2

≤ |B∗|1/2‖α‖L2 .

By the self-adjointness of QL
t and Lemma 11 we have

‖α‖L2 = sup
‖β‖L2≤1

∫
Cn
α(z)β(z) dz

= sup
‖β‖L2≤1

∫
Cn

(∫
+∞

0
QL

t a(z, t)
dt

t

)
β(z) dz

= sup
‖β‖L2≤1

∫
+∞

0

∫
Cn

QL
t a(z, t)β(z) dz

dt

t

= sup
‖β‖L2≤1

∫
+∞

0

∫
Cn

a(z, t)QL
t β(z) dz

dt

t

≤ sup
‖β‖L2≤1

(∫
Cn

∫
+∞

0
|a(z, t)|2

dz dt

t

)1/2

×

(∫
Cn

∫
+∞

0
|QL

t β(z)|
2 dz dt

t

)1/2

≤ |B|−1/2
‖β‖L2 ≤ |B|−1/2.

This proves I1 ≤ C .
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By Lemma 7 we can prove

sup
s>0

∣∣∣∣e−sL
∫
+∞

0
QL

t a(z, t)
dt

t

∣∣∣∣
= sup

s>0

∣∣∣∣e−sL
∫
+∞

0
(−L)te−t La(z, t)

dt

t

∣∣∣∣
= sup

s>0

∣∣∣∣∫ +∞
0

(−t L)e−(s+t)La(z, t)
dt

t

∣∣∣∣
= sup

s>0

∣∣∣∣∫ +∞
0

(
t

s + t

)
((s + t)L)e−(s+t)La(z, t)

dt

t

∣∣∣∣
= sup

s>0

∣∣∣∣∫ +∞
0

(
t

s + t

) ∫
Cn

QL
s+t (z, w)a(w, t)

dw dt

t

∣∣∣∣
≤ sup

s>0

∫
+∞

0

t

s + t

∫
Cn
(s + t)−2n exp

(
−
|z − w|2

(s + t)2

)
|a(w, t)|

dw dt

t

≤ sup
s>0

∫
+∞

0

t

s + t

∫
Cn
(s + t)−2n

(
1+
|z − w|2

(s + t)2

)−(n+1)

|a(w, t)|
dw dt

t

≤ sup
s>0

( ∫ r

0

∫
B
(s + t)−4n

(
1+
|z − w|2

(s + t)2

)−(2n+1)( t

s + t

)2 dw dt

t

)1/2

×

(∫ r

0

∫
B
|a(w, t)|2

dw dt

t

)1/2

≤ |B|−1/2
|z − z0|

2n+1
(∫ r

0

∫
B

t dw dt

)1/2

≤ Cr |z − z0|
−(2n+1).

Then we have

I2 ≤ Cr
∫
(B∗)c
|z − z0|

−(2n+1) dz ≤ C.

When f ∈ L1(Cn) we can prove the result as in [2, Proposition 14]. In fact, we let
fk = T L

2−k f, k ≥ 0. Then, by f ∈ L1(Cn) and Lemma 6, we know fk ∈ L2(Cn) and
‖SL fk‖1 ≤ ‖SL f ‖. By the case of f ∈ L1

∩ L2, we get

‖ fk‖H1
L (Cn) . ‖SL fk‖L1 ≤ ‖SL f ‖L1 .

By the monotone theorem, we have

‖ fk − fn‖H1
L
≤ ‖SL

k ( fk − fn)‖L1 → 0 when k, n→+∞.

Therefore { fk} is a Cauchy sequence in H1
L(R

d) and there exists g ∈ H1
L(R

d) such that

lim
m→+∞

fk = g in H1
L(R

d).
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As
lim

k→+∞
fk = f in (B M OL)

∗,

we know f = g ∈ H1
L(R

d) and ‖ f ‖H1
L (Cn) . ‖SL f ‖L1 .

This gives the proof of Theorem 3. 2

We define S̃αL f (z) by

S̃L( f )(z)=

(∫
+∞

0

∫
|z−w|<αt

|Q2
t f (w)|2

dw dt

t2n+1

)1/2

,

where α > 0. Then in the same way as the proof of Theorem 3, we can prove the
following result.

COROLLARY 12. A function f ∈ H1
L(C

n) if and only if its area integral S̃αL f ∈
L1(Cn) and f ∈ L1(Cn) . Moreover,

‖ f ‖H1
L
∼ ‖S̃αL f ‖L1 .

Now we can give the proof of Theorem 4.

PROOF OF THEOREM 4. Firstly, by Lemma 7, we can prove that there exists a positive
constant C such that for any atom a(z) of H1

L(C
n), we have

‖GLa‖L1 ≤ C.

For the converse, by Corollary 12, it is sufficient to prove

‖S̃1
L f ‖L1 ≤ C‖GL f ‖L1 . (12)

Our proof is motivated by [5]. Let

F(z)(t)= (∂t e
−t L f )(z), V (z, s)= e−sL F(z),

then
V (z, s)(t)= e−sL(∂t e

−t L f )(z)= (∂t e
−(s+t)L f )(z).

Therefore ∫
+∞

0
|V (z, s)(t)|2t dt =

∫
+∞

0
|(∂t e

−(s+t)L f )(z)|2t dt

=

∫
+∞

s
|(∂t e

−t L f )(z)|2(t − s) dt.

Hence

sup
s>0

∫
+∞

0
|V (z, s)(t)|2t dt ≤

∫
+∞

0
|(∂t e

−t L t f )(z)|2t dt = (GL f (z))2.
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Let X= L2((0,∞), t dt), then

sup
s>0
‖e−sL F(z)‖X = GL f (z) ∈ L1(Cn).

Therefore F ∈ H1
X(C

n) and here H1
X(C

n) can be seen as a vector-valued Hardy space.
This shows that S2

1 F(z) ∈ L1(Cn), where

S2
1 F(z)=

( ∫
+∞

0

∫
|z−w|<2t

‖QL
t F(w)‖2X

dw dt

t2n+1

)1/2

.

By

(S2
1 F(z))2 =

∫
+∞

0

∫
|z−w|<2t

‖QL
t F(z)‖2X

dw dt

t2n+1

=

∫
+∞

0

∫
|z−w|<2t

∫
+∞

0
|t (−L)e−t L F(w)(s)|2s ds

dw dt

t2n+1

=

∫
+∞

0

∫
+∞

0

∫
|z−w|<2t

|(−L)2e−(s+t)L f (w)|2t1−2ns dw dt ds

=

∫
+∞

0

∫
+∞

s

∫
|z−w|<2(t−s)

|(−L)2e−t L f (w)|2(t − s)1−2ns dw dt ds

=

∫
+∞

0

∫ t

0

∫
|z−w|<2(t−s)

|(−L)2e−t L f (w)|2(t − s)1−2ns dw ds dt

≥

∫
+∞

0

∫ t/2

0

∫
|z−w|<2(t−s)

|(−L)2e−t L f (w)|2(t − s)1−2ns dw ds dt

≥

∫
+∞

0

∫ t/2

0

∫
|z−w|<t

|(−L)2e−t L f (w)|2t1−2ns dw ds dt

=
1
8

∫
+∞

0

∫
|z−w|<t

|(−L)2e−t L f (w)|2t3−2n dw dt

=
1
8

∫
+∞

0

∫
|z−w|<t

|Q2
t f (w)|2

dw dt

t2n+1 =
1
8
(S̃1

L f (z))2,

we get S̃1
L f ∈ L1(Cn). Then f ∈ H1

L(C
n) follows from Corollary 12.

This completes the proof of Theorem 4. 2
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