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We perform a theoretical investigation of the instability of a helical vortex filament
beneath a free surface in a semi-infinite ideal fluid. The focus is on the leading-order
free-surface boundary effect upon the equilibrium form and instability of the vortex. This
effect is characterised by the Froude number Fr = U(gh∗)−1/2 where g is gravity, and
U = Γ/(2πb∗) with Γ being the strength, 2πb∗ the pitch and h∗ the centre submergence
of the helical vortex. In the case of Fr → 0 corresponding to the presence of a rigid
boundary, a new approximate equilibrium form is found if the vortex possesses a non-zero
rotational velocity. Compared with the infinite fluid case (Widnall, J. Fluid Mech.,
vol. 54, no. 4, 1972, pp. 641–663), the vortex is destabilised (or stabilised) to
relatively short- (or long-)wavelength sub-harmonic perturbations, but remains stable to
super-harmonic perturbations. The wall-boundary effect becomes stronger for smaller
helix angle and could dominate over the self-induced flow effect depending on the
submergence. In the case of Fr > 0, we obtain the surface wave solution induced by the
vortex in the context of linearised potential-flow theory. The wave elevation is unbounded
when the mth wave mode becomes resonant as Fr approaches the critical Froude numbers
F(m) = (C∗

0/U)
−1(mh∗/b∗)−1/2, m = 1, 2, . . . , where C∗

0 is the induced wave speed. We
find that the new approximate equilibrium of the vortex exists if and only if Fr < F(1).
Compared with the infinite fluid and Fr → 0 cases, the wave effect causes the vortex to
be destabilised to super-harmonic and long-wavelength sub-harmonic perturbations with
generally faster growth rate for greater Fr and smaller helix angle.
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1. Introduction

Vortex filaments are ubiquitous in nature, with helical vortex the simplest vortex filament
that has both curvature and torsion. In terms of application, tip vortices generated in
rotating devices such as propellers and helicopters can generally be modelled as helical
vortices. In infinite ideal fluid, a helical vortex is one of only a few geometries that would
translate/rotate due to self-induction without change of form (Levy & Forsdyke 1928).
Consequently, the general stability of a helical vortex filament is a subject of fundamental
scientific interest and practical importance.

Existing studies of helical vortex stability are mostly for unbounded fluid without
boundary effects. Levy & Forsdyke (1928) analysed the stability of a helical vortex
with small core radius in infinite fluid, where the effect of entire perturbed filament on
vortex self-induced motion is considered. However, they failed to obtain any meaningful
results of vortex instability (due to a sign error in their final equations). Betchov (1965)
studied the same problem but used a simplified local-induction model, in which the
self-induced velocity at any point on the vortex is proportional to local curvature and
in the direction of the local binormal. It is found that the vortex filament is unstable to
perturbation modes with wavenumber smaller than the local curvature. Using the cut-off
regularisation method, Widnall (1972) studied the stability of helical vortex filament of
finite core. Three distinct modes of instability were found corresponding to short-wave
mode, low-wavenumber mode and mutual inductance mode for small helical pitch. Taking
the flow field inside the vortex core into account, Hattori & Fukumoto (2009) studied the
stability of a helical vortex tube in the short-wave limit, where the basic flow was solved
by means of a perturbation expansion of the Euler equation. There has also been interest
in the stability of multiple helical vortices. Gupta & Loewy (1974) extended the results
of Levy & Forsdyke (1928) and Widnall (1972), and dealt with the stability of centreline
perturbations of the helical vortices system. This has been further generalised to include
the external flow field (Okulov 2004; Okulov & Sørensen 2007), where the influence of
prescribed flows on stability of multiple helical tip vortices was studied.

The theme of this work is the stability of a single helical vortex filament of infinite
extent under a free surface. The presence of the free surface boundary can significantly
modify the equilibrium configuration and influence the instability of the vortex filament
in contrast to that in infinite fluid. The elucidation of the similarities and distinctions
and the comparisons between the problems with the rigid wall boundary vs free surface
is the main focus of the present work. Under the assumption of ideal fluid, we take
into account the leading-order interaction effect between the vortex and the boundary
upon the induced fluid motion, and analytically derive the modified equilibrium form,
on which we perform linear stability analysis. Depending on the Froude number Fr, the
instability results can be characteristically different. In the case of rigid wall corresponding
to Fr → 0, the boundary effect can stabilise (or destabilise) the vortex to relatively
long- (or short-)wavelength sub-harmonic displacement perturbations compared with the
well-known stability result in infinite fluid. In the case of Fr > 0, surface waves are
induced by the vortex. In contrast to the Fr → 0 case, the wave effect destabilises the
vortex to super-harmonic and long-wavelength sub-harmonic perturbations.

We organise the remainder of the paper as follows. In § 2, we state the specific problem
to be investigated and define the key dimensionless parameters. We outline in § 3 the
analytic approach on the determination of equilibrium form and linear stability analysis
of a helical vortex under the influence of rigid boundary and free-surface wave effects.
Section 4 gives a summary of the fluid particle velocities on the vortex filament induced
by the primary vortex and its negative image about the mean free surface. The results of
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Figure 1. Sketch of a helical vortex filament below a free surface.

modified equilibrium form and stability analysis in the case of Fr → 0 (rigid wall) are
presented and discussed in § 5. In the general free-surface case of Fr > 0, we describe the
analytical solution of the linear wave field induced by the helical vortex in § 6, and present
the equilibrium form and stability results in § 7. In § 8, we summarise our main findings.

2. Problem description

2.1. Problem definition and parameters
We consider a horizontal helical vortex of infinite extent, with helix radius a∗, pitch
2πb∗, located at a (mean) submergence depth h∗ = a∗H (H > 1) from a free surface.
The position of the undisturbed free surface is z = 0, with gravity g in the −z direction.
Referring to the definition sketch (figure 1), the centreline of the unperturbed vortex X ∗

0(θ)

is located at

X ∗
0(θ) = (x, y, z)(θ) = (b∗θ, a∗ cos θ, a∗ sin θ − h∗); (2.1)

where θ ∈ R is the coordinate parameter. We assume that the vortex filament has a
circular cross-section with (small) radius e∗ = a∗e0 (e0 < 1), within which the vorticity is
uniformly distributed, parallel to the centreline tangent, and has total vortex circulation Γ .
The flow outside is assumed irrotational.

We define L = b∗, U = Γ/(2πL) and T = L/U as the characteristic length, velocity
and time scales, respectively. The problem is characterised by the non-dimensional
geometry parameters: vortex radius a = a∗/L (or slope l = b∗/a∗ = a−1 or helix
angle ϑ = arctan (a)), core size e = e∗/L = ae0, submergence h = h∗/L = aH; and the
Froude number Fr = U/

√
gh∗ which measures the relative importance of free-surface

deformation. For simplicity, we assume e0 � 1 so that flow structure within the vortex
tube can be neglected. Finally, for relatively weak interactions, and consistent with
linearised wave theory, we assume H � 1 with the corresponding small parameter to be
used in the analyses ε ≡ 1/(2H) � 1.

In what follows, we treat the cases of Fr → 0 and Fr > 0 separately. For Fr → 0,
surface wave effects can be neglected, and we focus on the effect of the vortex image,
which is mainly controlled by the vortex submergence. The case of a helical vortex in the
presence of a rigid wall is a special case of Fr → 0 corresponding to the limit of g → ∞
(for finite h). On the other hand, the case of a helical vortex in unbounded fluid is another
special case of Fr → 0 corresponding to the limit h → ∞ (for given g). For Fr > 0, the
main (additional) effect is the surface deformations induced by the vortex, and we focus on
this wave effect upon the equilibrium form and stability of the underlying helical vortex.
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Figure 2. Translation (U0) and rotation (Ω0) speeds of single helical vortex in infinite fluid.

2.2. Basic kinematics of a helical vortex filament in unbounded fluid
The self-induced motion of a helical vortex in unbounded fluid is well known (Levy &
Forsdyke 1928; Boersma & Wood 1999; Fuentes 2018). For later reference, we provide
a brief summary and deduce some key results. For the helical vortex filament with
geometry form (2.1), its non-dimensional translation velocity U0 and angular velocity Ω0
are obtained from the Biot–Savart law and take the form

U0 =
∫ ∞

0
a2(1 − cos λ)J−3/2

0 dλ, Ω0 =
∫ ∞

0
(1 − cos λ− λ sin λ)J−3/2

0 dλ, (2.2a,b)

in which J0 = λ2 + 2a2(1 − cos λ)+ (aer)
2 with the regularisation parameter er =

e0 e−3/4 (Fuentes 2018). The non-dimensional time-dependent spatial position of the
helical vortex is given by

X 0(θ, t) = (θ + U0t, a cos(θ +Ω0t), a sin(θ +Ω0t)− h). (2.3)

Some profiles of U0 andΩ0 for different helical vortex filaments are sketched in figure 2.
As can be seen, the translation velocity U0 and rotation velocity Ω0 both weakly depend
on vortex core size. In addition, from the inset of the right subplot, we see thatΩ0 changes
sign as the helix radius increases for fixed core size, indicating that Ω0 has certain zero
points (Levy & Forsdyke 1928). This property is of importance when solving the new
equilibrium configuration of vortex as discussed in § 5.1. The asymptotic solutions of U0
and Ω0 in the limits of small and large values of a, respectively, are derived from (2.2a,b)
by the use of the method in Boersma & Wood (1999) (see the supplementary material for
details):

U0 = − a2 ln(aer)

2(1 + a2)3/2
+ O(a2), Ω0 = ln(aer)

2(1 + a2)3/2
+ 1

4
(1 + 2γ − ln 4)+ O(a2),

(2.4a,b)
as a → 0, and

U0 = 1
2

− a2 ln(aer)

2(1 + a2)3/2
+ O(a−3), Ω0 = 1

2a2 + ln(aer)

2(1 + a2)3/2
+ O(a−3), (2.5a,b)

as a → ∞, where γ ≈ 0.577 is the Euler constant.
Another interesting property of the single helical vortex is that the quantity C0 ≡ U0 −

Ω0 is always positive. Physically, C0 is related to UB, the projection of the self-induced
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velocity of the vortex in the local bi-normal direction of the helix. It can be shown
analytically (see the supplementary material for details) that

UB = a√
1 + a2

(U0 −Ω0) > 0, ∀ a ∈ R, e0 ∈ (0, 1). (2.6)

In addition, C0 represents the phase speed of waves induced by the helical vortex in the
longitudinal direction, as described in § 6.

3. Equilibrium position and linear stability analysis

We outline the methodology and provide some general formulae for solving for the vortex
equilibrium position and performing the linear stability analysis of the helical vortex in
the presence of the boundary surface.

For vortex filament X (θ, t) submerged under a free surface, its motion is governed by
the kinematic equation

∂tX (θ, t) = U(X (θ, t), t), (3.1)

where U is the total velocity of the fluid particle on the vortex filament X (θ, t). In the
presence of a free surface, we decompose the total velocity into three components:

U = U s + U i + Uw. (3.2)

Here U s is the velocity field induced by the vortex X itself; U i is the velocity field induced
by its negative image X̃ , which is geometrically symmetric with X about the z = 0 plane
but with an opposite vortex circulation; and Uw is the wave induced velocity required to
satisfy the (deformable) free-surface boundary condition for the general case of Fr > 0.
In the limit Fr → 0, the surface remains flat, Uw = 0, and U s + U i satisfies the required
no-penetration condition on the boundary z = 0.

