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Introduction. In this note the problem of determining the propagation of a 
plane shock moving through a polytropic gas into an undisturbed body of the 
gas, leaving a non-isentropic disturbance behind it, is reduced to the solution 
of the problem of Cauchy for a Monge-Ampère partial differential equation of 
special type. The application of this result to specific examples is being studied 
with a view to later publication. 

1. First principles. In one-dimensional unsteady flow of a gas the velocity 
u, density p, and pressure p must satisfy [3, p. 508] the underdetermined system 

(1) p(uxu + ut) + px = 0, (pu)x + pt = 0, 

of partial differential equations implied by the physical hypotheses of conserva­
tion of momentum and of mass. By multiplying the second equation by u and 
adding the result to the first, we arrive at the equivalent system 

(p + pu)x + (pu)t = 0, (pu)x + pt = 0. 

If u, p, p are functions of xy t which satisfy this system, we can infer the existence 
of two functions £, \p of x, / defined by 

d"l = pudx — (p + pu ) dt, d\p = p dx — pu dt. 

Along a trajectory x — x(t) of a gas particle in the (x,t)-plane we have dx/dt = 
u and consequently yp is constant along such a trajectory. The curves \f/(xt t) is 
constant in the (x, t)-plane are accordingly the trajectories of gas particles and 
the function ^ may therefore be termed the trajectory function. 

One readily sees that the above system can be given the form 

d% = — p dt + ud\f/, d\f/ = p dx — pu dt, 

which, in turn can be replaced by 

(2) d£ = ud\p + tdp, dip = p dx — pu dt, 

provided we set J = i + pt. 
The form of this system suggests that \p, p be taken for independent variables. 

This amounts to introducing the trajectories and isobars in the (x, /)-plane 
as a system of curvilinear coordinates in this plane. Obviously this cannot be 
done if the trajectories and isobars coincide and we accordingly exclude from 
consideration those flows in which each gas particle retains a constant pressure 
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during its motion.1 The introduction of ^, p as independent variables into the 
system (2) yields the relations 

U = ç^, I = Çp, X$ = ç^ ç^P -f- T, #p = ty l-pp, 

where T =* p~l = r (^, p), is the specific volume. When x is eliminated by 
partial differentiation from the last two equations above we find that £ = 
£(̂ > P) is a solution of the Monge-Ampère partial differential equation.2 

(3) fa fa — (tfp = TP. 

Here r = r(^, p) is an arbitrary function whose appearance reflects the 
underdeterminedness of the system (1). Once r(^, p) has been specified and a 
solution £ = £(^, £) of this equation has been found an unsteady flow is presented 
by 

(4) x = *(*,/>) = J { ( f c &, + T)<** + & fa dp), t = i,(**P), u = &(*,/>)• 

For a given ^ the first two equations present the trajectory of a gas particle 
in the (x, £)-plane parametrically in terms of the pressure p] the remaining 
equation provides the velocity u at each point of the trajectory, and the density 
may be obtained from r = T(^ , p). 

The arbitrariness in the function r(^, p) entering into (3) may be limited by 
further hypotheses of a physical nature. 

To begin with, let us suppose that the gas is poly tropic with the caloric 
equation of state [1, p. 10] 

p = e<«-*.>/... T ^ 

which we write in the form 

Secondly, from the hypothesis of conservation of energy it follows that the 
specific entropy 5 is constant along a trajectory [1, pp. 15-16], i.e., 5 = S(\f/)t 

the function S(\p) being termed the entropy distribution function. Thus the 
arbitrary function T(^ , p) must take the special form 

(5) r = Sfflp-*, n = 1/T, 
where d(\f/) is an arbitary function, determined by the choice of the entropy 
distribution function. 

2. Progressive condensation shock. For a condensation shock, carrying 
in back of it the values w, r, p of the velocity, specific volume, and pressure, 
traveling into a quiet atmosphere in which these quantities have the constant 
values «o, T0, po, the shock conditions take the form [3, pp. 512-513] 

although I have not investigated the point, I suspect that flows with this property form a 
very restricted class. 

*This equation was obtained earlier by the author as a minor formal modification of a 
method developed for the treatment of steady plane flows. See [2, pp. 149-150]. 
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(i) u = Wo + V (p ~ PO)(T0 - r) , 

(6) (ii) x = u0 + r o V (p - PO)/(T0 - r) , 

,.... £ (7 + l)r0 - (7 - 1)T 
U ; £0 ( 7 + l ) r - ( 7 - I K 

where x denotes the velocity of propagation of the shock with respect to a fixed 
plane. 

We shall prove the following theorem for a polytropic gas. 

THEOREM. Once the entropy distribution function Sty) is specified, the deter-
mination of a condensation shock moving into a quiet atmosphere {and the flow 
immediately in back of it) reduces to the solution of a problem of Cauchy for the 
Monge-Ampère partial differential equation 

t» S„ - & + n*Mp-*-1 = 0. 
If we substitute r from (5) into (6 iii), we find 

(7) M2TO pn+1 - BMP + Po TO pn - M25 W£o = 0, M2 = (7 ~ 1)/(T + !)• 

This equation defines p as a function of ^ and the curve p = pty) in the 
Ws P) -plane is termed the carrier. 

From (4) and (6 i) the values of ^ are prescribed along the carrier by 

& = uo + V {'0 - ^)p-n{^)}{p(yp) - Po}. 

To obtain the values prescribed for £p along the carrier, we employ (6 ii). First 
we observe, from (4), that 

*-** + */% 
and consequently, from (6 ii), 

to determine i-p along the carrier up to an arbitrarily additive constant. Of the 
three shock conditions (6), the last serves to determine the carrier in the (^, p)-
plane, and the first two provide the required Cauchy data upon the carrier. 

If € = £ty, p) is a solution of this problem of Cauchy, the shock curve in the 
(xf t)-plane and the flow behind it is obtained, at least locally, by mapping one 
side of the neighbourhood of the carrier in the (^, p) -plane on to the (x, /)-plane 
by the first two formulae in (4). 
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