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ON A PROBLEM OF BARNES AND DUNCAN

by R. G. McLEAN

(Received 5th February 1990)

Consider the free monoid on a non-empty set P, and let R be the quotient monoid determined by the
relations:

P2=p VpeP.

Let R have its natural involution * in which each element of P is Hermitian. We show that the Banach
»-algebra / ' (R) has a separating family of finite dimensional *-representations and consequently is
*-semisimple. This generalizes a result of B. A. Barnes and J. Duncan (J. Fund. Anal. 18 (1975), 96-113.)
dealing with the case where P has two elements.
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Consider the free monoid on a non-empty set P, and let R be the quotient monoid
determined by the relations:

p2 = p VpeP.

We equip R with its natural involution * in which each element of P is Hermitian.
When P contains exactly two elements Barnes and Duncan [2] have shown that the
Banach *-algebra ^i(R) has a separating family of finite dimensional *-representations.
We show that this result is in fact true for an arbitrary P. It follows that tl(R) is
•-semisimple.

Let S be a monoid i.e. a semigroup with an identity element 1. By a representation n
of S we shall mean a bounded map n from S into the set of all bounded linear operators
on a (real or complex) Hilbert space H such that TI(1) is the identity operator and
n(xy) = n{x)n(y) for all x,yeS. Each representation of S has a unique extension to a
representation of the Banach algebra tl(S). Tensor products and direct sums may be
formed in a similar way to those of group representations.

Definition. A representation n of a monoid S on a Hilbert space H will be called
formally real is there is an orthonormal basis {e,|ie/} of H for which (n(x)es\er} is real
for all x6S and all r,sel.

It is known that if the *-representations of S are separating then the Banach *-algebra
<f'(s) is *-semisimple. This follows from Theorem 3.4 of [1] (a direct proof may be found
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in [3]). The following lemma shows that under suitable conditions a separating set of
representations of S gives rise to a separating set of representations of £l(S).

Lemma. Let £> be a set of formally real representations of a monoid S and let 0t be
the set of representations of the Banach *-algebra <f'(S) consisting of the one dimensional
identity representation together with all extensions of finite tensor products of members of
2., If 2, separates points of S, then Si separates points of£l{S).

Proof. Let si be the set of all functions / : S->F with

VxeS.

for some representation n of S on a Hilbert space H and some vectors <f),\li sH, where n
is a finite direct sum of representations from 3$. Then si is a self-conjugate unital
subalgebra of /"(S) which separates points of S so by Theorem 1 of [3], if / is a
non-zero element of ^1(S), then there is a ge si with

xeS

It follows that there is a ne0l with 7i(/)#0. •

Theorem. The Banach *-algebra £1{R) has a separating family of finite dimensional
^representations.

Proof. Let T denote the quotient of the free monoid on {w,i;} determined by the
equations u2 = u and v2 = v; then T has an injective two dimensional *-representation.
For if n is the *-representation, considered in [2], defined by

. *»-*[; ;
then for any

and it follows that n is injective.
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For each ordered pair (p,q)eP2 with p^q, let 4>(.p,q) be the surjective *-morphism
from R to T determined by

u if w = p
)=<j v if w = q

1 if w= 1 or weP\{u, v}

and let nip<q) be the *-representation no\ji{pq). We show that the set 2 = {n{pq)\
p e P , geP , p#<?} separates points of R.

Each element of K\{1} may be written as a word in the alphabet P in which no two
adjacent letters are equal. Let x and y be distinct elements of R. If one of these is the
identity let p be the first letter of the other, then tp\p,q)(x) #i/f\p,q){y) for any qeP.

If one word, say x, is a prefix of the other, then there are p,qeP and a,beR with

x = ap and y = apqb

and now

Otherwise let p,qeP be the first two letters in which the words x and y differ; then
clearly

Since n is injective it follows that 2. separates points of R. Also since n is two
dimensional it follows from the lemma that £l(R) has a separating family of finite
dimensional *-representations. •
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