3.1. Equilibrium configuration of vortex filament under a free surface

3.1.1. Representation of the equilibrium configuration
For any vortex filament X (θ, t) whose motion is governed by (3.1), we regard it as an
equilibrium form if it moves without change of form in uniform translation. Thus, we look
for vortex equilibrium form X (θ, t) that satisfies

∃α ∈ R, C ∈ R
3 =⇒ X (θ, t) = X (θ + αt, 0)+ Ct, ∀ θ ∈ R, (3.3)

where α is an arbitrary constant and C is a constant translational velocity. This condition
basically states that there is an (moving) inertial reference frame in which X (θ, t) remains
unchanged. As a special case, for example, the equilibrium configuration of the helical
vortex in an infinite fluid is represented by (2.3) as X 0(θ, t) = (ϕ, a cosϕ, a sinϕ − h)+
(C0, 0, 0)t, with ϕ = θ +Ω0t and C0 = U0 −Ω0.

The kinematic equation (3.1) is a nonlinear integro-differential equation and, in general,
it is difficult to obtain an exact solution X (θ, t) that satisfies both (3.1) and (3.3). In this
study, we seek approximate equilibrium solutions that are moderately perturbed from the
helical vortex X 0. We express the general equilibrium form of the vortex as

X (θ, t) = X 0(θ, t)+ r̂(ϕ)+ ût, ϕ ≡ θ +Ωt, Ω ≡ Ω0 + ω̂, (3.4)

where r̂(ϕ) represents the geometric variation in the vortex filament, and û and ω̂ are
the changes in the translational velocity and rotational speed of the vortex, respectively,
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due to the presence of the (free) surface. In general û = (û, v̂, ŵ) can have three non-zero
components. It will be shown in later sections that the induced velocity in the vertical
direction ŵ is negligibly small at the leading-order compared with û and v̂. We thus assume
ŵ = 0 and consider the vortex submergence h to be fixed in the stability analysis. Like the
geometric configuration of X 0, r̂(ϕ) is periodic in ϕ. We expand r̂ = (x̂, ŷ, ẑ) in Fourier
series

r̂(ϕ) =
∑
m /=0

r̂m ejmϕ =
∑
m /=0

(x̂m, ŷm, ẑm) ejmϕ, (3.5)

where j is the imaginary unit and r̂m = (x̂m, ŷm, ẑm) represents the amplitude vector of the
mth perturbation mode. Here the zeroth (m = 0) mode is not taken into account because
it simply represents a shift of origin of the coordinate system. As r̂(ϕ) is real, we have
r̂−m = r̂m for all m ∈ N, where ( ) represents complex conjugate.

We exclude the trivial solutions of (3.1) by restricting the average modifications in both
the radial and angular directions to be zero. The former constraint guarantees the helix
radius a to be unaltered because any change in a would be considered in the same stability
analysis with different helix radius. The latter constraint excludes a phase shift along the
helix tangent since it does not modify the geometric configuration of the helical vortex.
These two constraints can be expressed in mathematical form as{〈ŷ cosϕ + ẑ sinϕ〉 = 0

〈ŷ sinϕ − ẑ cosϕ〉 = 0
or 〈(ŷ + jẑ) e−jϕ〉 = 0, (3.6)

where 〈 f 〉 denotes the mean value of the periodic function f (ϕ) in the interval [0, 2π].
For convenience in the analysis and description, we introduce the complex variable Y +

jZ to represent the y- and z-coordinates of the deformed helix X (θ, t) = (X, Y, Z)(θ, t).
With this, we can express X (θ, t) in a 2 × 1 matrix form:[

X
Y + jZ

]
=

[
θ + U0t

a ejϕ − jh

]
+

[
û
v̂

]
t +

∑
m∈Z

[−jχ̂m

ξ̂m ejϕ

]
ejmϕ, (3.7)

with ϕ = θ +Ωt and Ω = Ω0 + ω̂. Here Z represents integers, χ̂m = jx̂m and ξ̂m =
ŷm+1 + jẑm+1. In terms of χ̂m and ξ̂m, the constraints in (3.6) and the assumptions made
on the vortex configuration X (θ, t) can be expressed as

χ̂−m = −χ̂m, χ̂0 = ξ̂0 = 0, ξ̂−1 = 0. (3.8a–c)

3.1.2. Determination of the equilibrium configuration
We deduce here the governing equations for the unknown variables in the equilibrium
form (3.7). To do this, we consider the leading-order terms in the motion equation (3.1), to
then obtain the leading approximate solution of the vortex equilibrium form.

Similarly to X (θ, t), we expand the self-induced velocity along the vortex filament,
U s(θ, t) = (Us,Vs,Ws)(θ, t), in Fourier series:

Us = U0 +
∑
m∈Z

Us,m ejmϕ, jVs − Ws = −aΩ0 ejϕ +
∑
m∈Z

Vs,m ej(m+1)ϕ, (3.9a,b)

where the terms U0 and −aΩ0 ejϕ are due to the translational and rotational motions of
the original helical vortex, respectively. Here Us,m and Vs,m are the mth mode amplitudes
of the induced velocity components associated with the modifications of the vortex
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configuration from the (free-surface) boundary effect. At the leading-order, they are
linearly proportional to the mth Fourier mode amplitudes of the deformed equilibrium
vortex configuration, χ̂m, ξ̂m and ξ̂−m. For convenience in description, we express Us,m
and Vs,m in symbolic form

Us,m = Au(m) · R̂m, Vs,m = Av(m) · R̂m, R̂m = [χ̂m, ξ̂m, ξ̂−m]T, (3.10a–c)

where Au and Av are the 1 × 3 coefficient vectors that depend on the mode number m and
vortex geometry parameters (a and e0).

For the image-induced velocity U i = (Ui,Vi,Wi) and the wave-induced velocity Uw =
(Uw,Vw,Ww), under the assumption of H � 1, the leading-order contributions are from
the original helical vortex whereas the effects of the modifications to the equilibrium
vortex configuration are of higher order. As the modified helical configuration (and its
image) is periodic in the longitudinal direction, both U i and Uw are periodic in ϕ. (The
proof of the periodicity of U i is outlined in § 4.2). We expand the components of U i and
Uw in Fourier series and express them in symbolic form

Ui =
∑
m∈Z

Ui,m(a,H) ejmϕ, jVi − Wi =
∑
m∈Z

Vi,m(a,H) ej(m+1)ϕ, (3.11a,b)

Uw =
∑
m∈Z

Uw,m(a,H,Fr) ejmϕ, jVw − Ww =
∑
m∈Z

Vw,m(a,H,Fr) ej(m+1)ϕ, (3.12a,b)

where Ui,m,Vi,m,Uw,m,Vw,m are the associated mth Fourier mode amplitudes.
Upon substituting X in (3.7), U s in (3.9a,b), U i in (3.11a,b) and Uw in (3.12a,b) into

the motion equation (3.1) and matching the coefficients of each harmonic mode, we obtain

Au(m) · R̂m − mΩ0χ̂m − ûδm = −Ui,m − Uw,m, (3.13)

Av(m) · R̂m + (m + 1)Ω0ξ̂m − jv̂δm+1 + aω̂δm = −Vi,m − Vw,m, (3.14)

for m ∈ Z, where δm denotes the Kronecker delta function that equals 1 if m = 0 but 0
otherwise. We point out that in (3.13) and (3.14), the equations for different values of m
are decoupled. In addition, we have replaced Ω by Ω0 because the associated quadratic
terms, ω̂χ̂m and ω̂ξ̂m, are of high order and can be neglected.

From (3.13) and (3.14), subject to the constraints (3.8a–c), we can solve for the unknown
quantities associated with the modified equilibrium configuration of the helical vortex
under a free surface. The solution (for the independent unknowns) can be expressed in the
form:

û = Ui,0 + Uw,0, ω̂ = −a−1(Vi,0 + Vw,0), (3.15a,b)

[χ̂1, ξ̂1, jv̂]T = [A0(1)+ E33]−1(C i,1 + Cw,1), (3.16)

R̂m = [A0(m)]−1(C i,m + Cw,m), m ≥ 2, (3.17)

where the 3 × 1 vectors, C i,m and Cw,m, and the 3 × 3 coefficient matrix, A0(m), are
defined as

C i,m = [−Ui,m,Vi,m,−Vi,−m]T, Cw,m = [−Uw,m,Vw,m,−Vw,−m]T, (3.18a,b)

A0(m) = A(m)− mΩ0I3, (3.19)
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for m ≥ 1, I3 being the 3 × 3 identity matrix, and the 3 × 3 auxiliary matrix A(m) is given
by

A(m) =
⎡
⎣ Au(m)

−Av(m)
Av(−m)Q

⎤
⎦ −Ω0

⎡
⎣0 0 0

0 1 0
0 0 −1

⎤
⎦ . (3.20)

The auxiliary transform matrices Q and E33 take the form

Q =
⎡
⎣−1 0 0

0 0 1
0 1 0

⎤
⎦ , E33 =

⎡
⎣0 0 0

0 0 0
0 0 1

⎤
⎦ . (3.21a,b)

The explicit formulae of all coefficient vectors and matrices related to the free-surface
boundary effect will be derived in later sections for the respective cases.

3.2. Stability analysis
For a given equilibrium state X (θ, t) of the vortex filament, we perform linear stability
analysis to obtain the governing equations for the time evolution of the perturbation modes.

3.2.1. Decomposition of perturbation modes
We consider small displacement perturbations y(θ, t) to the equilibrium vortex
configuration X (θ, t), where y(θ, t) are assumed to be periodic in θ (or ϕ = θ +Ωt in
the steady moving frame). Following the standard procedure of linear stability analysis,
we consider a general Fourier spectral mode of the perturbations, y(θ, t) = yr(ϕ, t) e±jrϕ ,
where r is an arbitrary real number and the modal amplitude yr is periodic in ϕ with the
same period of 2π as the base vortex configuration X (θ, t). Upon expanding yr in a Fourier
series in ϕ, we can express the r-mode perturbations, y(θ, t) = (x, y, z)(θ, t) in the general
form

x = −j
∑
k∈Z

[χ+
k (t) ej(k+r)ϕ + χ−

k (t) ej(k−r)ϕ],

y + jz = ejϕ
∑
k∈Z

[ξ+
k (t) ej(k+r)ϕ + ξ−

k (t) ej(k−r)ϕ],

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.22)

where χ±
k (t) and ξ±

k (t) are the amplitudes of Fourier modes with wavenumbers k ± r, and
their time dependencies determine the stability of the vortex filament. Both k + r and k − r
Fourier modes are included to ensure that y(θ, t) is real. It is clear that the perturbations in
(3.22) are generally not periodic in ϕ, and they become periodic only when r is a rational
number.

We point out that in the special case of unbounded fluid (Levy & Forsdyke 1928;
Widnall 1972), the modal amplitude of the perturbations yr is independent of ϕ because
the equilibrium vortex configuration is given by the single fundamental Fourier mode only
(see (2.3)). The perturbations of the r mode are given by the simple expression yr(t) e±jrϕ .
In the presence of a boundary, the equilibrium vortex configuration itself contains multiple
Fourier modes in ϕ. The evolutions of different Fourier modes of the perturbations are
coupled through their interactions with the base vortex. It is, thus, necessary to include a
set of coupled Fourier modes in the expression of the r-mode perturbations, as given in
(3.22), in the present instability analysis.

