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AN APPROXIMATE ANALYSIS OF MELTING AND FREEZING
OF A DRILL HOLE THROUGH AN ICE SHELF IN
ANTARCTICA

By Cur TieN* and YLN-CHAO Yen
(U.S. Army Cold Regions R h and Engi Lab y, Hanover, New
Hampshire 03755, U.S.A.)

Assract. An approximate analysis of the processes of melting and freczing of a drill hole, 500 m depth
and 0.15 m in initial radius, through an ice shelfl was made. Results are expressed in graphical form showing
the time available for experimentation under the hole as a function of heating duration. It was also found that
refreczing has a much slower rate than meltin

Résumé. Une analyse approximative de la fu.rwn et du regel dans un forage a_travers une calotte glaciaire dans
P Antarctique. Une analyse des processus de fusion et de regel dans un forage de soom de
profondeur et de 0,15 m de diamétre initial a été conduit dans
sous forme d’un graphique montrant le temps disponible pour expérimenter dans le trou en fonction de h
durée du rechauffement. On a trouvé aussi que le regel est beaucoup plus lent que la fusion.

ZUSAMMENFASSUNG.  Naherungsanalyse des Schmelzens und Gefrierens in einem Bohrloch durch cin Eisschelf in der
Antarktis. Der Prozess des Schmelzens und Gefrierens in cinem Bohrloch von 500 m Tiefe und 0,15m

durch ein Schelfeis Die isse sind graphisch

d It und geben die Zeit fur i unter dem Loch als Funktion der Heizdauer
an. Es zeigte sich ferner, dass das Wiedergefricren viel langsamer vor sich geht als das Schmelzen.

NOMENCLATURE
a, TInitial radius
a(t) Radius
a* Dimensionless radius afa,

.
A A factor defined as 'gg(’f)" (“l)

C Heat capacity
¢ Gravitational acceleration
(Gr,)  Grashof number based on initial conditions Bg(Two— Tm) a¢/v*
Heat-transfer coefficient between ice and water
H Ratio of specific to latent heat in ice (Ci(Tm— Tio)/L)
k Thermal conductivity
k, A dimensionless factor 0.667*N equal to the initial dimensionless melting rate
! Hole depth
L Latent heat of fusion
L' Total of latent heat plus heat necessary to warm ice to Tm
A factor defined as CwA Topw/L'py
(MNu) Nusselt number ka/k
(Pr) Prandtl number Cu/k
Q Strength of line source
Q* Dimensionless line source Q [mkw(Two— Tm)
t Time
t; End of heating period
t, Time when the hole radius reaches a critical value
t*  Dimensionless time ayt/ag?
T Temperature

=
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w* Dimensionless water temperature (Tw— Tm)/( Two— Tm)
T;* Dimensionless ice temperature (71— Tm)/(Tm— Tio)
U Melting velocity
U*  Dimensionless melting velocity a,Uoy
% Cartesian coordinate
X Dimensionless parameter (Gro)(Pr) aoft

Subscripts
o Initial
m  Melting
w  Water
i Ice
cr  Critical

Greek letters
« Thermal diffusivity
ient of vol
& Thermal boundary layer thickness
v Kinematic viscosity
«  Constant
p Density

INTRODUCTION

The work reported here provides an approximate analysis of the rate of enlargement of a
drill hole through an ice shelf, due to the presence of a line heat source (i.e. a heating cable
placed inside the hole filled with water) and the subsequent freezing rate upon its removal.
The drill hole is 500 m deep and with an initial radius of 0.150 m. Because of the high closure
rate of ice, the drill hole is filled with water during the latter part of drilling. Instrumentation
and investigation beneath the hole requires the hole dimension to be maintained above a
minimum radius of 0.125 m. In order to provide sufficient time to carry out these measure-
ments, a specified heating cable will be placed throughout its entire depth to enlarge the
original drill hole to a certain extent. Thus it is necessary to have some information about the
extent of melting as a function of heating duration, and the rate of refreezing upon the removal
of the heating cable, as well as the total duration before refreezing has reduced the hole
dimension to 0.125 m in rad.lus The main objective of this work is to develop a calculation

