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MINIMAL REQUIREMENTS FOR
MINKOWSKI'S THEOREM IN THE PLANE I

J,R. ARKINSTALL

Let K be a closed convex set in the Euclidean plane, with

area A{K) , which contains in its interior only one point 0 of

the integer lattice. If K has other than one or three chords

bisected by 0 , it is shown that A(K) 2 k . Also, if K has

three such chords, A(K) 2 U.5 • The results are generalised to

any lattice in the plane.

1. Introduction

Let A be a lattice in the plane having determinent det(A) . We say

the set K is admissible if it is a closed convex set in the plane with 0

the only point of A in its interior. Minkowski's fundamental theorem [4]

asserts that if an admissible set K is centrally symmetric about 0 ,

then its area A(K) is no greater than h det(A) . We call a chord of K

which is bisected by 0 , a chord of symmetry of K . Minkowski's

hypothesis requires that all chords through 0 be chords of symmetry. We

say a chord of symmetry of K is extremal if K has parallel supporting

lines at its endpoints. Sco+t [6] has shown A(K) 2 it det(A) if K has

an extremal chord of symmetry. We refer to this as result (l).

Let s(K) denote the number of chords of symmetry of an admissible

set K . We show

THEOREM 1. If s(K) is even or infinite, A(K) 2 h det(A) .

THEOREM 2. If s(K) > 1 , A(K) 2 k.5 det(A) .
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260 J .R. Arki nstaI I

THEOREM 3. If s(K) > 3 , A(K) £ k det(A) .

Theorem 2 is analogous to a result of Ehrhart [3], that

A(K) £ It.5 det(A) , whenever K satisfies the more restrictive condition

that 0 is the centre of gravity of K . It will be sufficient to

establish the theorems when A is the integral lattice A , since s(K)

and A(K)/det(h) are invariant under a linear transformation of K and

A . As det(A ) = 1 , we delete all further reference to det(A) .

We show that each of the above theorems gives the best possible tound

on A{K) . Let E be the convex hull of the points (-1, 2), (2, -1)

and (-1, l) . This triangle E is admissible, and has only three

chords of symmetry, passing through (l, 0 ) , (0, l) and (-1, -l)

respectively. As A [E ) = it. 5 and s [E ) -3 , Theorem 2 is best

possible.

For Theorems 1 and 3 we argue as follows. Let U be the convex hull

of the four points (±1, ±l) . Let C c U be the union of half a regular

2m-gon and a semicircle on a common diameter with midpoint 0 . Then

s(C) = m > 1 . The set #(e) = (l-e)U + zC , 0 < E < 1 , is an admissible

set and since U is centrally symmetric about 0 , s[K{e)) = s(C) = m .

Since for sufficiently small e , A[K{Z^) can be arbitrarily close to

A(U) = k , Theorems 1 and 3 give the best possible bound for finite s(K) .

Taking £ = 0 , we obtain the square U with A(U) = k and s{U)

infinite.

Finally, le t E be the convex hull of the three points (±t, - l )

and (0, 1/t) where t > 1 . The triangle E is admissible, and has

only one chord of symmetry parallel to the x-axis. As A ( B J > t and

s [E ) = 1 , we can deduce no upper bound on A{K) from the information

that s(K) = 1 .

2. Proof of Theorem 1

If a l l the chords of K which pass through 0 are chords of symmetry

of K , Minkoswki's theorem gives the desired result. We may thus assume

there is a chord of K , PQ°PQ which is not a chord of symmetry of K .

https://doi.org/10.1017/S0004972700006560 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700006560


Minkowski's theorem 261

We denote each chord POP' of K by the label c(8) , where 9 is the

angle PrpP measured in an anti-clockwise direction and 8 6 [0, TT] . The

continuous function d(Q) = (P0) - (OP') has a zero when and only when

c(9) is a chord of symmetry of K , and by our choice of P-OP' ,

d(0) = -d(Tt) # 0 . By applying the intermediate value theorem to d(Q) ,

we deduce that d(9) has at least one zero on [0, IT] . If s(K) is

even, then d(8) has an even number of zeros, and so at least one zero

9 + , occurs at an extremum of <i(9) . Let K denote the reflection of K

in the origin 0 , and let P*0P,| be the chord e(9j . If d(Q) has a

local maximum at 9,, , then in a neighbourhood of P^ the boundary of K

is contained in K , and so a supporting line s to K at P^ , together

with a parallel line s' through PA , form a pair of parallel supporting

lines to K at the endpoints of c(Q^) , a chord of symmetry of K . We

argue similarly if d(B) has a local minimum at 6* . In either case,

result (1) implies that A{K) 5 1* .