Note that replacing r by r ± 1 in (3.22), together with corresponding replacements of
[χ+

k , ξ
+
k ] by [χ+

k±1, ξ
+
k±1] and [χ−

k , ξ
−
k ] by [χ−

k∓1, ξ
−
k∓1], leads to the same expression for
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Stability of a helical vortex under a free surface

y(θ, t). Moreover, for an arbitrary r, there exists an integer n such that r0 = |r − n| ≤ 1
2 .

Because of these, the instability solution of the problem with the boundary surface is
completely described by considering the value of r only in the range of r ∈ [0, 1/2], with
r = 0 representing the super-harmonic perturbation case and r ∈ (0, 1/2] representing the
sub-harmonic perturbation case. Note that this is generally true when k takes both even
and odd integers in (3.22), but the requisite range of r may vary if k takes only even or odd
numbers. In the unbounded fluid case, in contrast, the whole range of r ∈ R needs to be
considered for a complete description of the instability solution because different modes
of the perturbations are not coupled.

3.2.2. Evolution equations of perturbation modes
In linear stability analysis, we take into account only the linear terms related to the small
perturbation amplitude in the induced velocity. The contributions to the self-induced
velocity from the perturbation yk(t) are

Us = · · · +
∑
k∈Z

{
Au(k + r)+

∑
m∈Z

ejmϕR̂T
mBu(m, k + r)

}
· yk ej(k+r)ϕ, (3.23)

jVs − Ws = · · · +
∑
k∈Z

{
Av(k + r)+

∑
m∈Z

ejmϕR̂T
mBv(m, k + r)

}
· yk ej(k+r+1)ϕ, (3.24)

where ‘· · · ’ represents the contributions from the base equilibrium vortex filament given in
(3.9a,b), yk(t) = [χ+

k (t), ξ
+
k (t), ξ

−
−k(t)]

T, and Au, Av are the coefficient vectors introduced
in (3.10a,b). The 3 × 3 coefficient matrices Bu and Bv are introduced to account for the
interaction between the equilibrium modification mode R̂m and the perturbation mode yk.

For the image-induced velocity, the contributions from the perturbation yk(t) are

Ui = · · · +
∑

k,m∈Z

Du(m, k + r) · yk ej(k+m+r)ϕ, (3.25)

jVi − Wi = · · · +
∑

k,m∈Z

Dv(m, k + r) · yk ej(k+m+r+1)ϕ, (3.26)

where ‘· · · ’ represents the contributions from the image of the original vortex filament
given in (3.11a,b), and Du and Dv are 1 × 3 coefficient vectors that embody the interaction
effect of the original vortex image with the perturbation yk(t). As the image effect is
strongly affected by the vortex submergence h, we derive the explicit formulae of Du and
Dv to the order that matches the order of equilibrium modification modes. The effect of the
interactions between the images of equilibrium modifications and perturbations upon the
image-induced velocity is of higher order and is thus neglected in the instability analysis.

The contributions to the wave-induced velocity Uw by the perturbations yk(t) are
negligibly small, and are ignored in the stability analysis. This is confirmed by later
calculations which show that the wave effect is of importance only when the wave field is
near resonant. Under this latter condition, the wave effect causes significant modifications
to the equilibrium configuration of the original vortex filament, which has direct influence
on the stability of the vortex.

Substituting the perturbations y(θ, t) for X (θ, t) in (3.1) and using the self- and
image-induced velocities (3.23), (3.24), (3.25) and (3.26) associated with the perturbations
for the total velocity U in (3.1), we obtain the differential equations governing the
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C. Li, Y. Liu, M. Wan, S. Chen and D.K.P. Yue

time evolution of perturbation mode amplitudes by matching the coefficients of Fourier
harmonic modes ej(k±r)ϕ . The system of the evolution equations can be expressed in the
following compact form

−j
d
dt

yk(t) = Ã(k + r)yk(t)+
∑
m /=0

B̃(m, k − m + r)yk−m(t), k ∈ Z, (3.27)

where the coefficient matrices Ã(k) and B̃(m, k) are defined as

Ã(k) = A0(k)+ A1(k)+ A2(k), B̃(m, k) = B1(m, k)+ B2(m, k), (3.28a,b)

with the matrices A1, A2, B1 and B2 given by

A1(k) = −ω̂
⎡
⎣k 0 0

0 k + 1 0
0 0 k − 1

⎤
⎦ , A2(k) = B2(0, k), (3.29a,b)

B1(m, k) =

⎡
⎢⎢⎣

R̂T
mBu(m, k)

−R̂T
mBv(m, k)

R̂T−mBv(−m,−k)Q

⎤
⎥⎥⎦ , B2(m, k) =

⎡
⎣ Du(m, k)

−Dv(m, k)
Dv(−m,−k)Q

⎤
⎦ . (3.30a,b)

Here matrix A0(k), as defined in (3.19), represents the effect of the original helical
vortex on the perturbations. Matrices A1 and B1 are related to ω̂ and R̂m, respectively,
and represent the influence of the modifications of equilibrium configuration on the
perturbations. Matrices A2 and B2 originate from the interaction between the vortex image
and the perturbations. We note that Bu, Bv , Du and Dv are all real, whose explicit formulae
will be derived in later sections.

In the special case of unbounded fluid, the evolution equation (3.27) reduces to the
simple form: ẏk(t) = jA0(k + r)yk(t), where different perturbation modes are decoupled.
This equation leads to the stability results of Levy & Forsdyke (1928) and Widnall (1972).
In the presence of a free surface (or a rigid wall boundary), the perturbation mode yk is
coupled with the modes of different k values (for a specific r value), as (3.27) indicates,
resulting in the substantial complexities of the present analysis.

For numerical evaluation, we truncate the number of Fourier modes at a suitable large
value K and include the modes of |k| ≤ K in the analysis. The series summation in (3.27) is
then truncated with |k − m| ≤ K. We obtain from (3.27) the system of evolution equations
for all the perturbation-related modes considered

d
dt

Y (t) = jM(a, e0,H,Fr, r,K)Y (t), (3.31)

where Y (t) denotes the amplitude vector ((6K + 3)× 1) of perturbation modes

Y (t) = [yT
−K, yT

−K+1, . . . , yT
0 , . . . y

T
K−1, yT

K]T, (3.32)

and M is the truncated ((6K + 3)× (6K + 3)) coefficient matrix which is composed of
matrix blocks Ã(k + r) and B̃(m, k − m + r). The stability of the helical vortex depends
on the eigenvalues σ� of jM . The vortex filament (under the free surface) is stable to
the small perturbations in (3.22) if Re(σ�) ≤ 0 for all � = 1, . . . , 6K + 3; and unstable
if Re(σ�) > 0 for any � = 1, . . . , 6K + 3. The unstable mode shape is given by the
eigenvector corresponding to σ� with frequency Im(σ�). For later reference, we use σR
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Stability of a helical vortex under a free surface

to denote the maximum value of Re(σ�) for � = 1, . . . , 6K + 3, representing the growth
rate of the most unstable mode.

In the following sections, we derive the explicit formulae of relevant coefficient vectors
and matrices and present the results of the equilibrium configuration and stability of the
helical vortex filament for the cases of Fr → 0 and Fr > 0, respectively.

4. Self- and image-induced velocities

In this section, using small parameter expansion and Biot–Savart law, we derive the
explicit formulae of self- and image-induced velocities, U s and U i, for a modified helical
vortex filament. These formulae are used in the determination of equilibrium configuration
of the vortex filament and for the stability analysis, as described in § 3.

4.1. Linear and quadratic terms in self-induced velocity

4.1.1. Linear terms in Us
We derive the solution for the helical vortex filament with a single harmonic mode
modification to its configuration and use linear superposition to obtain the result for the
general case involving multiple harmonic modes. The Cartesian coordinates of the filament
X (ϕ) are given in terms of the generalised coordinate ϕ ∈ R by

X = ϕ − jχ ejmϕ, Y + jZ = (a + ξ ejmϕ) ejϕ − jh. (4.1a,b)

Here we ignore the translation motion of the filament as it does not affect the self-induced
velocity. By the Biot–Savart law, the self-induced velocity at an arbitrary location X (ϕ)
along the vortex filament is

U s(ϕ) = 1
2

∫
R

(X (ψ)− X (ϕ))× dX (ψ)
|X (ψ)− X (ϕ)|3 , (4.2)

where X (ψ) represents the source point on the vortex filament.
Upon introducing λ = ψ − ϕ as the integration variable in (4.2), we obtain explicit

expressions for the vectors ΔX = X (ψ)− X (ϕ) and dX (ψ):

ΔX = λ− jχ ejmϕpm, ΔY + jΔZ = a ejϕp1 + ξ ej(m+1)ϕpm+1, (4.3a,b)

dX = (1 + mχ ejmψ) dλ, dY + jdZ = j[a ejψ + (m + 1)ξ ej(m+1)ψ ] dλ, (4.4a,b)

where pm(λ) � ejmλ − 1. Using (4.3a,b), neglecting nonlinear terms in χ and ξ , and
employing Einstein summation notation for brevity, we obtain

|ΔX |−3 = (J0 + Ĵi
1yi)

−3/2 ≈ J−3/2
0 − 3

2 J−5/2
0 Ĵi

1yi, (4.5)

where

Ĵi
1 = [−2jλpm, agm+1,−1, ag−m−1,1], yi = [χ ejmϕ, ξ ejmϕ, ξ̄ e−jmϕ]T, (4.6a,b)

with gm,n = pmpn. Substituting (4.5) into (4.2) and using (4.3a,b) and (4.4a,b) for ΔX ×
dX , we obtain the velocity component in the x-direction

Us = 1
2

∫
R

[Û0 + Ûi
1yi]

[
J−3/2

0 − 3
2

J−5/2
0 Ĵi

1yi

]
dλ, (4.7)

where
Û0 = a2(1 − cos λ), Ûi

1 = a
2

[0, fm+1,−1, f1,−m−1], (4.8a,b)
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with fm,n = m ejmλpn − n ejnλpm. For brevity in description, we define a functional Jn for
any function f (λ) as

Jn[ f ] � 1
2

∫
R

f (λ)J−3/2−n
0 dλ, (4.9)

for n ∈ N. We then rewrite Us in (4.7) in the form

Us = U0 + Ǔi
1yi, (4.10)

with

Ǔi
1 = J0[Ûi

1] − 3
2J1[Û0Ĵi

1]. (4.11)

In the general case of a helical vortex filament modified by multiple harmonic modes
ejmϕ with associated amplitudes χm and ξm, linear superposition yields

Us − U0 =
∑

m

[Ǔ1
1(m)χm ejmϕ + Ǔ2

1(m)ξm ejmϕ + Ǔ3
1(m)ξm e−jmϕ] =

∑
m

Au(m) · Rm ejmϕ,

(4.12)
where the coefficient vector Au(m) and amplitude vector Rm are defined as

Au(m) = [Ǔ1
1(m), Ǔ2

1(m), Ǔ3
1(−m)], Rm = [χm, ξm, ξ−m]T. (4.13a,b)

Upon introducing two auxiliary vectors

J 1(m) = [−2jλpm, agm+1,−1, agm−1,1], U1(m) = a
2

[0, fm+1,−1, f1,m−1], (4.14a,b)

we rewrite Au(m) in (4.13a) in a neater form

Au(m) = J0[U1] − 3
2J1[Û0J 1]. (4.15)

The self-induced velocity components in the y- and z-directions are obtained similarly
and expressed as

jVs − Ws = −aΩ0 ejϕ +
∑

m

Av(m) · Rm ej(m+1)ϕ, (4.16)

where the coefficient vector Av(m) takes the form

Av(m) = J0[V 1] − 3
2J1[V̂0J 1], (4.17)

with V̂0 = aq1 and V 1 = [afm,1, qm+1, 0], where qm = pm − jmλ ejmλ.