dure aimed at ps ble estimate of the change of hole dimension due to
meltmg and refrcezmg under a vancty of conditions without the need for excessive numerical
computation.
ANALYSIS
In lizing the melting iated with the drill hole, the problcm

can be considered as follows A hole of depth 1 and initial radius of 4, is drilled through an ice
medium of infinite extent and of initial ice temperature T7, and is filled with water at tem-
perature Ty, as soon as the drilling is completed. Immediately, a line source of constant
strength Q (energy per unit length and time) is introduced along the axis of the hole for
0 < t < t, and is removed for ¢ > t,. The problem is to obtain the change of the radius as a
function of time and to determine the time ¢, when the hole radius is reduced to its critical
value ger = 0.125 m.
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The problem investigated here consists of two distinct stages. During the period o < ¢ < t,,
the hole size increases as a result of melting of the surrounding ice. For ¢ > t,, the loss of
heat from the melted water to surrounding ice results in refreezing. Accordingly, the problem
will be analyzed in terms of a melting followed by a freezing period.

Melting period

A complete description of the heat transfer problem requires consideration of both the ice
and water phases, which are two-dimensional (both axial and radial) and unsteady. Further-
more, in the water phase, the inclusion of free convection with the possible effect of maximum
density would make a rigorous solution of the problem extremely tedious and difficult, and
for the purpose at hand, this would not be justified. Instead the problcm will be greatly
simplified by the assumption that the heat transfer across the water—xce interface can be
described by the use of a heat-transfer (which can be d from other studies).
If Ty is the average temperature of the water phase, the macroscopic heat balance for any
depth in the water is

Q= (pwCw) (wa‘) + (27a) (B)(Tw—Tm), (1)

where a is the hole radius, Tr, the meltmg temperature and Q the strength of the line source
used to increase the water temperature as well as being transferred into the surrounding ice
medium. If 71 and Q are taken as constant throughout the depth, the heat transfer problem
in the ice will be reduced to a one-dimensional one, in the radial direction only. Furthermore,
if the effect of the curvature of the cylindrical bore hole on heat transfer is neglected, the one-
dimensional heat conduction equation in Cartesian coordinates can be used for the present
study (it is believed that the use of this assumption lel not cause any significant error; on the
other hand, iderable saving in is d with its use).

For problems in conduction of heat involving melting or freezing, the melting (or freezing)
rate is not constant but decreases with the i increasing time, and the time dependence of the
rate diminishes as time increases. Under such situations, the use of a pseudo-steady-stat
assumption becomes reasonable. Namely, the temperature distribution obtained with the
condition of constant melting rate (i.e. U = constant) can be used to approximate the actual
temperature distribution. With the above considerations the temperature distribution in the
ice (Carslaw and Jaeger, 1959) and the governing equations of the melting period are given as

77,1—77-1; = exp [—a—l{ (x—a)] for x > a(t), (2)
T=Tult) foro<x<a(t), (3)
.
a(t) = ap+ J U(t) dt, (4)
d
v=3, )
WTw—Tm) = pUL, L' = L+-C(Tm—Tio), (6)
dTw
= (27a) () (Tw— Tm) +ma*(pwCw) ;5 (1)
and initial conditions

a(t) = a, att=o,
(7)

Tw(t) = Two ati=o.
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The temperature of the ice and water are given by Equauons (2) and (3) respecuvcly if
Tw(t) and a(t) are known. These latter ities can be d from a
solution of Equations (1), (3) and (6) with the initial condition of Equation (7). For this
solution, the value of the heat-transfer coefficient & between the water and the ice surface is
needed.

The pertinent heat transfer problem in the water phase is not unlike that of the free
convection of fluid in a cylindrical container with one open end. A theoretical solution of this
was given by Lighthill (1953) for the case of constant surface temperature and fluid tempera-
ture at its upper surface. Lighthill’s problem is obviously different from the present case.
Nevertheless, if the free convection is significant and the water temperature remains more or
less uniform and does not vary significantly with time, his results would give a reasonable
approximation to the present problem. The averagc Nusselt number is given as

(Vi) = — = 0.6674, (8)

o (J(:)‘(?):

where B, v and « are the vol viscosity and thermal
diffusivity of water respectively. ! is the “height of the cylindrical container and in the present
problem is equal to the depth of the drill hole. The justification for using Equation (8) is
given in the Appendix.

