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Abstract. Let �(X) denote the Banach algebra of all bounded linear operators on
a Banach space X. We show that �(X) is finite if and only if no proper, complemented
subspace of X is isomorphic to X, and we show that �(X) is properly infinite if and
only if X contains a complemented subspace isomorphic to X ⊕ X. We apply these
characterizations to find Banach spaces X1,X2, and X3 such that �(X1) is finite,
�(X2) is infinite, but not properly infinite, and �(X3) is properly infinite. Moreover,
we prove that every unital, properly infinite ring has a continued bisection of the
identity, and we give examples of Banach spaces Y1 and Y2 such that �(Y1) and
�(Y2) are infinite without being properly infinite, �(Y1) has a continued bisection
of the identity, and �(Y2) has no continued bisection of the identity. Finally, we
exhibit a unital C∗-algebra which is finite and has a continued bisection of the
identity.

2000 Mathematics Subject Classification. 47L10; 16B99, 46B15, 46L05.

1. Finite, infinite, and properly infinite Banach algebras of operators on Banach
spaces. Throughout this note, we use the term operator to denote a bounded, linear
map between Banach spaces. Unless otherwise specified, all Banach spaces are assumed
to be over the same scalar field �, where � = � or � = �. For a Banach space X,
we write �(X) for the collection of all operators on X; this is a unital Banach algebra
with identity IX (the identity operator on X). We denote by im T the image of an
operator T.

DEFINITION 1.1. Let � be a ring.
(i) Two elements S and T in � are orthogonal if ST = 0 and TS = 0.

(ii) An element P in � is idempotent if P2 = P.
(iii) Two idempotent elements P and Q in � are algebraically equivalent, written

P ≈ Q, if P = ST and Q = TS for some elements S and T in � .

REMARK 1.2. Let P and Q be idempotent elements in a ring � .
(i) The elements P and Q are orthogonal if and only if P + Q is idempotent.

(ii) Suppose that P and Q are algebraically equivalent. Take S and T as in Defini-
tion 1.1(iii). Then P = SQT and Q = TPS, so that P and Q generate the same ideal in �.
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DEFINITION 1.3. Let � be a unital ring. We write 1� for the identity of �.
(i) � is finite if P ≈ 1� implies that P = 1� for each idempotent element P in �.

(ii) � is infinite if � is not finite.
(iii) � is properly infinite if there are idempotent elements P1 and P2 in � that are

orthogonal and satisfy Pn ≈ 1� for n = 1, 2.

It is clear that a unital, properly infinite ring is infinite. In a commutative ring, the
relation ≈ is trivial (that is, it coincides with =), and so each unital, commutative ring
is finite.

Historically, the relation ≈ and the concepts of finite, infinite, and properly infinite
rings have roots back to Murray and von Neumann’s seminal studies of projections
in rings of operators acting on a Hilbert space (see [10]). Despite the great success of
Murray and von Neumann’s programme, not much attention has been paid to these
ideas in the case of operators acting on general Banach spaces; that is, Banach spaces
that are not Hilbert spaces. However, following the recent advances in Banach space
theory, especially the deep work of Gowers and Maurey (e.g., see [4], [3], and [5]), the
time is now ripe for a more detailed study of the invariants of Banach spaces and their
algebras of operators, including concepts such as finiteness, infiniteness, and proper
infiniteness. This note addresses some of the most fundamental questions of this kind.

Indeed, in this section we shall characterize the Banach spaces X for which �(X) is
finite and properly infinite, respectively. As an application, we shall show that all three
cases of Definition 1.3 can occur for �(X); that is, we shall give examples of Banach
spaces X1,X2, and X3 such that �(X1) is finite, �(X2) is infinite, but not properly
infinite, and �(X3) is properly infinite.

We begin with a standard lemma. For completeness, we include a proof.

LEMMA 1.4. Let X and Y be Banach spaces, and let P: X → X and Q: Y→ Y be
idempotent operators. There are operators S: Y→ X and T: X → Y such that P = ST
and Q = TS if and only if the images of P and Q are isomorphic as Banach spaces.

Proof. Suppose that S: Y→ X and T : X→ Y are operators with P = ST and
Q = TS. Then S(im Q) ⊆ im P, T(im P) ⊆ im Q, and the restriction

S̃: y �→ Sy, im Q → im P,

is an isomorphism with inverse

T̃ : x �→ Tx, im P → im Q.