4.1.2. Quadratic terms in U s
To determine the interaction coefficients between the modifications to the original helical
configuration and the perturbations in the stability analysis, we need to obtain the quadratic
terms in the induced velocity. Letting {χ(1)m , ξ

(1)
m } and {χ(2)n , ξ

(2)
n } be two sets of harmonic

modes added to the original helical vortex filament, we obtain the quadratic terms in the
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Stability of a helical vortex under a free surface

self-induced velocity as

Us = · · · +
∑
m,n

x(1)m Bu(m, n)x(2)n ej(m+n)ϕ, (4.18)

jVs − Ws = · · · +
∑
m,n

x(1)m Bv(m, n)x(2)n ej(m+n+1)ϕ, (4.19)

where x(1)m = [χ(1)m , ξ
(1)
m , ξ

(1)
−m], x(2)m = [χ(2)m , ξ

(2)
m , ξ

(2)
−m]T, with the coefficient matrices Bu

and Bv given by

Bu(m, n) = J0[U2(m, n)] − 3
2J1[J T

1 (m)U1(n)+ UT
1 (m)J 1(n)+ Û0J2(m, n)]

+ 15
4 J2[Û0J T

1 (m)J 1(n)], (4.20)

Bv(m, n) = J0[V 2(m, n)] − 3
2J1[J T

1 (m)V 1(n)+ V T
1 (m)J 1(n)+ V̂0J2(m, n)]

+ 15
4 J2[V̂0J T

1 (m)J 1(n)]. (4.21)

The auxiliary matrices J2(m, n), U2(m, n), and V 2(m, n) are given by

J2(m, n) =
⎡
⎣−2gm,n 0 0

0 0 gm+1,n−1
0 gn+1,m−1 0

⎤
⎦ , (4.22)

U2(m, n) = 1
2

⎡
⎣0 0 0

0 0 fm+1,n−1
0 fn+1,m−1 0

⎤
⎦ , V 2(m, n) =

⎡
⎣ 0 fm,n+1 0

fn,m+1 0 0
0 0 0

⎤
⎦ .

(4.23a,b)

The derivation of these formulae is similar to that for Au(m) and Av(m) in the preceding
section, and the details are omitted here.

4.2. Leading-order terms in image-induced velocity
We now derive the velocity, U i, on the primary vortex X (ϕ) induced by its image
X̃ (ϕ) with respect to the plane z = 0. We first consider the primary vortex filament
containing a single harmonic mode of modification (or perturbation) from its original
helical configuration. The coordinates of the image are

X̃ = ϕ − jχ ejmϕ, Ỹ + jZ̃ = (a + ξ̄ e−jmϕ) e−jϕ + jh. (4.24a,b)

In the application of (4.2) for U i on the primary vortex X (ϕ), the image X̃ (ψ) is used as
the source line X (ψ). By a change of variable ψ ′ = ψ − 2π in (4.2), it then follows that
U i(ϕ + 2π) = U i(ϕ). This shows the periodicity of U i(ϕ).

By binomial expansion and discarding all nonlinear terms of yi, we have

|ΔX |−3 ≈
∞∑

n=0

L−3/2−n
0 (an + bi

nyi), (4.25)
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where yi is the same amplitude vector defined in (4.6b), and

an = Cn
−3/2L̂n

0, bi
n = nCn

−3/2L̂n−1
0 Li

1, (4.26a,b)

L0 = λ2 + 4h2, L̂0 = 2a2Re[(2jH − ejϕ) ejϕ ejλ + 2jH ejϕ + 1], (4.27a,b)

L1
1 = −2jλpm, L2

1 = 2jh ejϕ p̂m+1 + a(1 − e2jϕ ejλ)p̂m, L3
1 = L2

1, (4.28a,b)

with p̂m(λ) = ejmλ + 1 and Cn
−3/2 denoting the binomial coefficient. Upon substituting

(4.25) into (4.2) and using X̃ (ψ) for X (ψ) in (4.2), we obtain the solution for U i with the
three components given by

Ui = Re(u0 + ui
1yi), jVi − Wi = v0 + vi

1yi, (4.29a,b)

where

u0 =
∞∑

n=0

Ln[anû0], ui
1 =

∞∑
n=0

Ln[anûi
1 + û0bi

n], (4.30a,b)

û0 = a2[1 + (2jH − ejϕ) ejϕ ejλ], û1
1 = 0, û3

1 = a e−jmλ, (4.31a–c)

û2
1 = a[(m + 1)(2jH − ejϕ) ejϕ ej(m+1)λ + (m + 1) ejmλ − e2jϕ ejλ], (4.32)

and the functional Ln[ f ] for any function f (λ) is defined as

Ln[ f ] = 1
2

∫
R

f (λ)L−3/2−n
0 dλ, (4.33)

for n ∈ N. We note that u0 in (4.29a) represents the contribution from the unperturbed
vortex image whereas ui

1yi accounts for the interaction effect between the perturbation
and unperturbed vortex image. Both u0 and ui

1 are composed of integrals in the form
of Ln(λ

k ejmλ), which can be evaluated analytically by Basset’s integral (DLMF 2021).
Upon neglecting the terms that decay exponentially with h, we find that Ui = 0, which
means that the vortex image does not produce any meaningful contribution to the induced
velocity on the primary vortex in the x-direction. The details of the proof are outlined in
Appendix A.

With the exponentially decaying terms neglected, the components v0 and vi
1 in (4.29b)

are given by

v0 = a−1ε(j + ε e−jϕ)−1 = −ja−1ε + a−1ε2 e−jϕ + · · · , (4.34)

vi
1 = (2h)−2[aR2(2(m + 1)h) ejϕ,−R2(2(m + 1)h) ejϕ, e−jϕ], (4.35)

where ε = (2H)−1 � 1, and R2(x) = x2K2(|x|)/2 with K2(x) being the modified Bessel
function of the second kind. The value of R2(x) tends to 1 when x → 0 and decays
exponentially with increasing x. Here v0 represents the induced velocity in the y- and
z-directions on the primary helical vortex by the line vortex image located at z = h. The
leading-order term in v0 gives Vi = −a−1ε = −(2h)−1, which results from the interaction
of two straight-line vortices located at z = ±h. In addition, the terms vi

1yi in (4.29b)
are associated with the perturbations and are used in the evolution equations of the
perturbation mode amplitudes.
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Stability of a helical vortex under a free surface

Taking all harmonic modes of perturbations into account, we obtain the coefficient
scalars Ui,0,Vi,0 and vectors C i,m, introduced in § 3.1 in solving for the equilibrium form
of the vortex filament,

Ui,0 = 0, Vi,0 = 0, C i,m = a−1(−jε)m[0, 0, 1]T, m ≥ 1. (4.36a–c)

The coefficient vectors used in the determination of image-induced velocity on the
perturbations are given by

Du(m, k) = 0, Dv(m, k) =

⎧⎪⎨
⎪⎩
(2h)−2R2(2(k + 1)h)[a,−1, 0], m = 0,

(2h)−2[0, 0, 1], m = −2,
0, m /= 0,−2.

(4.37a,b)

The matrices A2 and B2 used in the evolution equations of the perturbation mode
amplitudes are

B2(m, k) = (2h)−2

⎡
⎣0 0 0

0 0 −δm+2
0 δm−2 0

⎤
⎦ , m /= 0; (4.38)

B2(0, k) = A2(k) = R2(2(k + 1)h)
(2h)2

⎡
⎣ 0 0 0

−a 1 0
0 0 0

⎤
⎦ − R2(2(k − 1)h)

(2h)2

⎡
⎣0 0 0

0 0 0
a 0 1

⎤
⎦ .

(4.39)

5. The Fr → 0 (rigid wall) case

We focus here on the results for the case of Fr → 0 in which the wave effects on the (free)
surface can be neglected. As discussed earlier, the limit Fr → 0 includes a number of
special cases: the well-known case of the helical vortex in unbounded fluid (in the limit
h → ∞); or the case of a rigid (free slip) wall at z = 0 (in the limit g → ∞ for finite h),
for example in modelling ground effect of a helical tip vortices near a wall. Although the
former has been well understood, in this section, we assume the latter case with g → ∞
and study the effect of finite h on the stability of the helical vortex.

5.1. Equilibrium configuration
First, we solve for the equilibrium form of the vortex including the boundary effect.
From (3.15a,b)–(3.17), and (4.36a–c), the modifications to the equilibrium geometry of
the original helical vortex filament are found to be

û = 0, ω̂ = 0, v̂ = −(2h)−1, (5.1a–c)

and

R̂m = [χ̂m, ξ̂m, ξ̂−m]T =

⎧⎪⎨
⎪⎩

0, m = 0,±1,

a−1(−jε)m[A0(m)]−1[0, 0, 1]T, m ≥ 2,

QR̂−m, m ≤ −2.

(5.2)

It is seen that both the translational velocity in the x-direction and the rotational velocity
of vortex remain unaltered, whereas the vortex filament obtains an additional translational
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motion in the y-direction at a speed of v̂ = −(2h)−1 = O(ε). The alterations of vortex
geometry form are characterised by the modification modes R̂±m = O(εm) with m ≥ 2.

As stated earlier, we consider only the linear terms related to the modification modes
in the self-induced velocity U s, but neglect the modifications related terms in the
image-induced velocity U i. We note that the leading-order nonlinear terms in U s from
the self-interaction of modification modes are O(ε4) (which are associated with modes
R̂±2). In addition, the interaction between the vortex image and original vortex generates
O(ε2R̂m) terms in U i, hence the related leading-order modifications are also O(ε4).
Therefore, the above solutions should be valid to order O(ε3).