‘With the introduction of dimensionless variables,

where

a* = ala,, (10)

a
U =220, (11)

a
™= a_:; t, (12)

Tw—Tm
Tw*=F—7, (13)
__2

@ =T (14)
AT, = Two— T, (15)

Equations (1), (3) and (6) can be rewritten as
a* =1+ f U*(t*) dt*, (16)

b
Tw*N
= (M) s (17)
AT * To*  Q*
) =, (18)
CwATopw
="Tm (19)
at

a*(0) =1, Tw*(0) = 1. (20)
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The Nusselt number (Vu) introduced in Equation (8), d in terms of the dimen-
sionless variables is
(Nu) = 0.667(ZY)a* Tyt (21)
with
Gro) (Pr)a
Pttty (a2)

where (Gr,) is the Grashof number based on initial conditions.
Combining Equations (17) and (21) yields

U* = b, T*sh, (23)
where
= (0.667) ZiN. (24)
From Equation (16)
v 8
= (25)
Substituting Equation (25) into (23), one has
*[dpx\ 0.8
Tu* — (M) . (26)
ky
Further differentiation yields
dTyw* da*\ -0 d2a*
o = (08) (k - Q(m) A @7
Substituting Equations (21), (26) and (27) lnto Equahon (18) and using the relation given
in Equations (23) and (24), 2 with a* as the dependent
variable is obtained
‘da*\-0-2 (dzg*’ 2 1 da* Q*
oatiyo (5) " (G ) e m = & (a8)
with
a*(0) = 1 (29)
and
da*
|y = (OOODNRYN = ke (30)

Thus the extent of melting can be obtained from the solution of the above initial-value
problem. Details of the calculation are given in later sections.

Freezing period

After a certain hcatmg penod (1 e.t =t or t* = t;*) the line source is removed from the
drill hole. One is d in the q freezing rate, and in particular, the
duration before the hole size reaches to a critical value (i.e. ¢ = ¢, when @ = a¢r = 0.125 m).
Strictly speaking, freezing would not commence immediately upon the removal of the
heating source. In fact, since the water temperature at the end of the heating period (i.e.
Tw(t,)) will be above Tm, one would expect heat transfer from water to surrounding ice
to continue until the water temperature dropped to Tm. However since Ty is only slightly
above T, as shown in later calculations, this period is expected to be of short duration.
For practical purposes, one may assume an instantaneous drop of Ty, to that of Tm upon the
removal of the heating source. The temperature profile at this point is schematically shown
in Figure 1.
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Fig. 1. Schematic representation of the ice temperature profile at the end of the heating period.

Due to the existence of the temperature gradient, heat is conducted away radially, which,
in turn, necessitates the freezing of water. To estimate the rate of freezing, the heat-balance
integral method of Goodman (1958) is used. The basic premise of Goodman’s method is
based on the physical fact that the significant part of the temperature profile lies only within a
restricted neighborhood near the boundary. This region, in the case of one-dimensional
conduction, is called the thermal layer whose thickness 8 is, in general, much less than the
overall dimension of the medium under consideration. The integral method is used to
attempt to obtain an approxi solution by satisfying the conduction equation over this
thermal layer on an average basis.

In the present case, the thermal layer refers to the region extending outward from the
ice-water interface. This thickness is denoted by 8, then for x > a+-8§, the temperature
remains undisturbed, i.e. Ty = Ti,.

The one-dimensional conduction equation for the ice is given as

@1, 0T
“‘—axTith‘ for t > t,, x > a(ty). (31)
Integrating Equation (31) from x = a to x = a--8 yields
a+d
o 3] _ (2T 4 (32)
| Bx |ass Ox |a) ) o 32

Assume the dimensionless temperature profile in ice can be represented by

T—Tm o(x—a) (x—a)?
Pt A T s
T =7 s T e (33)
It can be seen that the temperature of the ice-water interface is at the melting temperature
(Ti* = o) and the temperature becomes Ti* = —1 at x = a8, namely, the temperature
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outside the thermal layer remains undisturbed. Furthermore 87*/dx =0 at x = a+3§,
indicating no heat flow beyond the thermal bounda.ry layer.

In terms of the d p (32) becomes
ot ot ] [oTr
W |oss 0% ,] o (34)
The right-hand side can be evaluated as follows
ats
b i) da
f Tirds = T+ ) 20k )+j—T~‘dx T % (33)
Since Ti* = —1atx = a+8 and Ti* =o,atx = a, Equauon (35) reduces to
aT, ~ d(a+8)
o b= +dt i ds.

The integral on the right-hand side of the above expression can be evaluated with the use of
Equation (32)

a+d 2 ds
* _2d
dtj Trar= 25
Thus
e (a+3) 2ds
9T * d(a
a YT T @ gar” (36)
H
The temperature gradient at x = a is
0T 2
=5 (37)
Substituting Equations (36) and (37) into (34), we have
205 da s dd
T oatsar 8
da
=-—nlg

da  2kw(Tm—Tio)
i vt (39)
Combining Equations (38) and (39), one has
1dé 2 [ k,(Tm—Txc.)]
oy |

3&"3 L (40)
Integrating Equation (40) with the initial condition, ¢ = &, = 8, one has
kw(Tm— Ti
s —s01 = (st 22T ) o,
T T4
= [801+12(u;+ L va kw) (:_z,)J. (41)
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The change of the dimension of the drill hole due to freezing can be obtained by combining
Equations (39) and (41) as

i) eo]
and by simple integration, one has

da_ 2ku(Tw—Ti) :
— 1}
im—a = e Tm=Ti)_____ {suz+m (b T )(:—t.)} -5 42)

de L
P [Suw—u (ﬂx+
3piL(es+[(Tm— Tio) [pil] kw)
where an, is the hole radius at the end of the heating period. In terms of dimensionless vari-
ables Equation (42) becomes

PRSI . S ) P . NP U N (43)
m o 11 PGt o 43
where
C(Tm—Tho
- GIn=T) (4
and
5
8% —a: (45)

Thus one can predict the change of the drill-hole radius after the removal of the heating
source provided the value of 8, is given.

To evaluate 8,, the temperature profile in the ice at ¢ = ¢, obtained from Equation (2)
has to be matched with that of Equation (33) In other words, one attempts to obtain

between the ing two exp:

Ti— Tln —ex [_
To—Tio O

Ti—Tm x—a x—a\?
T = —2(—5— )+ .
Tm—T1o 3 3
It is obvious that these two expressions cannot be made to be equivalent. In an approxi-
mate manner, one may require the temperature gradient at the water-ice interface by these

two expressions to be the same since it is the ability of ice to conduct heat which determines
the rate of freezing,

q

) ea]

and

U(t,) 2
e (46)

In terms of dimensionless variables, one has

o 1
=2 (2) ot .
Accordingly one can calculate the change of drill-hole radius from Equations (43) or (47)
based on the final conditions of the melting period.

CALGULATION
As shown in the previous section, for the melting period, the change of drill-hole size is
obtained from the solution of Equation (28) with the initial conditions given by Equations
(29) and (30).
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Fig. 2. Dimensionless hole radius a* as a function of dimensionless time t* with heating duration t;* as parameter (ay = 0.15 m).

Numerical solutions of Equation (28) were obtained using the Runge-Kutta method.
The following conditions and property values were used:

Depth of drill hole | = 500m
Initial drill hole radius a4, = 0.15m
Melting temperature Tm=—2°C
Initial ice temperature Tio= —20°C

Initial water temperature Ty, = 1°C
Strength of line source Q = 185 W/m

L = 8o keal/kg
.185 kJ /kg deg
.092 kJ /kg deg
000 kg/m3
00 kg/m3
-055 33 kJ/m deg s
.221 8 kJ/m deg s
ATy = Tyo—Tm = 3 deg

L' = L+C(Tw—Tio) = 372 K] /kg
Cuwpw(ATo)
L'ps 0.037 45
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" Q
‘Q = ATk, = 3545
= (Gro) ;PY)aa

K, = 06673tV = 0.410 0

= 0.724 2 X 105

The results are shown in Figure 2 in which the dimensionless hole size a* is plotted against t*.
The freezing curves at the end of each heating period * are calculated in the following
manner: At the end of any particular heating period, a pair of values am*, and U* are com-
puted. The value of U* is used to estimate the §,* from Equation (47), and with the given
value of am*, Equation (43) is used to compute a* with the given values of H = Cy(Tm— T10)/
L = o.112 5 and ay/ay = 8.9. The change of a* versus t* for the freezing period is also shown
in Figure 2 on dotted lines each of which correspond to a particular value of ¢,*. Figure 3
shows the total time available for experimentation or the length of time when the drill hole
reaches the critical radius aer = 0.125 m (i.c. the value of t* for which a* = o.125/0.150 =
0.833) as a function of heating duration. It gives a straight-line relationship on a double
logarithmic plot.

With everything being identical to the case given above but with 2, = 0.30 m, and
gcr = 0.25 m, the melting and freezing curves are shown in Figure 4. The time available for
-experimentation is also shown in Figure 3. It can be seen that the single line can represent
both cases as long as the proper proportional factor is used to convert the dimensionless time

to real time.
T T T T
10°— -
- 1
o L
g ]
S
= L |
S
4
°
£
L N
©
k3
Ea
< 10— -
I P T S I P P
=} 5 '
10 10 10
v

Fig. 3. Total time available for experimentation t* as a function of the heating period t* (for ay = 0.15m and 0.30 m).
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T 10 - ©

Fig. 4. Dimensionless hole radius a* as a function of dimensionless time t* with heating duration t,* as parameter (g, = 0.30 m).

CoNcLUSIONS

From the approximate solution it can be concluded that for a specific line heat source,
for a dimensionless heating period of t;* = 0.5 for example (or o. 985 d and 3.90 d of heating
for @, = 0.15m and 0.30 m respectively), the time ilabl
under the drill hole is 12.8 and 50.7 d for 2, = 0.15 m and o., 30 m respectively. Since the
curve is linear on a double logarithmic plot, it can be extrapolatcd conﬁdcntly for lower
values of t;*. If the duration is longer than needed to the i
investigations, we need only reduce the heating period or the line strength.

MS. received 20 November 1974 and in revised form 31 January 1975
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APPENDIX
JUSTIFICATION OF USING EQUATION (12) FOR THE CALCULATION OF HEAT TRANSFER GOEFFICIENT A&
Lighthill (lg{,‘g) gave a very thorough analysis on the fine convection within a heated vertical tube. He

concluded that the flow regimes and subsequently the heat transfer can be classified into three categories and are
determined solely by the magnitude of the parameter A, which is defined as

4= 8BT)a (a
va. l) :
Specifically the three regimes of flow field found are:

(a) 4 < 1 000: the flow is similar with a stagnant portion at the bottom.
(b) 1000 < A < 10000: the flow is of boundary-layer type but not filling the tube.
(c) 4> 10 000: the limiting case becomes identical to the case of a vertical plate.

)/M

Tog(Nu)
o}

0 20 30 20 50 60 75 80
fog ()

Fig. 5. Heat transfer results of Lighthill’s analysis (1953)-

The heat transfer result is shown in Figure 5. The Nussclt-number expression of (a) and (c) is also shown in the
Figure. The results of (b) are tabulated and no expression is available. A visual observation indicates that an
extrapolation of the Nusselt number expression o (c) gives esenally the same values as lhe !abulated results of
(b). Furthermore for the condition in this the of the garamelcr
A is always greater than 1 000. For this reason thc Nusselt number expression of (c) (1 €. Equauon (8)) is used
in the calculation.
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