Conversely, suppose that U : im P → im Q is an isomorphism. Then the operators

S: x �→ UPx, X → Y, and T : y �→ U−1Qy, Y → X,

satisfy ST = P and TS = Q. �
COROLLARY 1.5. Let X be a Banach space. Two idempotent operators on X are

algebraically equivalent if and only if their images are isomorphic as Banach spaces.
In particular, the Banach algebra �(X) is finite if and only if no proper, complemented

subspace of X is isomorphic to X.

It is well known (and immediate from Corollary 1.5) that the Banach algebra
�(X) is finite whenever X is a finite-dimensional Banach space. Surprisingly, there are
infinite-dimensional Banach spaces X for which �(X) is finite. This is a consequence of
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the following important theorem of Gowers and Maurey. Part (i) of the theorem and
part (ii) in the case of complex scalars are proved in [4]; a full proof independent
of the choice of scalar field is given in [5]. Before stating the theorem, we recall the
fundamental definition of Gowers and Maurey: a Banach space X is hereditarily
indecomposable if X is infinite-dimensional and no closed subspace Y of X admits an
idempotent operator P: Y→ Y such that neither the image of P nor the kernel of P is
finite-dimensional.

THEOREM 1.6. (W. T. Gowers and B. Maurey)
(i) Hereditarily indecomposable Banach spaces exist.

(ii) A hereditarily indecomposable Banach space is not isomorphic to any proper subspace
of itself.

COROLLARY 1.7. Let X be a hereditarily indecomposable Banach space. Then the
Banach algebra �(X) is finite.

The following characterization of unital, properly infinite rings is elementary,
but often useful. It is probably well known; as before, we outline a (short) proof for
completeness.

LEMMA 1.8. Let � be a unital ring and let δm,n denote Kronecker’s delta symbol.
The following assertions are equivalent:

(a) � is properly infinite;
(b) there are elements S1, S2, T1 and T2 in � such that TnSm = δm,n1�, for m, n =

1, 2;
(c) there is a sequence (Pn)∞n=1 of idempotent elements in � that are pairwise

orthogonal and satisfy Pn ≈ 1�, for each n ∈ �;
(d) there are sequences (Sn)∞n=1 and (Tn)∞n=1 in � such that TnSm = δm,n1�, for each

m, n ∈ �.

Proof. The implications ‘(d) ⇒ (b) ⇒ (a)’ and ‘(d) ⇒ (c) ⇒ (a)’ are evident.
Therefore we need only prove that (a) implies (d). Suppose that P1, P2 ∈ � are
orthogonal and idempotent and satisfy P1 ≈ 1� ≈ P2. Take U1, V1, U2, V2 ∈ � such
that UmVm = Pm and VmUm = 1�, for m = 1, 2, and set Sn := Un−1

2 U1 and Tn :=
V1Vn−1

2 , for each n ∈ �. Then a straightforward induction argument shows that (d) is
satisfied. �

PROPOSITION 1.9. Let X be a Banach space. The Banach algebra �(X) is properly
infinite if and only if X contains a complemented subspace isomorphic to X ⊕ X.

Proof. For n = 1, 2, let Jn: X → X ⊕ X and Kn: X ⊕ X → X be the canonical
nth coordinate embedding and projection, respectively, so that J1(x) = (x, 0), J2(x) =
(0, x), K1(x1, x2) = x1, and K2(x1, x2) = x2, for x, x1, x2 ∈ X.

Suppose that �(X) is properly infinite. Take operators S1, S2, T1, and T2 on X

such that TnSm = δm,nIX, for m, n = 1, 2. Then the operators

U := S1K1 + S2K2: X ⊕ X → X and V := J1T1 + J2T2: X → X ⊕ X

satisfy VU = IX⊕X. It follows that the operator UV on X is idempotent, and Lemma 1.4
shows that im(UV) is isomorphic to im(VU) = X ⊕ X.