In the stability analysis, we retain only the leading-order O(ε2) terms in the vortex
equilibrium configuration with the O(ε3) modification modes neglected to simplify the
evaluation of the coefficient matrix M . As a result, the equilibrium geometry form of the
primary vortex filament in the Fr → 0 case is summarised as[

x
y + jz

]
=

[
θ + U0t

a ejϕ − jh

]
+

[
0

−a−1εt

]
+

∑
m=±2

[−jχ̂m

ξ̂m ejϕ

]
ejmϕ + O(ε3), (5.3)

where ϕ = θ +Ω0t and

R̂2 = −a−1ε2[A0(2)]−1[0, 0, 1]T, R̂−2 = QR̂2. (5.4a,b)

In general, the new geometry configuration (5.3) for Fr → 0 could be obtained for an
original helical vortex with any specified parameter values of a, e0 and H except in the
neighbourhood of the critical values of a = â and e0 = ê0, at which the coefficient matrix
A0(2) is singular and R̂±2 become undefined. The critical values of â and ê0 correspond
to the condition of Ω0(â, ê0) = 0. This condition is obtained based on the relation
A0(m)[1, a,−a]T = −mΩ0[1, a,−a]T (as shown in Appendix B), which indicates that
−mΩ0 is the eigenvalue of A0(m), and the determinant of A0(m) becomes zero as Ω0
approaches zero. As figure 2 shows, there always exists a critical radius of a = â at
which Ω0 is zero for given vortex core parameter e0. We remark that the case near the
critical values of â and ê0 is not further considered in this study because the solution
of deformation of the helical filament becomes unbounded, which violates the small
parameter expansion assumption we employ.

Figure 3 compares the equilibrium configurations of the modified vortex filament with
fixed core parameter e0 = 0.1 and submergence H = 3 for two different values of a = 1.0
and 4.0. For e0 = 0.1, we have the critical radius â = 3.43. To better show the variations of
modified vortex from the original helix shape, we also calculate the curvature κ and torsion
τ of the vortex filament, which uniquely determine the geometry of a three-dimensional
(3D) curve. As the helix (with a given value of a) has a constant curvature of κ0 =
a/(1 + a2) and a constant torsion of τ0 = 1/(1 + a2), for clarity, we display the results
of relative curvature Δκ = (κ − κ0)/κ0 and relative torsion Δτ = (τ − τ0)/τ0 in figure 3
for comparison. For a = 1.0 and 4.0, which are away from â, the modifications to the
original helical shape due to the boundary effect is expected to be moderately small, as
shown in figure 3(a–d). In addition, Δκ and Δτ vary harmonically about the zero mean
value in a full helix turn θ ∈ [0, 2π] with relative amplitude of O(0.1).

5.2. Stability analysis of the modified vortex filament
For the new equilibrium configuration (5.3), we perform the linear stability analysis with
perturbations defined in (3.22). As perturbation mode k is coupled with modes k ± 2 only
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Figure 3. (a,c) Geometric configuration and (b,d) relative curvature Δκ (——-) and relative torsion Δτ (-·-·-)
of the modified vortex filaments with fixed e0 = 0.1 and H = 3, but different values of a: (a,b) a = 1.0 and
(c,d) a = 4.0.

(but not k ± 1), the odd modes 2k + 1 + r and even modes 2k + r are decoupled. For
any r ∈ [0, 1/2] (and k ∈ Z), the odd modes 2k + 1 + r are equivalent to even modes
2k + r′ with r′ = (1 − r) ∈ [1/2, 1]. This allows one to consider only even numbers of k
in (3.22) for the perturbations in the stability analysis. In this way, the range of r needs to be
extended from r ∈ [0, 1/2] to r ∈ [0, 1] for a complete description of the instability result.
In numerical calculations, the amplitude vector Y (t) contains perturbation components
y2k with |k| ≤ N. As the truncated coefficient matrix M(r,N) is a pure real matrix, the
eigenvalues of jM appear in pairs in the form of σ = ±σ1 + jσ2.

Before discussing in detail stability results of the modified helical vortex, we examine
the convergence of eigenvalues of the coefficient matrix with respect to N. Figure 4 shows
the results of maximum real part of the eigenvalue σ , σR, for representative perturbation
modes as a function of N for a vortex filament with a = 1.0, e0 = 0.1 and H = 3 and 5.
In the cases where the modified vortex is stable (i.e. σR = 0), as shown in figure 4(a), the
numerical values of σR remain zero as N increases from 1 to 7 except for small fluctuations
around zero with the magnitude of order O(10−8). In the cases where the modified vortex
is unstable, for clarity to show the convergence of the solution with N, we show the
relative difference of σR(N) and σR(N − 1), denoted by ΔσR = |σR(N)/σR(N − 1)− 1|,
in figure 4(b). It is shown that ΔσR decreases exponentially with increasing N until
ΔσR reaches machine accuracy of O(10−14) with N ∼ 4. As all entries of the coefficient
matrix are calculated with an absolute tolerance of 10−8 and a relative tolerance of 10−6,
N ≥ 3 guarantees sufficient accuracy for our analysis. Hereafter, we use N = 3 for all the
numerical results presented in this section.

For any value of r ∈ [0, 1], the generalised unstable mode shape is given by the
eigenvector corresponding to Re(σ ) > 0. The eigenvector is composed of Fourier
components with wavenumbers equal to r, 2k ± r, . . ., where k = 1, 2, . . . ,N. Except for
the helix of large radius (a � 1), as in the infinite fluid case, there usually exists only
one unstable mode with the associated eigenvector dominated by the Fourier component
of (smallest) wavenumber r. In the case of large helix radius, the second unstable mode
can exist with the associated eigenvector dominated by the Fourier component of (second
smaller) wavenumber 2 − r. In this case, the growth rate of the second unstable mode is
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r = 1.0, H = 3

r = 0.1, H = 3
r = 0.5, H = 3
r = 0.5, H = 5
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Figure 4. (a) Maximum growth rate σR(N) and (b) the relative difference of maximum growth rate ΔσR =
|σR(N)/σR(N − 1)− 1| of perturbation mode r as a function of N for a helical vortex with a = 1.0, e0 = 0.1
and H = 3 and 5.

1.5

0

–1.5

0 1 2

ϕ/2π
3

H = ∞ H = 2

4 5

Figure 5. Radial profiles of the unstable mode shape with r = 0.6 for a helical vortex (a = 1.0 and e0 = 0.1)
at submergence depth H = 2.0 and ∞.

usually smaller than that of the first unstable mode (i.e. whose eigenvector is dominated
by the component of wavenumber r). In the remainder of the paper where we study the
boundary effects, we thus focus on the maximum growth rate σR with the understanding
that the corresponding unstable mode shape is dominated by the Fourier component of
wavenumber r. As an illustration, figure 5 displays a comparison of radial profiles of the
most unstable modes for a helix vortex filament (a = 1.0 and e0 = 0.1) with submergence
depth H = 2 and ∞. The result is obtained with r = 0.60. In the infinite fluid case
(H = ∞), the unstable mode contains a single Fourier component exp(3

5 jϕ). In the case
of H = 2.0, the unstable mode shape is seen to differ from that in the infinite fluid case.
In addition to the dominant component exp(3

5 jϕ), it contains the contributions from other
components such as exp(7

5 jϕ) and exp(13
5 jϕ).

5.2.1. Effect of submergence depth on stability
The stability of a single helical vortex in the infinite fluid has been studied extensively by
Widnall (1972). We focus here on the case with an infinite rigid boundary, and investigate
the stability under the effect of the boundary controlled by the submergence depth h = aH.
For specificity, we fix the vortex geometry parameters a = 1.0 and e0 = 0.1 and vary H to
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Figure 6. Maximum growth rate σR as a function of perturbation mode number r for different submergence
depths H for a helical vortex with a = 1 and e0 = 0.1.

study how the presence of a rigid boundary influences the stability of the modified helical
vortex.

Figure 6 plots the variation of maximum growth rate σR with perturbation mode number
and submergence. The H = ∞ curve is the infinite fluid case, where no boundary effect
exists. The helical vortex is destabilised by perturbation modes r ∈ (R1,R2), where R1 =
0 and R2 � 0.67 are the critical mode numbers for the vortex with a = 1.0 and e0 = 0.1 in
the infinite fluid case. In the case of finite H, σR in the neighbourhood of r = R1 slightly
decreases as H decreases, and may even become zero for relatively small H. This indicates
that the (rigid) boundary suppresses the vortex instability for perturbation modes r → R+

1 .
As r increases further away from R1, σR is almost independent of H, implying that the
boundary has a negligible effect on the vortex instability for those perturbation modes.
As r → R−

2 , σR increases as H decreases, showing that the boundary effect intensifies
the instability. For perturbation modes r ∈ [R2, 1], the helical vortex in infinite fluid is
stable. When the vortex filament is close to a wall boundary, however, σR increases to
become positive from zero, starting from the modes near r = 1 and expanding to r = R2
for deceasing H. Thus, the boundary effect destabilises the helical vortex for perturbation
modes r ∈ [R2, 1].

To further understand how the wall effect destabilises the helical vortex, we take the
perturbation mode r = 0.9 as an example and depict the variation of σR for a wide range
of submergence for the same vortex parameters (a = 1.0 and e0 = 0.1), see figure 7(a).
Here the submergence is given by the parameter ε = (2H)−1. It is seen that the helical
vortex becomes unstable to the perturbation mode r = 0.9 when the submergence is
decreased to beyond the threshold value of ε > ε0 � 0.09. Moreover, beyond the threshold
submergence H0 = (2ε0)

−1, σR increases rapidly as the submergence becomes smaller.
Mathematically, at the critical value ε = ε0, the associated σ(r, ε0) is the double

eigenvalue of coefficient matrix jM(r, ε0). From the perturbation theory, the matrix
eigenvalue with multiplicity n ≥ 2 can be expanded in a series of ν1/n when O(ν)
perturbations are added to the matrix. Therefore, we have the following relation between
the leading-order growth rate σR(r, ε) and ε:

σR(r, ε) ∼
√
ε2 − ε0(r)2, ε ≥ ε0(r). (5.5)
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Figure 7. (a) The maximum growth rate of perturbation mode r = 0.9 as a function of submergence. (b) The
critical submergence parameter ε0 as a function of perturbation mode number r. (Here a = 1.0 and e0 = 0.1.)

2.0(a) (b) 1.5

1.0

0.5

0
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1.0σR
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H = ∞

Figure 8. Maximum growth rate σR as a function of perturbation mode number r for the helical vortex with
fixed e0 = 0.1 and different radius: (a) a = 2.0 and (b) a = 0.5 at three different submergence depths H = 3, 5
and ∞.

To substantiate the validity of this relation, we plot σ 2
R vs ε2 in the inset of figure 7(a).

This relation is validated by the observation that σ 2
R is (almost) linearly proportional to ε2

for ε > ε0.
In figure 7(b), we show the threshold value of ε0(r) for perturbation modes r > R2. It

is shown that ε0 first increases and then decreases to zero as r varies from R2 to 1, and
obtains a maximum εc � 0.19 at r = rc � 0.7. Therefore, the helical vortex is unstable to
any perturbation modes r ∈ (R2, 1) when the vortex is located near the rigid boundary
with H ≤ Hc = (2εc)

−1.

5.2.2. Effect of helix geometry on stability
The above discussions are based on a helical vortex filament with fixed geometry
parameters a = 1.0 and e0 = 0.1. We now examine the effects of vortex geometry
parameters on the vortex instabilities. To study the radius (or helix slope) effect, we display
in figure 8 the results of σR as a function of r for two different values of a = 2.0 and 0.5
with fixed e0 = 0.1. Three submergence values are considered including the infinite fluid
case.
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Stability of a helical vortex under a free surface

To provide the proper context, we first summarise briefly the features of instability we
obtain in the unbounded fluid case (which are consistent with those of Widnall 1972). The
helical vortex with larger radius a (or smaller slope l = a−1) is more unstable. The range
of unstable modes [R1,R2] broadens for vortices of larger radius. As shown in figures 6
and 8, R1 always equals zero, whereas R2 increases as a increases. In addition, the growth
rate is larger for a vortex with larger radius. From the perspective of physics, the adjacent
half-turns of helix are relatively closer to each other when radius is larger, causing the
vortex to be more unstable due to mutual-induction instability (Widnall 1972).