If s(K) is infinite, using the above notation, there is a point A

on the boundary of K , which is an accumulation point of the infinite set

J of endpoints P of chords of symmetry. As the boundary of K is

continuous, A is itself an endpoint of a chord of symmetry AQA' . If

we consider a sequence (P ) in J which has limit A , the limit I of

the sequence of lines (P A) is a supporting line to K at A .

Similarly the sequence [p'A') has as its limit a line I' which is a

supporting line to K at A' . Since, for each n , the line P A is

parallel to the line P'A' , it follows that I and I' are parallel.

Again, result (l) gives that A(K) S h , and the proof is complete.

COROLLARY 1. If d(Q) has a zero at which d(8) is an extremum,

then e(8) is an extremal chord of symmetry, and A{K) 5 h .

3. Proof of Theorem 2

By Theorem 1 and its corollary, A(K) < k if either s(K) = 2 , or

if any zero of <i(9) occurs at a point where <i(9) is also an extremum.

Suppose then that s(K) 2 3 . We may assume without loss of generality

that d{Q) is increasing, decreasing and increasing at three consecutive
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262 J.R. Ark i nstaI I

zeros 6 , 9 . , and 6 . So o[B .) = P.OP! ( l < £ < 3) are chords of

symmetry of K \ l e t the supporting l ines to K at P. and PI meet i

T. . Our assumption about d{&) implies that T l i e s to the l e f t of
I? X.

plpi' , to the right of

illustrated in Figure 1.

and T to the left of P P' as

Let

FIGURE 1

denote the intersection of K with the closed triangular

region P.P'-T (1 5 i £ 3) , and let K. be the reflection of K. in
Is Is Lr 1, -7

0 . By Minkowski's theorem, as K. u K. i s an admissible se t , central ly
Ts lr

symmetric about 0 ,
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M i n k o w s k i ' s theorem 263

A{Kt u* \ ) = 2A[Ki) 5 1* .

3 3
It is easily seen that U [K ~ K.) = U K. = K , and hence that

i=l l i=l *

fl [K ~ X.) = 0 . We now apply a result of Scott [7] which states that
i=l l

2 3

if X , X , X are three open convex sets in E , and if 0 X. = 0 ,
1 2 3 %

X , X , X
1 2 3 i=\

t h e n

A( U X ) 5 9/5 min A(*.) .
i=X % i=l,2,3 ^

Taking X. to he the interior of K ~ X. , we have

(2) 4(K) 2 9/5 min A [K ~ K.) .
i=l,2,3

However, as ^(iC.) 5 2 (1 5 t < 3) , we also have

(3) 4U) 5 2 + min 4 [K ~ X.) .
i=l ,2,3 *

From (2) and (3) we deduce that A(K) S k.5 i for equality to be attained

here, we required equality in both (2) and (3).

Scott [7] shows that equality in (2) is possible only when K is a

triangle T with centre of gravity 0 , and with three chords of symmetry,

each parallel to an edge of T . The set E of Section 1 is such a

triangle.

4. Polygons and lat t ice points

We shall need the following preliminary results. A lattice polygon P

is a simple polygon which has each vertex at a lattice point. Let V, b, c

denote the number of lattice points which are vertices, boundary points,

interior points respectively of P , and let A denote the area of P .

It is known [5] that for lattice h and lattice polygon P ,

A = hb + c - 1 .

LEMMA 1 . Let P be a convex lattice polygon.
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264 J.R. Ark i nstaI I

(i) If v = U t and P has no pair of parallel edges, then a > 1 .

(ii) If i ) > 5 , then c 2; 1 .

(iii) If v = 6 s and *e = 1 , then P is equivalent under an

integral unimodular transformation to the centrally symmetric hexagon H

illustrated in Figure 2.

(iv) If v > 6 , c > 2 .

Proof. Let P = V ^p^o^j, t>e a convex lat t ice quadrilateral having

no pair of parallel sides and le t P~ = VjVoV^\v^ t i e a convex lat t ice

pentagon. In each case, since i t is not possible for the sum of every pair

of adjacent angles to be less than or equal TT , we may assume that

[V + ly > IT . Suppose too that V, is no further than V from the

line ^o^o • Then, in each case, the vertex X of the parallelogram

V V V, X is a la t t ice point which is interior to the polygon P. . As any

la t t i ce polygon with V > 5 contains as a subset a lat t ice pentagon, we

have proved (i) and (ii) .