Conversely, suppose that X contains a complemented subspace isomorphic to
X ⊕ X. By Lemma 1.4, there are operators S: X ⊕ X → X and T : X → X ⊕ X with
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TS = IX⊕X, and so the operators Sm := SJm and Tn := KnT on X satisfy TnSm =
δm,nIX, for m, n = 1,2. This proves that �(X) is properly infinite. �

EXAMPLE 1.10. All the classical Banach spaces, including c0, C([0, 1]), �p, and
Lp([0, 1]), where 1 � p � ∞, are isomorphic to the direct sum of two copies of
themselves. Hence, they are examples of Banach spaces X such that �(X) is properly
infinite.

The following observation is immediate from the definition.

LEMMA 1.11. Let � and � be unital rings. Suppose that � is properly infinite and
that there is a unital ring homomorphism from � into �. Then � is properly infinite. �

We shall use this to prove that the Banach algebra �(Jp) , where 1 < p < ∞ and
Jp is the pth James space, is infinite, but not properly infinite. We begin with the formal
definition of the Banach space Jp.

DEFINITION 1.12. Let 1 < p < ∞. For each sequence α = (αn)∞n=1 of scalars, set

‖α‖Jp := sup





k−1∑

j=1

∣∣αnj − αnj+1

∣∣p




1/p ∣∣∣∣∣k, n1, . . . , nk ∈ �, k � 2, n1 < n2 < · · · < nk


 .

The pth James space is

Jp := {α ∈ c0 | ‖α‖Jp < ∞}.

This is a Banach space with respect to the coordinatewise-defined vector-space
operations and the norm ‖·‖Jp . A fundamental property of Jp is that it is quasi-reflexive;
that is, the canonical image of Jp in its bidual space J∗∗

p has codimension 1; for p = 2,
this is shown by James in [6]. An immediate consequence of the quasi-reflexivity of Jp

is that the ideal �(Jp) of weakly compact operators has codimension 1 in �(Jp), and
hence the quotient homomorphism of �(Jp) onto �(Jp)/�(Jp) induces a continuous
algebra epimorphism ϕ: �(Jp) → �, where we recall that � denotes the scalar field.
Specifically, ϕ is given by

ϕ
(
ζ IJp + W

) = ζ (ζ ∈ �, W ∈ �(Jp)).

PROPOSITION 1.13. For each real number p > 1, the Banach algebra �(Jp) is infinite,
but not properly infinite.

Proof. The Banach algebra �(Jp) is infinite because Jp clearly contains a proper,
complemented subspace isomorphic to Jp. To be precise, consider the left- and right-
shift operators

L: (αn)∞n=1 �→ (αn)∞n=2, Jp → Jp, and R: (αn)∞n=1 �→ (0, α1, α2, . . .), Jp → Jp.

They satisfy LR = IJp and RL �= IJp , so that RL is an idempotent operator which is
algebraically equivalent to the identity operator without being equal to it.

On the other hand, Lemma 1.11 implies that �(Jp) is not properly infinite because
it admits a unital ring homomorphism ϕ onto the finite ring �. �
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2. Continued bisections of the identity. In this section we examine the relationship
between the existence of a continued bisection of the identity in a unital ring and the
properties studied in §1. Indeed, we prove that every unital, properly infinite ring has
a continued bisection of the identity, and we give examples to show that no other
implications hold in general: a unital ring that is either finite or infinite without being
properly infinite may or may not have a continued bisection of the identity.

DEFINITION 2.1. Let � be a unital ring. A continued bisection of the identity in � is
a pair ((Pn)∞n=1, (Qn)∞n=1) of sequences of idempotent elements in � satisfying

(i) 1� = P1 + Q1;
(ii) Pn = Pn+1 + Qn+1 for each n ∈ �;

(iii) for each n ∈ �, the elements Pn and Qn generate the same ideal in � .

REMARK 2.2. Let ((Pn)∞n=1, (Qn)∞n=1) be a continued bisection of the identity in a
unital ring �.

(i) It follows from Remark 1.2(i) that Pn and Qn are orthogonal for each n ∈ �.
(ii) An easy inductive argument shows that the ideal generated by Pn (and hence by

Qn) is all of � for each n ∈ �.

Continued bisections of the identity originate from Johnson’s study of automatic
continuity of homomorphisms from �(X) for a Banach space X. (See [7]; an up-to-date
account of applications of continued bisections of the identity in automatic continuity
theory can be found in [1].) The following result is a ring-theoretic counterpart of
Johnson’s fundamental observation that �(X) has a continued bisection of the identity
whenever X is isomorphic to X ⊕ X.

PROPOSITION 2.3. A unital, properly infinite ring has a continued bisection of the
identity.

Proof. Let � be a unital, properly infinite ring. Take sequences (Sn)∞n=1 and (Tn)∞n=1
in � such that TnSm = δm,n1� for m, n ∈ �. Then the elements

Pn := 1� −
n∑

m=1

SmTm ∈ � and Qn := SnTn ∈ � (n ∈ �)

are idempotent and satisfy

Tn+1PnSn+1 = 1� and TnQnSn = 1� (n ∈ �).

This implies that condition (iii) in Definition 2.1 is fulfilled. Conditions (i)–(ii) are easy
to check, and so ((Pn)∞n=1, (Qn)∞n=1) is a continued bisection of the identity in � . �

LEMMA 2.4. Let � and � be unital rings, and let ϕ: � → � be a unital ring
homomorphism. Suppose that ((Pn)∞n=1, (Qn)∞n=1) is a continued bisection of the identity
in � . Then ((ϕ(Pn))∞n=1, (ϕ(Qn))∞n=1 is a continued bisection of the identity in �.

Proof. Conditions (i)–(ii) in Definition 2.1 are clear, whereas condition (iii) follows
from Remark 2.2(ii). �

Since the scalar field � has no continued bisection of the identity, we obtain the
following improvement of Proposition 1.13.

COROLLARY 2.5. For each real number p > 1, the Banach algebra �(Jp) is infinite,
but it has no continued bisection of the identity.
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The converse of Proposition 2.3 does not hold. We shall use the following striking
theorem of Figiel, proved in [2], to give a counterexample. For 1 � p � ∞ and a
sequence (Xn)∞n=1 of Banach spaces, we write (⊕∞

n=1Xn)�p for the direct sum of X1,X2, . . .

in the sense of �p, and for each N ∈ �, we denote by �N
p the N-dimensional vector

space over � equipped with the �p-norm.

THEOREM 2.6. (T. Figiel) For each strictly decreasing sequence (qn)∞n=1 of real
numbers greater than 2 and each real number p with 1 < p � limn→∞ qn, there exists
a sequence (Nn)∞n=1 of natural numbers such that the Banach space

F :=
( ∞⊕

n=1

�Nn
qn

)
�p

(2.1)

has the following property: for each natural number m, the direct sum of m copies of F

does not contain any subspace isomorphic to the direct sum of m + 1 copies of F. �

The following lemma is based on an argument from [11].

LEMMA 2.7. Let X be a Banach space with an unconditional basis (en)∞n=1. Suppose
that (en)∞n=1 is equivalent to the basic sequence (en)∞n=2. Then the Banach algebra �(X) is
infinite and has a continued bisection of the identity.

Proof. Let (fn)∞n=1 denote the biorthogonal functionals associated with the basis
(en)∞n=1. The fact that (en)∞n=1 is equivalent to (en)∞n=2 means that X admits left- and
right-shift operators

L: x �→
∞∑

m=1

〈x, fm+1〉em, X → X, and R: x �→
∞∑

m=1

〈x, fm〉em+1, X → X.

It follows that �(X) is infinite because LR = IX and RL �= IX.
The unconditionality of (en)∞n=1 implies that there are idempotent operators

Pn: x �→
∞∑

m=1

〈x, f2nm〉, e2nm, X → X, Qn: x �→
∞∑

m=1

〈x, f2nm−2n−1〉e2nm−2n−1 , X → X,

for each n ∈ �. Direct calculations show that these operators satisfy conditions (i)–
(ii) in Definition 2.1, and that Pn = R2n−1

QnL2n−1
. This implies that Qn = L2n−1

PnR2n−1

because LR = IX, and so condition (iii) in Definition 2.1 is fulfilled, too. �

EXAMPLE 2.8. For each n ∈ �, let Fn be a non-zero, finite-dimensional Banach
space with a normalized basis (e(n)

1 , . . . , e(n)
Nn

), and let (f (n)
1 , . . . , f (n)

Nn
) denote the

associated biorthogonal functionals. Define left- and right-shift operators Ln and Rn

on Fn by

Ln(x) :=




0 if Nn = 1,

Nn−1∑
m=1

〈
x, f (n)

m+1

〉
e(n)

m otherwise,
Rn(x) :=




0 if Nn = 1,

Nn−1∑
m=1

〈
x, f (n)

m

〉
e(n)

m+1 otherwise,
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for each x ∈ Fn. Set

Cn := sup




∥∥∥∥∥
Nn∑

m=1

ξm
〈
x, f (n)

m

〉
e(n)

m

∥∥∥∥∥
∣∣∣∣∣∣ x ∈ ball Fn,

(
ξ1, . . . , ξNn

) ∈ ball �Nn∞

Nn∑
m=1


 ,

where ball Fn and ball �Nn∞ denote the closed unit balls of Fn and �Nn∞ , respectively.
Suppose that

sup{Cn | n ∈ �} < ∞. (2.2)

Then, for each real number p � 1,

(
J1

(
e(1)

1

)
, J1

(
e(1)

2

)
, . . . , J1

(
e(1)

N1

)
, J2

(
e(2)

1

)
, J2

(
e(2)

2

)
, . . . , J2

(
e(2)

N2

)
, . . . , Jn

(
e(n)

1

)
,

Jn
(
e(n)

2

)
, . . . , Jn

(
e(n)

Nn

)
, . . .

)
(2.3)

is an unconditional basis of the Banach space F := (⊕∞
n=1Fn)�p , where Jn: Fn → F

denotes the canonical nth coordinate embedding for each n ∈ �. Let Kn: F → Fn be the
canonical nth coordinate projection for each n ∈ �, and suppose that

sup{‖Ln‖, ‖Rn‖ | n ∈ �} < ∞. (2.4)

Then there are operators

L′: x �→ (LnKnx)∞n=1, F → F, and R′: x �→ (RnKnxn)∞n=1, F → F.

Moreover, we can define operators

L′′: x �→ (〈
f (n+1)
1 , Kn+1x

〉
e(n)

Nn

)∞
n=1, F → F,

and

R′′: x �→ (
0,

〈
f (1)
N1

, K1x
〉
e(2)

1 ,
〈
f (2)
N2

, K2x
〉
e(3)

1 , . . . ,
〈
f (n−1)
Nn−1

, Kn−1x
〉
e(n)

1 , . . .
)
, F → F,

because the norms of the biorthogonal functionals f (n)
m , n ∈ �, 1 � m � Nn, are

uniformly bounded by (2.2). Direct calculations show that L′ + L′′ and R′ + R′′ act
as left- and right-shift operators on F with respect to the basis (2.3). It follows that
the conditions in Lemma 2.7 are satisfied, and consequently �(F) is infinite and has a
continued bisection of the identity.

The discussion above applies in particular to Fn = �Nn
qn

, where 1 � qn � ∞, Nn ∈ �,
and (e(n)

1 , . . . , e(n)
Nn

) is the canonical basis of �Nn
qn

for each n ∈ �. Indeed, in this case we
have that Cn = 1 = ‖Ln‖ = ‖Rn‖ (unless Nn = 1, in which case ‖Ln‖ = ‖Rn‖ = 0), and
so conditions (2.2) and (2.4) are satisfied. �

COROLLARY 2.9. Let (qn)∞n=1, p, and (Nn)∞n=1 be chosen in accordance with
Theorem 2.6, and define the Banach space F by (2.1). Then the Banach algebra �(F) is
infinite and has a continued bisection of the identity, but it is not properly infinite.

Proof. Proposition 1.9 and Theorem 2.6 show that �(F) is not properly infinite.
It follows from Example 2.8 that �(F) is infinite and has a continued bisection of the
identity, as observed by Loy and Willis in [9, p. 327]. �
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Having an unconditional basis guarantees a wealth of idempotent operators, and
so one would expect that, for a Banach space X with an unconditional basis, the
Banach algebra �(X) is infinite and has a continued bisection of the identity. This is,
however, not necessarily the case; an impressive construction by Gowers provides a
counterexample, as we shall show in Proposition 2.11, below. It follows in particular
that the assumption in Lemma 2.7 that the unconditional basis (en)∞n=1 be equivalent
to (en)∞n=2 is not superfluous (although it can certainly be relaxed somewhat).

LEMMA 2.10. A unital, commutative ring has no continued bisection of the identity.

Proof. Assume towards a contradiction that ((Pn)∞n=1, (Qn)∞n=1) is a continued
bisection of the identity in a unital, commutative ring � . Since � is commutative,
an element S in � is invertible if and only if the ideal generated by S is all of � . It
follows from Remark 2.2(ii) that Pn and Qn are invertible for each n ∈ �. However, the
identity is the only element that is both idempotent and invertible, and so Pn = Qn = 1�

for each n ∈ �, contradicting Definition 2.1(i). �
PROPOSITION 2.11. There is a Banach space G with the following properties:
(i) G has an unconditional basis;

(ii) the Banach algebra �(G) is finite and has no continued bisection of the identity.

Proof. In [3], Gowers constructs a Banach space G that has an unconditional basis
and which is not isomorphic to any proper subspace of itself. This implies that �(G)
is finite by Corollary 1.5. The properties of G are investigated further by Gowers and
Maurey in [5, Section (5.1)]. It is a consequence of their work that the commutative
Banach algebra �∞/c0 is a quotient of �(G) (see [8, Corollary 8.3] for a proof of
this), and so Lemmas 2.4 and 2.10 imply that �(G) has no continued bisection of the
identity. �

We have no example of a Banach space X such that the Banach algebra �(X) is
finite and has a continued bisection of the identity. In fact, it might seem a natural
conjecture that a unital ring with a continued bisection of the identity is necessarily
infinite. This conjecture is, however, false as we shall now show. The counterexample
that we shall exhibit is even a C∗-algebra. For that reason we shall work with complex
scalars only for the remainder of this section.

To be specific, a unital, finite C∗-algebra with a continued bisection of the identity
is the UHF-algebra M2∞ (�), also known as the CAR-algebra. By definition, M2∞ (�)
is the inductive limit (in the category of C∗-algebras) of the sequence

M2(�)
ϕ1−→ M4(�)

ϕ2−→ M8(�)
ϕ3−→ · · · ϕn−1−−→ M2n (�)

ϕn−→ M2n+1 (�)
ϕn+1−−→ · · · ,

where M2n (�) is the C∗-algebra of complex (2n × 2n)-matrices, and where the connect-
ing ∗-homomorphisms are given by

ϕn: A �→
(

A 0
0 A

)
, M2n (�) → M2n+1 (�),

for each n ∈ �. It follows from the definition of the inductive limit that there are unital
∗-monomorphisms µn: M2n (�) → M2∞ (�) such that µn = µn+1 ◦ ϕn for each n ∈ �.
For a proof of this and further results about inductive limits and UHF-algebras, we
refer to [12, Chapters 6–7].
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In the realm of C∗-algebras, the concepts of being finite, infinite, and properly
infinite are usually defined using projections (that is, self-adjoint idempotent elements)
rather than general idempotent elements; see for instance [12, Exercise 4.6 and
Definition 5.1.1]. However, it follows from [12, Exercise 3.11(i)–(ii)] that the
C∗-algebraic definitions are equivalent to ours.

PROPOSITION 2.12. The unital C∗-algebra M2∞ (�) is finite and has a continued
bisection of the identity.

Proof. It is well known that M2∞ (�) is finite; for example, see [12, Exercise 7.5].
For each n ∈ �, let En be the complex (2n × 2n)-matrix with a 1 in position

(1, 1) and zeros everywhere else, and let Fn be the complex (2n × 2n)-matrix with
a 1 in position (2n−1 + 1, 2n−1 + 1) and zeros everywhere else. Then En and Fn are
projections in M2n (�) with En ≈ Fn. It follows that Pn := µn(En) and Qn := µn(Fn) are
projections in M2∞ (�) with Pn ≈ Qn. In particular, Pn and Qn generate the same ideal
in M2∞ (�) by Remark 1.2(ii). Direct calculations show that

Pn+1 + Qn+1 = µn+1(En+1 + Fn+1) = (µn+1 ◦ ϕn)(En) = µn(En) = Pn (n ∈ �)

and

P1 + Q1 = µ1(E1 + F1) = µ1
(
1M2(�)

) = 1M2∞ (�),

and so ((Pn)∞n=1, (Qn)∞n=1) is a continued bisection of the identity in M2∞ (�). �
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