In the presence of a rigid boundary, the features of instability results can
differ characteristically. In the large-radius case (a = 2.0), the curves with different
submergences almost coincide with the result in the infinite fluid case, indicating that
σR has a weak dependence on the submergence depth and the rigid boundary effect is
negligible. In contrast, σR varies dramatically with H in the small radius case (a = 0.5).
Similar to the case of a = 1.0, the boundary effect suppresses the instability of the
helical vortex for perturbation modes of r ∼ R1 but excites the instability for perturbation
modes of r > R2. Depending on submergence, the instability due to the boundary
effect can be more severe than that due to the self-induced instability (in the infinite
fluid).

The above results indicate that helix radius can strongly affect the vortex stability, and
the instability induced by the rigid boundary can be more significant in the small radius (or
large slope) cases. This phenomenon can be qualitatively explained. For a helical vortex
with large helix angle, the adjacent half-turns of vortex image (with respect to the vertical
symmetry plane) have approximately the same space location but opposite vorticity
direction, hence their effect on the primary vortex roughly cancels out each other, causing
the total effect of vortex image much weaker in the large radius case. Mathematically, the
boundary effect related terms in the evolution equations of perturbation modes, (4.38) and
(4.39), are approximately proportional to a−1 or a−2. This implies that the boundary effect
is weaker for larger radius.

In addition to the helix radius, the core-size of vortex filament can also affect the vortex
stability. Figure 9 displays the variations of σR with perturbation mode number r for a
helical vortex filament with fixed a = 1.0 but different values of e0 = 0.2 and 0.3 at three
different submergences. The comparison of the results shows that for larger e0, the range
of unstable perturbation modes [R1,R2] becomes slightly narrower and the magnitude of
growth rate also becomes smaller, indicating that the helical vortex with larger core size
is more stable in infinite fluid. In addition, because we do not consider the core-size effect
when calculating the image-induced velocity U i, the growth rate of unstable modes due to
the rigid wall effect is expected to be nearly independent of e0. This is consistent with the
observation that the profiles of σR in the range of 1.0 > r > 0.7 for e0 = 0.2 and 0.3 are
almost identical, as shown in figure 9.

5.2.3. Critical parameters H0 and Hc
To sum up the boundary effect on vortex stability, we display the results of critical
parameters H0(r) and Hc, in figure 10, for various vortex filaments. The modified helical
vortex is unstable to perturbation mode r if H ≤ H0(r). The profile of function H0(r),
shown in figure 10(a), represents the neutral curve and this figure can be regarded as a
stability diagram. Moreover, all vortex filaments (with different radius and core size) retain
the same trend that H0(r) first decreases and then increases as r increases. This means that
it is more difficult for the vortex to be destabilised for perturbations with moderate mode
number r ∈ (R2, 1).
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Figure 9. Maximum growth rate σR as a function of perturbation mode number r for the helical vortex with
fixed a = 1 and different core-size: (a) e0 = 0.2 and (b) e0 = 0.3 at three different submergence depths H =
3, 5 and ∞.
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Figure 10. Critical parameters: (a) H0 for different vortex filaments as a function of perturbation mode
number r; and (b) Hc and rc as a function of a with fixed e0 = 0.1.

Figure 10(b) shows the profiles of rc and Hc for different helix radius a. Note that Hc
is the minimum value of H0(r) achieved at r = rc and the vortex filament is unstable to
all perturbation modes r > R2 when H ≤ Hc. We fix e0 = 0.1 in figure 10(b) because
core-size e0 has little effect on the instability associated with the rigid boundary effect.
It is seen that rc monotonically increases with a. When a is large, rc rapidly tends to
1 due to the fact that the critical mode number R2 generally increases with a and the
self-induced instability in the infinite fluid dominates. When a ≤ 1, Hc slightly oscillates
with its magnitude maintaining a value of O(2.5). When a > 1, Hc increases rapidly and
becomes quite large, which means the vortex is easier to be destabilised. Although the
boundary effect decreases as a increases, strong destabilisation in this situation is caused
by self-induction as in infinite fluid.

6. The Fr > 0 (free surface) case: induced wave field

Before discussing the stability results, we derive the solution of the wave field induced
on the free surface by the submerged helical vortex filament (X 0) for the case Fr > 0.
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Stability of a helical vortex under a free surface

The induced-wave solution is then used in the determination of the modified equilibrium
form and the stability analysis of the helical vortex filament beneath the free surface.

6.1. Wave kinematics and surface elevation
The induced-wave solution is derived based on the classical linearised potential flow
theory. We first decompose the total wave velocity potential into three parts: Φ = ϕp +
ϕi + ϕw where ϕp and ϕi represent the velocity potentials of the original helical vortex
and its negative image about the z = 0 plane, respectively; and ϕw denotes the velocity
potential of the surface waves (which diminishes when Fr → 0). The (non-dimensional)
governing equations of ϕw are

∇2ϕw(x, y, z, t) = 0 z ≤ 0

(ϒ2∂2
t + ∂z)ϕw = Q(x, y, t) z = 0

|∇ϕw| → 0 z → −∞

⎫⎪⎬
⎪⎭ , (6.1)

where ϒ ≡ Fr
√

h and the free-surface forcing Q = −(ϒ2∂2
t + ∂z)(ϕp + ϕi) evaluated at

z = 0. As the (original) helical vortex maintains its steady form while moving forward
in the x-direction at self-induced speed C0, the induced velocity of the primary vortex
in the fluid up = (up, vp,wp) satisfies the relation up(x, y, z, t) = up(x′, y, z, 0) with
x′ = x − C0t. Noticing that ϕp = ϕi and ∂z(ϕp + ϕi) = 0 at z = 0, we have Q(x, y, t) =
−2ϒ2C2

0∂
2
x′ϕp(x′, y, 0, 0) = −2β2∂x′up(x′, y, 0, 0) where β = ϒC0 = √

hFrC0.
The induced velocity at z = 0 takes the form (Hardin 1982):

up(x, y, 0, 0) = Re
∞∑

m=1

upm( y) ejmx, upm = −2CmKm(mR) e−jmφ, (6.2a,b)

where Cm = maI′
m(ma), R =

√
y2 + h2, φ = arctan(h/y) ∈ (0,π) and Im and Km are the

modified Bessel functions of the first and second kind, respectively. Here I′
m denotes the

derivative of Im with respect to its argument. As a result, Q is obtained

Q(x, y, t) = −2β2Re
∞∑

m=1

fm( y) ejmx′
, fm( y) = −2jmCmKm(mR) e−jmφ. (6.3a,b)

By changing the t-derivative to x′-derivative, we solve the boundary-value problem (6.1)
for ϕw by the use of Fourier transform. The solution can be expressed as

ϕw(x, y, z, t) = −2β2Re
∞∑

m=1

gm( y, z) ejmx′
, (6.4)

where

gm( y, z) = −
∫

R

Fm(mk)√
1 + k2 − mβ2

em(
√

1+k2z−jky)dk, m ≥ 1, (6.5)

and −
∫

denotes the principle value integral which is chosen to satisfy the radiation condition
as |y| → ∞, and Fm(k) is the Fourier transform of fm( y) (derived in Appendix C).
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Replacing the argument k of Fm(k) by mk, we can write

Fm(mk) = jm−1Cm
1√

1 + k2
(k −

√
1 + k2)m e−mh

√
1+k2

. (6.6)

The wave-induced velocity due to ϕw is then obtained from (6.4) as

uw(x, y, z, t) = 2β2Re
∞∑

m=1

jmmCmGu(m,m, y, z) ejm(x−C0t), (6.7)

where Gu(m,m, y, z) is obtained from the vector Gu(m, n, y, z) = [G1,G2,G3] expressed
as

Gu(m, n, y, z) = −
∫

R

em[
√

1+k2(z−h)−jky] (k − √
1 + k2)n√

1 + k2

[−1, k, j
√

1 + k2]√
1 + k2 − mβ2

dk. (6.8)

Once ϕw is known, the wave elevation is given by η(x, y, t) = −ϒ2∂tΦ(x, y, 0, t). The
final result is

η(x, y, t) = ηh + ηw = Re
∞∑

m=1

[ηhm( y)+ ηwm( y)] ejm(x−C0t), (6.9)

where ηh and ηw denote the contributions from the vortex potential (ϕp + ϕi) and wave
potential (ϕw), respectively, and the modal amplitudes are given by

ηhm = −4hF2
r C0CmKm(mR) e−jmφ, ηwm = 2h2F4

r C3
0jmmCmG1(m,m, y, 0). (6.10a,b)

6.2. Resonant wave solution
Depending on the helix parameters and the value of Fr, the induced wave motion may
become resonant, and the associated wave solution then becomes unbounded. As the
present work assumes weak interactions between the free surface and the vortex filament,
the wave solution away from the resonance condition is valid, whereas the solution near
the resonance condition is invalid, for the stability analysis of the vortex filament.

Depending on the roots of the denominator of the integrand in (6.5), D(k) �
√

1 + k2 −
mβ2, the wave solution possesses characteristically different features. When mβ2 = 1,
D(k) possesses a double-root of k = 0. The integral in (6.5) becomes unbounded. Under
this critical condition, the associated mth mode forcing in Q is proportional to the
homogeneous solution of the boundary-value problem (6.1) for ϕw. The mth mode wave
motion is resonant and the magnitudes of the resulting fluid velocity (6.7) and free
surface elevation (6.9) become unbounded (within the context of linearised theory). By
examining the critical condition, it is clear that the resonance occurs at the critical Froude
number F(m) = C−1

0 (mh)−1/2 for any mode m ≥ 1. One notes that this critical condition
corresponds to U2/(gb∗) = C−2

0 m−1, indicating that the resonance condition is, in fact,
independent of the submergence h.

When Fr < F(m) (corresponding to mβ2 < 1), D(k) has no real roots and the
associated integral in (6.5) is definite. The integral can be evaluated by indenting
the integration path to the imaginary axis in the complex k-domain. In this case, the
wave-induced velocity in (6.7) and free surface elevation in (6.9) (for the mth mode) vanish
exponentially as y → ±∞.
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When Fr > F(m) (corresponding to mβ2 > 1), D(k) possesses two single roots k =
±k0, where k0 = (m2β4 − 1)1/2. With the consideration of the principal-value integration
at k = ±k0, the integral in (6.5) is definite and can again be evaluated through contour
indention in the complex k-plane. One notes that it is straightforward to show that the
choice of principal-value integration in (6.5) satisfies radiation condition as y → ±∞.
Following the classical method on the analysis of wave generation by an pulsating point
source, we introduce a small artificial damping factor (in time) to the mth mode forcing in
Q. After obtaining the solution of the boundary-value problem, we take the limit of the
solution by letting the damping coefficient approach zero. It then follows that the resulting
wave elevation behaves like ejm(x±k0y−C0t) as y → ±∞, which is consistent with the
radiation requirement that the generated waves propagate away from the vortex filament in
the ±y-direction.

For a given Fr > 0, the mth mode wave motion is resonant if Fr = F(m), and the wave
solution is unbounded (within the context of linearised theory). If Fr /=F(m) for all m
values, there exists a threshold mode number M = �β−2� such that mβ2 > 1 when m ≥ M,
where � � denotes the ceiling function. The total wave solution is the sum of the modes with
Fr < F(m) for 1 ≤ m < M, whose amplitudes exponentially decay in |y|, and those with
Fr > F(m) for m ≥ M, which have finite constant amplitudes at large |y|.

6.3. Free surface signature
From the derived wave-field solution, we characterise the distinctive free-surface features
induced by a submerged helical vortex, which are of practical importance and relevance in
understanding the free surface effect on the modified equilibrium form and instability of
the vortex filament.

6.3.1. Froude number effect on surface signature
We use the analytic solution derived above to highlight the characteristic features of
the induced free surface signature and its dependence on the Froude number. As an
example, consider a helical vortex filament with fixed geometry parameters a = 1.0 and
e0 = 0.1 and submergence H = 3. For this example, we have the critical Froude number
F(m) = (0.7955, 0.5625, 0.4593, 0.3978, . . .)h−1/2, for m = 1, 2, 3, 4, . . .. Figures 11
and 12 display the two components of the free-surface profile in the (transverse) y-direction
for ηhm and ηwm , respectively, for the first four modes (m = 1, 2, 3, 4) at a sample value
of Fr = 0.4/

√
3 (i.e. ϒ = 0.4). As shown in (6.10a), the amplitudes of ηhm( y) are seen

to decay exponentially with increasing y and m, indicating that the induced waves from
ηhm( y), m = 1, 2, . . . , are all confined in the local area of the vortex filament and are
dominated in magnitude by the lower modes. In addition, the parity of Re[ηhm( y)] with
respect to y is the same as the parity of integer m, whereas Im[ηhm( y)] has the opposite
parity.

As Fr < F(m) for m ≤ 3, ηwm has the same parity as ηhm , and the amplitudes of ηwm

exhibit the same exponentially decaying features in y as ηhm , see figure 12. Because Fr >
F(m) for m ≥ 4, the free-surface elevation ηw4 displays a wave-like profile at |y| � 1
with the amplitudes not decaying with increasing |y|. The parity of function ηwm( y) with
respect to y breaks, and the amplitude of the wave profile is greater on the y > 0 side.
Moreover, the magnitude of ηw4 is seen to be greater than that of ηw3 , indicating that the
monotonically decaying feature of the amplitude of ηwm( y) with m may not be obtained
once Fr crosses the value of F(m).
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Figure 11. Free-surface elevation component of ηhm/2π for the modes m = 1, 2, 3 and 4. The plotted curves
are: ——-, real part; and -·-·-, imaginary part of ηhm/2π. (Here a = 1.0, e0 = 0.1, H = 3 and Fr = 0.4/

√
3.)
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Figure 12. Free-surface elevation component of ηwm/2π for the modes m = 1, 2, 3 and 4. The plotted curves
are: ——-, real part; and -·-·-, imaginary part of ηwm/2π. (Here a = 1.0, e0 = 0.1, H = 3 and Fr = 0.4/

√
3.)

As (6.9) shows, the induced free-surface shape remains unchanged in a coordinate
system that moves at a constant speed C0 in the x-direction. The feature of the free surface
elevation η(x, y, t) is thus represented by its value at a sample time, say, η(x, y, 0). For
the same vortex geometry parameters and Fr values as in figures 11 and 12, figure 13
displays the 3D surface profile and two-dimensional (2D) contour plot of η(x, y, 0). In the
near field of the vortex filament with y = O(1), the surface pattern is dominated by the
one-dimensional (1D) wave (ηh1 + ηw1) ejx, which has a period of 2π in the x-direction.
In the far field with large |y|, however, the surface pattern becomes 2D and is dominated
by the wave mode ηw4 e4j(x±k0y). In this case, we have k0 ≈ 0.15 < O(1). The wave crest at
large |y| is nearly parallel to the y-axis as shown in the contours of η(x, y, 0) (figure 13b).

As Fr increases, the threshold mode number M = �β−2� causing 2D waves to appear
at large |y| reduces, and the wave feature in the y-direction becomes more apparent. For
a larger value of Fr = 0.6/

√
3, figure 14 shows the free-surface mode profiles of ηwm/2π

for m = 1, 2, 3 and 4, where the 2D wave patterns at large |y| appear for m ≥ 2 modes.
The wave amplitude is seen to decay rapidly with increasing m, as shown in figure 14. The
far-field wave is dominated by the critical M = 2 wave mode.

Figure 15 displays 2D contours of the total free-surface elevation η(x, y, 0) for different
Froude numbers Fr = 0.6/

√
3, 0.8/

√
3 and 1.4/

√
3, for fixed a = 1.0, e0 = 0.1 and H =

3. The periods of far-field stripe structure in the three subplots of figure 15 are π, 2π and
2π, respectively, due to the fact that F(2) < 0.6/

√
3 < F(1) < 0.8/

√
3, 1.4/

√
3. In the

Fr = 0.8/
√

3 case, because Fr ≈ F(1), the wave field is nearly resonant with the surface
elevation reaching the value of O(0.5). In the Fr = 1.4/

√
3 case, Fr is not close to any

F(m) and the amplitude of the total wave elevation decreases to O(10−2).
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Figure 13. (a) Three-dimensional profile and (b) two-dimensional contour plot of free-surface elevation
η(x, y, 0). (Here a = 1.0, e0 = 0.1, H = 3 and Fr = 0.4/

√
3.)
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Figure 14. Free-surface elevation component of ηwm/2π for the modes m = 1, 2, 3 and 4. The plotted curves
are: ——-, real part; and -·-·-, imaginary part of ηwm/2π. (Here a = 1.0, e0 = 0.1, H = 3 and Fr = 0.6/
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Figure 15. Contour plots of free-surface elevation η(x, y, 0) with Fr = (a) 0.6/
√

3, (b) 0.8/
√

3 and
(c) 1.4/

√
3. (Here a = 1.0, e0 = 0.1 and H = 3.)

6.3.2. Far-field wave properties
The above analysis suggests that the amplitude and propagation direction of waves in
the far-field regions of the helical vortex are dominated by the threshold mode M. The
leading-order term of the surface elevation is

ηwM

2π
= Re{A± ejM(x±k0y−C0t)}, (6.11)
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as y → ±∞, where

A± = 2h2F4
r C3

0(−j)M+1MCM e−M2β2h(Mβ2 ± k0)
Mk−1

0 , (6.12)

with k0 = (M2β4 − 1)1/2. It is clear from (6.12) that A± decay exponentially with
submergence h. The ratio of |A+| to |A−|, given by

RA = |A+|
|A−| = (Mβ2 + k0)

M

(Mβ2 − k0)M
= (Mβ2 + k0)

2M, (6.13)

is, however, independent of h. In addition, the wave propagating direction is controlled by
k0 which is also independent of h. Another observation from (6.13) is that RA > 1, which
means that the wave amplitude in +y direction is always greater than that in −y direction.
This non-symmetric property of the wave field, also seen in several figures in the preceding
section, is a direct result of the (right-)handedness of helical vortex we consider.

Inversely, we can deduce certain characters of submerged helical vortex based on the
properties of generated waves at the far fields. For example, suppose that the far-field
waves at the two sides of the submerged vortex filament have amplitudes |A1| and |A2|
(with |A1| > |A2|) as well as outward propagation directions k1 and k2, respectively. We
then have that the helix axis (x-axis in this study) has to be parallel to k1 + k2. Moreover,
we have k0 = tan θ0 with θ0 being the angle between k1 and the helix axis. The critical
mode number M and parameter β can be calculated from the relations: Mβ2 = (k2

0 + 1)1/2

and M = ln RA/[2 ln(Mβ2 + k0)] with RA = |A1|/|A2| > 1. The length scale (or pitch),
L = b∗, of the helical vortex is obtained from the relation 2πL = MΔd in terms of the
wavelength in the x-direction Δd. Furthermore, the radius and submergence of the helical
vortex can also be obtained from Fourier analysis of the wave elevations.

6.4. Wave-induced velocity on helical vortex
From the wave solution, we derive here the wave-induced velocity Uw on the primary
helical vortex. Substitution of the vortex coordinates x − C0t = ϕ, y = a cosϕ and z =
a sinϕ − h into (6.7) yields

Uw(ϕ) = 2β2Re
∑
m≥1

mCmjmGu(m,m, a cosϕ, a sinϕ − h) ejmϕ, (6.14)

where, for numerical evaluation, the series in (6.14) is truncated at some sufficiently large
m. Consistent with the accuracy of the induced velocity by the image of the vortex, we
consider terms in Uw up to O(ε2) only. By the use of the Jacobi–Anger expansion (DLMF
2021), we can further expand Uw in the form

Uw(ϕ) = Re
∑
m≥1

∑
n∈Z

B(m, n) ej(m+n)ϕ, (6.15)

where
B(m, n) � 2β2 mCmIn(ma)jm+nGu(m,m − n, 0,−h). (6.16)

Figure 16 shows the variation of logε |B(m, n)| for different Froude numbers with fixed
helical vortex parameters a = 1.0, e0 = 0.1 and submergence H = 3. For all Fr values
considered, |B(m, n)| decreases rapidly as m and/or |n| increases, with |B(1, 0)| being
dominant. Systematic numerical evaluations show that all the modes of B(m, n) except
for B(1, 0) have the magnitude of O(εν) with ν ≥ 3. We thus keep the mode B(1, 0)
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Figure 16. Magnitude of logε |B(m, n)| with fixed a = 1.0, e0 = 0.1 and H = 3 but different Fr.

only in the determination of Uw. By denoting B(1, 0) = [B1,B2,B3], we express the three
components of the wave-induced velocity Uw as

Uw = jb1(ejϕ − e−jϕ), jVw − Ww = ejϕ(b0 + b2 e−2jϕ), (6.17a,b)

with the coefficients given by

b1 = −1
2 jB1, b0 = −1

2 (B3 − jB2), b2 = −1
2 (B3 + jB2). (6.18a–c)

The related coefficient scalars and vectors, defined in § 3.1 for the determination of
equilibrium form and stability analysis in the Fr > 0 case, take the explicit form

Uw,0 = 0, Vw,0 = b0, Cw,m =
{

−jb1[1, 0, 0]T, m = 1,

−b2[0, 0, 1]T, m = 2.
(6.19a–c)

7. The Fr > 0 (free surface) case: stability analysis

We finally present and discuss the results of the equilibrium form and stability of a helical
vortex submerged beneath a (deformable) free surface, with Fr > 0. The focus is on the
dependence of the results on Fr due to the free surface effect.

7.1. Equilibrium configuration
To satisfy the constraint (3.6), the average radial velocity in a full helix turn at
the equilibrium state must be zero. This requires that 〈V cosϕ + W sinϕ〉 = Im〈(jV −
W) e−jϕ〉 = 0. From (6.17b), this condition then leads to Im[b0] = 0. From (6.16), we have
B(1, 0) ∝ jGu(1, 1, 0,−h) where

Gu(1, 1, 0,−h) = −
∫

R

e−2h
√

1+k2
(

k√
1 + k2

− 1
)

[−1, k, j
√

1 + k2]√
1 + k2 − β2

dk. (7.1)

It follows from (7.1) that B3 is pure real whereas B1 and B2 are pure imaginary when
β < 1. Consequently b0, b1 and b2 are pure real. When β > 1, however, all components
of B(1, 0) are complex. As a result, the modified equilibrium configuration of submerged
helical vortex exists only for β ∈ (0, 1) (or Fr < F(1)).

Under the condition 0 < β < 1, the equilibrium form of a helical vortex submerged
beneath the free surface can be obtained with the geometric configuration and translational
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Figure 17. Relative curvature Δκ (——-) and relative torsion Δτ (-·-·-) for a helical vortex under the free
surface with fixed e0 = 0.1 and H = h/a = 3 but varying a and Fr: (a) a = 0.5, β = 0.6; (b) a = 0.5, β = 0.8;
(c) a = 1.0, β = 0.8; and (d) a = 2.0, β = 0.8.

and rotational velocities given by[
x

y + jz

]
=

[
θ + U0t

a ejϕ − jh

]
+

[
0
v̂t

]
+

∑
m=±1,±2

[−jχ̂m
ξ̂m ejϕ

]
ejmϕ + O(ε3), (7.2)

ϕ = θ +Ωt, Ω = Ω0 + ω̂, ω̂ = −a−1b0, (7.3a–c)

[χ̂1, ξ̂1, jv]T = −jb1[A0(1)+ E33]−1[1, 0, 0]T, v̂ = −a−1ε + v, (7.4a,b)

[χ̂2, ξ̂2, ξ̂−2]T = −(a−1ε2 + b2)[A0(2)]−1[0, 0, 1]T. (7.5)

This solution clearly reduces to (5.3) in the special case of Fr → 0. Compared with the
Fr → 0 case, the most significant feature is that the angular velocity of vortex is modified
by ω̂ = −a−1b0 due to the wave effect. Moreover, it is straightforward to show by means
of (7.1) that b0 < 0, which leads to ω̂ > 0. As shown in figure 2, Ω0 changes the sign
from negative to positive as a varies from near zero to a large value. The wave effect
is thus found to increase/decrease the rotational speed of helical vortex for small/large
slope (l = a−1). In additional to the modification of rotational speed, the translational
velocity in the y-direction and m = ±2 geometric modes are also altered whereas the m =
±1 modification modes are newly introduced to the vortex configuration due to the wave
effect.

Figure 17 displays Δκ and Δτ for the helical vortex with fixed e0 = 0.1 and H = 3,
with different combinations of a and Fr. As can be seen, Δκ and Δτ are approximately
O(10−1) in magnitude, indicating the geometry difference between the modified and
original vortex filaments are small in most cases. In addition, compared with the Fr → 0
case, the periods of both curvature and torsion change from π to 2π due to the production
of m = 1 modification mode by the wave effect. To further characterise the wave effect
on vortex geometry modification, we define Dκ = maxθ∈[0,π] |Δκ(θ)− Δκ(θ + π)| and
Dτ = maxθ∈[0,π] |Δτ(θ)− Δτ(θ + π)|, which are equal to zero in the Fr → 0 case. As
shown in figures 17(a) and 17(b), both Dκ and Dτ increase with Fr because stronger wave
motion is achieved at greater Fr. Because the wave motion decays exponentially with
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Figure 18. Maximum growth rate σR as a function of r ∈ [0, 1/2] for varying Froude numbers but fixed
vortex geometry parameters a = 1.0, e0 = 0.1 and H = 3.

submergence h, Dκ and Dτ are seen to become smaller as a increases (for fixed H value),
as is evident when comparing the results in figures 17(b), (c) and (d).

7.2. Stability results (β < 1)

7.2.1. Froude number effect
Due to the wave effect, perturbation-related Fourier mode k interacts with modes k ±
1 in addition to k ± 2 modes. As a result, the odd modes 2k + 1 + r and even modes
2k + r are coupled. In the stability analysis, both even and odd Fourier modes in (3.22)
need to be considered in the representation of perturbations. The stability result for r ∈
[1/2, 1] is symmetric in r with respect to r = 1/2, and we need to consider the stability
for r ∈ [0, 1/2] only. The truncated coefficient matrix M is a pentadiagonal block matrix
containing all perturbation modes k + r with |k| ≤ K. For the results presented in this
section, K = 2N = 6 is chosen.

For numerical evaluation, we consider a vortex filament with fixed geometry parameters
a = 1.0, e0 = 0.1 and H = 3, and calculate the maximum growth rate σR(r,H, β)
of unstable modes for different values of r and β. Figure 18 shows the results for
representative values of β = 0, 0.4, 0.6 and 0.8. The curves of σR for different β are seen
to coincide with each other when r >≈ 0.1, indicating that the Froude number effect is
weak for perturbation modes with large r. On the other hand, σR for perturbation modes
with r < 0.1 increases significantly with Froude number. Such a strong Froude number
effect is especially apparent for the super-harmonic perturbations (with r = 0), which are
now unstable in contrast to their stability in the Fr → 0 case.

Figure 19 compares the features of σR obtained with different values of a and H with two
fixed β = 0 and 0.6. The results in figure 19 again indicate that the wave effect on growth
rate σR is noticeable only for perturbations of small mode number r (corresponding to
long sub-harmonic perturbations), and most significant for super-harmonic (r = 0) modes.
Moreover, the wave effect is shown to be more significant for smaller submergence, as
expected, because the induced wave motion decays exponentially with submergence. For
the same reason, σR is weakly dependent on β for large a, but increases rapidly with β for
small a, as observed in figures 19(c) and 19(d).
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Figure 19. Maximum growth rate σR as a function of perturbation mode number r for β = 0 and 0.6 with
various vortex filament parameters: (a) a = 1.0, e0 = 0.1, H = 2.5; (b) a = 1.0, e0 = 0.2, H = 2.5; (c) a =
2.0, e0 = 0.1, H = 3; and (d) a = 0.5, e0 = 0.1, H = 4.

7.2.2. Reduced-order model for growth rate of r = 0 perturbation mode
The above results indicate that the wave effect on the helical vortex stability is most
noticeable for the r = 0 perturbation mode. It is of practical interest in the study of vortex
dynamics under free surface to provide a simple approximate formula for the estimate of
the growth rate of this significant unstable mode in term of Fr and helix parameters. In
this subsection, we develop a reduced-order model to describe the quantitative relation
between σR(r = 0) and β for the r = 0 perturbation mode.

In figure 20, we plot σR(r = 0) as a function of β for fixed a = 1.0, e0 = 0.1 and H = 3.
It is seen that the vortex filament becomes unstable as β increases beyond the critical value
β0, with the growth rate increasing dramatically to infinite as β approaches the resonance
condition β = 1. This feature of the solution is similar to that of σR(r, ε) of r > R2 modes
in the Fr → 0 case. We thus expect that the critical condition β = β0 corresponds to the
eigenvalue with multiplicity 2 of coefficient matrix jM . One also notices that among all
β-related terms in the evolution equation (3.31), only the alteration of rotational speed ω̂
appears in the main diagonal of truncated coefficient matrix M . These imply that ω̂ is the
major factor through which the wave influences the stability of modified vortex filament.
We plot σ 2

R as a function of ω̂ in the inset of figure 20, from which σ 2
R is seen to be linearly

proportional to ω̂ when ω̂ exceeds the critical value ω0. This feature can be represented by
the formula

σR(0,H, β) = ζ1(H)[ω̂(H, β)− ω0(H)]1/2, β ≥ β0(H), (7.6)

where ω0(H) = ω̂(H, β0(H)) is the threshold of ω̂ to destabilise the vortex filament, and
the coefficient ζ1(H) embodies the strength of instability which depends on the vortex
geometry parameters such as radius and submergence.

To find the dependence of ζ1 and parameters β0 and ω0 on submergence H, we plot
in figure 21 ζ1, β0 and ω0 as functions of H for two sets of vortex geometry parameters
(a, e0) = (1.0, 0.1) and (0.3, 0.1). Interestingly, it is observed that ζ1(H) ≈ ζF with ζF
being dependent on the radius and core size but nearly independent of H in both cases.

We find that ζF can be estimated by a simple formula. To derive the formula, we ignore
all the terms that come from the wall and wave effects except for the alteration of rotational
speed ω̂ in the governing evolution equation for the r = 0 perturbation mode. With this,
we obtain the evolution equation

ẏ0(t) = jM(0)y0(t), (7.7)
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Figure 20. Maximum growth rate σR(r = 0) as a function of β ∈ [0, 1) in the case with vortex parameters
a = 1.0, e0 = 0.1 and H = 3.
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Figure 21. Model coefficients ζ1, β0 and ω0 as a function of H for a helical vortex filament with: (a) a =
1.0, e0 = 0.1; and (b) a = 0.5, e0 = 0.1. The prediction of ζ1 by the simple model ζF = √

I2 is shown for
comparison.

where the coefficient matrix takes the form

M(0) = A0(0)+ A1(0) = 1
2

⎡
⎣0 I1 I1

0 I2 I2
0 −I2 −I2

⎤
⎦ +

⎡
⎣0 0 0

0 −ω̂ 0
0 0 ω̂

⎤
⎦ , (7.8)

with I1 and I2 given by

I1 = ∂aU0 = aJ0[1 − cos λ] − 3a3J1[(1 − cos λ)2], (7.9)

I2 = a∂aΩ0 = 3a2J1[(1 − cos λ)(cos λ− 1 + λ sin λ)]. (7.10)

The characteristic polynomial of jM(0) is f (ω̂, σ ) = σ(σ 2 − I2ω̂ + ω̂2). As shown in
figure 2, Ω0 monotonically increases with a in the interval a ∈ (0, 3) when e0 ≤ 0.3.
We thus have I2 = a∂aΩ0 > 0. The eigenvalues are found to be σ0 = 0 and σ± =
±

√
I2ω̂ − ω̂2 ≈ ±

√
I2ω̂ (because ω̂ � 1). This gives the growth rate of the r = 0
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Figure 22. Model coefficients (a) ζF and (b) β0 as a function of helical vortex radius a for representative
values of vortex filament core size e0 and submergence parameter H.

perturbation mode σR =
√

I2ω̂ from which we obtain ζF = √
I2. The prediction of ζF by

this simple formula compares well with the numerical solution in figure 21.
From figure 21 it is also seen that ω0 decreases rapidly to near zero as the submergence

parameter H = h/a increases. This is consistent with the fact that the terms characterising
the boundary effect in the evolution equation of perturbations are of order O(h−2) (or
O(e−h)), which vanishes at large h. The fact that ω0 is near zero at deep submergence
indicates that a small alteration of rotational speed (e.g. due to Fr effect) can cause a
deeply submerged vortex to become unstable. Unlike ω0, β0(H) does not show a robust
monotonic dependence on H, as shown in figure 21. For a = 1, β0 increases monotonically
with increasing H, whereas for a = 0.5 it first decreases with H (at relatively shallow
submergence) and then reverses to increase with H (at deep submergence). This feature of
β0(H) can be explained qualitatively. Based on (6.16) and (7.1), we have ω̂ ