Proceedings of the Edinburgh Mathematical Society (1991) 34, 321-323 ©

ON A PROBLEM OF BARNES AND DUNCAN

by R. G. McLEAN

(Received 5th February 1990)

Consider the free monoid on a non-empty set P, and let R be the quotient monoid determined by the relations:

$$p^2 = p \quad \forall p \in P.$$

Let R have its natural involution * in which each element of P is Hermitian. We show that the Banach *-algebra $\ell^1(R)$ has a separating family of finite dimensional *-representations and consequently is *-semisimple. This generalizes a result of B. A. Barnes and J. Duncan (J. Funct. Anal. 18 (1975), 96–113.) dealing with the case where P has two elements.

1980 Mathematics subject classification (1985 Revision): 43A65

Consider the free monoid on a non-empty set P, and let R be the quotient monoid determined by the relations:

$$p^2 = p \qquad \forall p \in P.$$

We equip R with its natural involution * in which each element of P is Hermitian. When P contains exactly two elements Barnes and Duncan [2] have shown that the Banach *-algebra $\ell^1(R)$ has a separating family of finite dimensional *-representations. We show that this result is in fact true for an arbitrary P. It follows that $\ell^1(R)$ is *-semisimple.

Let S be a monoid i.e. a semigroup with an identity element 1. By a representation π of S we shall mean a bounded map π from S into the set of all bounded linear operators on a (real or complex) Hilbert space H such that $\pi(1)$ is the identity operator and $\pi(xy) = \pi(x)\pi(y)$ for all $x, y \in S$. Each representation of S has a unique extension to a representation of the Banach algebra $\ell^1(S)$. Tensor products and direct sums may be formed in a similar way to those of group representations.

Definition. A representation π of a monoid S on a Hilbert space H will be called *formally real* is there is an orthonormal basis $\{e_i | i \in I\}$ of H for which $\langle \pi(x)e_s | e_r \rangle$ is real for all $x \in S$ and all $r, s \in I$.

It is known that if the *-representations of S are separating then the Banach *-algebra $\ell^{1}(s)$ is *-semisimple. This follows from Theorem 3.4 of [1] (a direct proof may be found

R. G. MCLEAN

in [3]). The following lemma shows that under suitable conditions a separating set of representations of S gives rise to a separating set of representations of $\ell^1(S)$.

Lemma. Let \mathcal{Q} be a set of formally real representations of a monoid S and let \mathcal{R} be the set of representations of the Banach *-algebra $\ell^1(S)$ consisting of the one dimensional identity representation together with all extensions of finite tensor products of members of \mathcal{Q} , If \mathcal{Q} separates points of S, then \mathcal{R} separates points of $\ell^1(S)$.

Proof. Let \mathscr{A} be the set of all functions $f: S \to \mathbb{F}$ with

$$f(x) = \langle \pi(x)\phi | \psi \rangle \qquad \forall x \in S.$$

for some representation π of S on a Hilbert space H and some vectors $\phi, \psi \in H$, where π is a finite direct sum of representations from \mathscr{R} . Then \mathscr{A} is a self-conjugate unital subalgebra of $\ell^{\infty}(S)$ which separates points of S so by Theorem 1 of [3], if f is a non-zero element of $\ell^1(S)$, then there is a $g \in \mathscr{A}$ with

$$\sum_{x \in S} f(x)g(x) \neq 0.$$

It follows that there is a $\pi \in \mathscr{R}$ with $\pi(f) \neq 0$.

Theorem. The Banach *-algebra $\ell^1(\mathbb{R})$ has a separating family of finite dimensional *-representations.

Proof. Let T denote the quotient of the free monoid on $\{u, v\}$ determined by the equations $u^2 = u$ and $v^2 = v$; then T has an injective two dimensional *-representation. For if π is the *-representation, considered in [2], defined by

$$\pi(u) = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \quad \pi(v) = \frac{1}{2} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$

then for any $n \in \mathbb{N}$:

$$\pi((uv)^{n}) = 2^{-n} \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}, \quad \pi((uv)^{n-1}u) = 2^{-(n-1)} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix},$$
$$\pi((vu)^{n}) = 2^{-n} \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix}, \quad \pi((vu)^{n-1}v) = 2^{-(n-1)} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix},$$

and it follows that π is injective.

322

For each ordered pair $(p,q) \in P^2$ with $p \neq q$, let $\psi_{(p,q)}$ be the surjective *-morphism from R to T determined by

$$\psi_{(p,q)}(w) = \begin{cases} u & \text{if } w = p \\ v & \text{if } w = q \\ 1 & \text{if } w = 1 \text{ or } w \in P \setminus \{u, v\} \end{cases}$$

and let $\pi_{(p,q)}$ be the *-representation $\pi \circ \psi_{(p,q)}$. We show that the set $\mathcal{Q} = \{\pi_{(p,q)} | p \in P, q \in P, p \neq q\}$ separates points of R.

Each element of $R \setminus \{1\}$ may be written as a word in the alphabet P in which no two adjacent letters are equal. Let x and y be distinct elements of R. If one of these is the identity let p be the first letter of the other, then $\psi_{(p,q)}(x) \neq \psi_{(p,q)}(y)$ for any $q \in P$.

If one word, say x, is a prefix of the other, then there are $p, q \in P$ and $a, b \in R$ with

$$x = ap$$
 and $y = apqb$

and now

$$\psi_{(p,q)}(x) \neq \psi_{(p,q)}(y).$$

Otherwise let $p, q \in P$ be the first two letters in which the words x and y differ; then clearly

$$\psi_{(p,q)}(x) \neq \psi_{(p,q)}(y).$$

Since π is injective it follows that \mathcal{Q} separates points of R. Also since π is two dimensional it follows from the lemma that $\ell^1(R)$ has a separating family of finite dimensional *-representations.

Acknowledgement. This work was carried out at Queen's University, Kingston, Ontario, Canada. I wish to thank the Leverhulme Trust for financial support and H. Kummer for his hospitality.

REFERENCES

1. M. LASHKARIZADEH BAMI, Representations of foundation semigroups and their algebras, Canad. J. Math. 37 (1985), 29-47.

2. B. A. BARNES and J. DUNCAN, The Banach algebra $\ell^1(S)$, J. Funct. Anal. 18 (1975), 96–113.

3. R. G. MCLEAN and H. KUMMER, Representations of the Banach algebra $\ell^1(S)$, Semigroup Forum 37 (1988), 119–122.

DEPARTMENT OF MATHEMATICS THE CITY UNIVERSITY NORTHAMPTON SQUARE LONDON EC1V OHB UNITED KINGDOM