Let L be the unique interior lat t ice point of the convex lat t ice

hexagon H = v
x
v
2
V3VkV^V6 ' I f L d o e s n o t l i e o n VlVh ' t h e n o n e o f

LV.VV^-V or LV V V V, is a proper convex pentagon, and we deduce from

(ii) that c > 2 . Hence L lies on each of the diagonals v-iVh> VoV^ '

V' VV . In fact, since the lat t ice points on a line are regularly spaced,

the uniqueness of L implies that L is the common midpoint of the

diagonals. From (i) we deduce that the diagonals are parallel to the edges

of H , and so H is the image of H under some integral unimodular

transformation.

Finally, le t P be a convex la t t ice polygon with V 2 6 and c = 1 .

Choose 5 vertices of P . By (iii) each remaining vertex of P l ies at

the unique la t t ice point which completes a centrally symmetric hexagon

about L . Thus V = 6 . Hence if V > 6 we must have c > 2 .
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Minkowski's theorem 265

(1, 1)

(-1, 0)

(-1, -1)

LEMMA 2. Let H , with vertices ^ V ^ l / s 1 ^ he the aonvex

lattice hexagon of Figure 2. Let X , with vertices T T ... T be a

convex polygon, with H c X . Let the vertiaes V and V of HQ lie

on the edge T' T of X , and let the edges 1' T and T T, of X have

V and V^ as midpoints respectively. Then T , V^, V, and T-, are

oollinear. In particular, if each edge of X contains a vertex of H ,

X must be a quadrilateral.

Proof. The diagonal FJ, of H is parallel to, and midway between

the edges v^r> a n d V^(, • H e n c e ri a n d T\, l i e a t t h e same distance

from K y, as T and T respectively, that is, on the line V.V^- .

LEMMA 3. Let M be a polygon having n edges, and having a lattice

point at the midpoint of each edge.

(i) If n is odd, each vertex of M is a lattice point.

(ii) If n is even, the lattice polygons with vertices at the

alternate midpoints have the same centroid as M .

(iii) If n = km + 2 (m € Z) , and the midpoints of opposite edges

occur in pairs which are symmetric about 0 , then M is centrally
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266 J .R. A r k i n s t a I I

symmetric about 0 .

Proof. Let V. and m. be the vertices of M and the midpoints of

the sides of M respectively, for i € I = {l, 2, . . . , n} . With the

convention V = V , we write this as

When n i s odd, equa t ions (k) give

v = mn - m . + m^ . . . + m .

n 1 2 3 n

Thus V € A , and from (It) we deduce that V. € A for all i € J . When

n is even, summing the alternate equations in {h) gives
( 5 ) % [ v , + . . . t v ) = m . + t + . . . + m = m, + mK X n' 2 k M l

We ob ta in (ii) simply by d iv id ing ( 5) by w/2 .

3 n - 1

Now suppose n = km + 2 , and m . = —m • ~ -. , for

3 € J" = (l, 2, ..., 2w+l) . Adding the expressions in (k) for m. and
3

W e g e t

Taking the alternating sum of these equations gives

t h a t i s V> = -V- . . Using equat ions ( 6 ) , i t now follows t h a t M i s

symmetric i n 0 .

5. An analytical result

In the proof of Theorem 3 we will use two continuous transformations

and a limiting process to reduce the number of admissible sets under

consideration. We prove

LEMMA 4. Let (x.J be a sequence of admissible convex sets such

that K. •+ K in the Hausdorff metric. Suppose that for all i ,

s[K.) = k s an odd number, and also that K. has no extremal chord of
tc 1r
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M i n k o w s k i ' s theorem 267

symmetry. Then either

(i) s(K) = k , and K has no extremal chord of symmetry, or

(ii) A{K) 5 It .

Proof. Let d(0) be defined for the set K as in Section 2, with 6

measured from a direction such that d(0) = -d(v) + 0 . For a l l £ , we

define the function d.(9) corresponding to the set K. in the same
tf If

manner, with 6 measured from the same direction used for the set K . As

no chord of K. is extremal, by Corollary 1 we have that no zero of d.(Q)
If If

is an extremum of d.{Q) . By elementary analysis, we choose an infinite
If

s u b s e q u e n c e [K.) , i € G c N , such t h a t t h e z e r o s o f <f . ( 8 ) , i £ G ,
7s If

on the interval [0, IT) , form k convergent subsequences. Since we lose

no generality by doing so, we assume that the sequence [K.) is this

subsequence (K.) , i € G . We now show that unless A{K) 1 it , then the

limits 9,,' 6 , ..., 6, of the sequences of zeros of the functions d.(9)
X c. K. If

are all the zeros of d(9) , and are distinct.

In Section 2 we noted that each function d.{%) is continuous in
i

[0, IT) . Since [K.) converges to K in the Hausdorff metric, the
If

funct ions <i.(9) converge to d{&) uniformly. Suppose <i(9,) # 0 where

8, i s t h e l i m i t of a convergent sequence of zeros of d.(&) • In a
-L 1r

neighbourhood of 6 , | d ( 6 ) | 2: %|d(6 ) | , by t h e c o n t i n u i t y of die) .

Hence, by the uniform convergence of d . ( 9 ) t o die) , t h e r e e x i s t s a
If

number N , so that for i 2 N , |d.(6)| > 0 for 9 in this

neighbourhood of 9 . Therefore no zeros of <i.(8) lie in this neigh-

bourhood of 9 , for i 5 N . By contradiction we have proved that limits

of convergent sequences of zeros of d.(9) are zeros for di&) .

Suppose 9, is a zero of die) on [0, TT) , not one of the limits

above. If 9, is an accumulation point of the set of zeros of die) ,

then K has an infinite number of chords of symmetry, and Theorem 1 then
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268 J.R. Ark i nstaI I

implies A{K) £ k . If 6,+1 is an extremum of d(9) , then Corollary 1

implies that A(K) £ k . We may therefore assume that 9, .. lies between

two neighbourhoods [6 , 9^ J and (9„ . , 9 ] in which d{Q) is non

zero and of opposite sign. By the uniform convergence of d.(Q) to
If

d(d) , there exists a number N such that for i > N , d.(8) is non zero

and of opposite sign in the neighbourhoods [8 , (8 +8 -.)/2j and

[(9 +9+)/2, 8+] . As each d.(Q) is a continuous function, for i > N ,

d.(8) has a zero in the interval ((9 +9x+1)/
2» (ex+1

+9
+)/

2) • By again

choosing a subsequence of the sequence of functions (d.{9)) , we can

assert that there is a sequence of zeros of the functions <i.(8) lying in
If

the above interval, which converge. As shown in the previous paragraph,

this sequence converges to a zero of d{&) which lies in the above

interval, and so must converge to Bv . As this contradicts our choice

of 8^ , we deduce that 8 , 6 , ..., 8^ are the only zeros of d(Q) .

Finally we show that 8 , ...,8,, are distinct. Suppose to the

1 K

contrary that 9 = 9 . Without loss of generality we assume that 8.

and 8 are the limits of (8 (n)) and (8?(n)) respectively, where

9 (M) < QAn) are zeros of d (9) . For given n , and j € {l, 2} , the

zero of d (9) at 9 .(«) corresponds to a chord of symmetry P. OP'.

^ 3 3 »^ 3 9^-
of K As n becomes large, P and P approach P , on the
chord of symmetry POP' of K corresponding to the zero of d(Q) at
9 = 8 . By again taking a suitable subsequence of K. (if necessary)
and renaming this (X.J , we assume that the limit as n becomes large of

the angle of orientation of the chord P. Po exists. We call this
* l,n 2,n

limit tp .

We show that the line I through P , with angle of orientation <p ,

is a supporting line to K at P . For suppose to the contrary that I

is a proper chord of K which meets the boundary of K at Q . By taking

n sufficiently large to make P and P very close to P , and the
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angle of orientation of the chord P Po very close to (p , we may

assume that the line P., P. passes as close as we choose to Q . By

convexity K is bounded by the line P. Po outside the segment

P, P^ . Thus, taking values of n approaching infinity, and since K
L,n d,n n

converges to K , K is bounded by the limit of the line P. P o . As
1,7^ -̂,W

this limit is I , we contradict our choice of I as a proper chord of

K . Similarly, we can construct a supporting line to K at PA parallel

to I . By result (l), we then deduce that A(K) 5 k .

6. Proof of Theorem 3

Using Minkowski's theorem, Cohn [7] has proved the following bounded-

ness resul t for convex sets in a . Let K be a convex set which

contains in i t s inter ior a hypersphere of radius r centred at 0 . If K

contains no points of the integer l a t t i c e besides 0 in a hypersphere of

radius R = C,/r , then K contains no l a t t i c e points in i t s inter ior

besides 0 , and in fact l i e s entirely within the second hypersphere. Cohn

establishes a value for the constant C •, .

We now prove Theorem 3. From Theorem 1 we may assume s{K) i s odd,

and so at least f ive. As 0 is an inter ior point of the convex set K ,

by Cohn [ / ] , K i s separated from a l l non-zero l a t t i c e points by a f in i t e

number of l ines . Hence K i s contained in a polygon K , bounded by these

l ines and supporting l ines to K at the endpoints of i t s chords of

symmetry. We may clear ly choose K so that each edge of K contains in

i t s re la t ive in ter ior at leas t one endpoint of a chord of symmetry or a

l a t t i c e point. As K has no smaller area and no fewer l ines of symmetry

than K , we take K to be the polygon K . Should an edge of K contain

an endpoint of each of three or more chords of symmetry, by the convexity

of K the other endpoints l i e on a paral le l edge. From resul t ( l ) , we

then know that A{K) S k . We therefore may assume that the polygon K

has at leas t five edges.

We now modify the polygon K so that each edge of K contains at

leas t one l a t t i c e point in i t s re la t ive in te r ior . If an edge E of K

contains no l a t t i c e point in i t s re la t ive in te r io r , we form edge E(t) ,
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parallel to E and distance t further than E away from 0 . Denote by
K(t) the polygon obtained from K by including this new edge and
extensions of the edges of K adjacent to i t . We continue to increase t
until one of three things happens:

(a) the length of E(t) becomes zero, or

(b) E(t) has a la t t ice point on i t , in i ts relative interior, or

(c) s[K(t)) * s(K) .

One of these things must happen, since as K contains a disc about 0 ,

each modified set K{t) also contains the same disc, and, by Conn [/],

such sets are uniformly bounded.

Suppose (c) occurs either with or before either (a) or (b). This can

occur in two ways. Firstly, we suppose that K{t*) is the first modified

set for which s{K) # s[K{t*)) . As neither (a) or (b) are true for

t < t* , each of the sets K. = Kit*. (l-l/i)) is admissible, and since (c)

is false also for t < t* , s[K.) = s(K) is odd for each set. As the

sequence [K.) converges to K(t*) in the Hausdorff metric, we can deduce

from Lemma h that A (#(**)) 2 k .

Secondly, we suppose that s(K) = s[K{t*)) for all t E [0, t'] , but

that this equality holds on no longer interval. By our assumption that (c)

occurs with or before (a) or (b) , and noting that the transformation is

such that (a) or (b) must occur for some first modified set, we may assume

that neither (a) nor (b) occur for t < t* + 6 , for some 6 > 0 . Thus we

can choose a sequence K. = K(t) , t € (t*, t*+S.l/i) , of admissible

sets, such that (#.) converges to K{t*) in the Hausdorff metric. We

assume that s(#.) is odd and finite for each i , since otherwise we

could deduce by Theorem 1 that ^(^-l , and so A{K{t*)) , is no greater

that h . In fact, as only three edges of K(t) are modified by the

transformation, the value of S[K.) differs from s[K(t*)) by at most

six, for we showed in an earlier argument that .4 (#(£)) S k if any edge

of K(t) contains the endpoints of more than two chords of symmetry.

Hence we can choose a subsequence of K. , which we relabel [K.] , so

that each s(#.) is odd, constant, and not equal to s(K(t*)) . By
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M i n k o w s k i ' s theorem 271

applying Lemma k to this sequence (K.) , we deduce that A[K(t*)) 5 h .

We may therefore assume that K has at least five edges, each of

•which contains a lat t ice point in i ts relative interior. By Lemma 1 (ii) ,

we deduce that 0 is an interior point of the lat t ice polygon Y whose

vertices are those lat t ice points on the boundary of K .

We now further modify K so that each edge E of K either contains

two lat t ice points in i ts relative interior, or one lat t ice point at i ts

midpoint. We show that such a modification increases the area A(K) , does

not decrease s(K) and does not remove from the boundary of K any of the

latt ice points on i t . Suppose L , not the midpoint of edge E of K , is

the only lat t ice point in the relative interior of E . We replace E by

another edge E(\j>) , through L , at angle ty to E . As L is not the

midpoint of E , we may orient ty so that for (small) positive \ji , the

set K{\p) bounded by E{ty) and the extensions of edges of K other than

E , has area greater than A(K) . As the boundary of K is continuous,

and since E{\p) pivots about L, which is not i t s midpoint, A(K(\}>))

increases continuously with ty until one of three things happens:

(d) L is the midpoint of ffdjj) , or

(e) ff(^) contains two lat t ice points in i ts relative interior, or

(f) s[K(4>)) t s(K) .

No la t t i ce points are lost from the boundary of K this modification

of K . For, were L to be lost at angle ij/ , as L is not the mid-

point of E(4i) , the la t t i ce point 2L - L l i es in the relative interior

of E(\p) . Hence the convex hull of those la t t i ce points on the boundary

of K , Y c K(\p) . As 0 is an interior point of Y , we have by Cohn

[/] that the sets K(\p) are uniformly bounded. Hence, for sufficiently

large \p , (d) or (e) must occur. Suppose (f) occurs either with or before

either (d) or (e).

This can occur in two ways. First ly suppose K(ty*) is the f i rs t

modified set for which S(#(I|J*)) ^ s(K) . The sequence of admissible sets

K^ = K[\l>*{l-l/i)) converges to K(.fy*) in the Hausdorff metric, and

s[K.) = s(K) i s odd for each set K. in the sequence. By applying Lemma

h to the sequence [K.) we deduce that A[K(\l)*)) < k .
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Secondly, suppose that s{K) = s[K{ty)) for all ^ £ [0, \p*] , but

this equality holds on no longer interval. We can apply the same argument

used above for K(t) , noting carefully that only three edges of K are

modified by this transformation on any sufficiently small open interval.

As above we can deduce that A[K(\I)*)] S k in this case.

In performing the above modifications to the polygon K , there is a

possibility that an infinite sequence of modifications may occur. For

example, a sequence of edge turning modifications may successively upset

the previously set lattice point midpoints of edges. However, all the

modifications of K contain I , and so contain a fixed disc about 0 .

By Cohn [?], all such modifications of K are bounded by a uniform bound.

We may thus apply Blaschke's selection theorem [2] to any such

sequence of modifications of K , (K.) , and obtain a limiting figure

K* , which can no longer be modified. However, s[K.) = s(K) is odd for

each of these admissible sets K. , and the sequence K. converges to K*

in the Hausdorff metric. Hence by Lemma h we deduce that unless

s(K*) = a(K) then A{K) £ k .

We therefore may assume s(K*) = s(K) , and since K* is immutable

by the above modifications it must be a convex polygon, with at least five

edges, each edge containing at least one lattice point in its relative

interior. Further, if any edge E of K* contains only one lattice point

L in its relative interior, L is the midpoint of E . We call such an

edge E a lattice midpoint edge. Since s{K*) = s(K) > 5 , by Theorem 2

we deduce that A{K*) £ 1*. 5 .

Denote by Z the convex lattice polygon formed by the convex hull of

the set of lattice points which lie on the boundary of K* , but are not

vertices of K* . As 0 is the only possible lattice point in the

interior of Z c K* , we deduce from Lemma 1 (iv) that K* has either,

(g) six edges, each lattice midpoint edges, or

(h) five edges, one containing two lattice points in its

relative interior, the other four edges each lattice

midpoint edges, or

(i) five edges, each lattice midpoint edges.
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We f i rs t show that cases (g) and (h) cannot a r i se . In case (g), by

Lemma 1 (Hi), Z , having six l a t t i c e points on i t s boundary, is a

centrally symmetric hexagon H which i s an affine transform of H , the

hexagon shown in Figure 2. The incidences of K* vith H l i s ted in (g),

become, when transformed by the inverse of th is affine transformation,

incidences of the image of K* with H . Indeed, these incidences are

exactly those needed for Lemma 2. Hence the image of K* , and hence K* ,

is a quadrilateral. Hence case (g) cannot occur. In case (h), by Lemma

3 (i) , each vertex of K* is also a l a t t i c e point, and so K* has ten

boundary l a t t i c e points. By Pick's theorem, we deduce that A(K*) = 5 .

However, since this contradicts the bound on A(K*) given above by Theorem

2, case (h) cannot a r i se .

Finally, in case ( i ) , by Lemma 1 (Hi), as Z has six vertices and

only one interior l a t t i c e point, i t is a centrally symmetric hexagon. Thus

the l a t t i ce points on the boundary of K* number 6 , and are

symmetrically located about 0 . By Lemma 3 (Hi) then, K* i s i t se l f

centrally symmetric about 0 . By Minkowski's theorem, we deduce that

A(K*) 2 k .
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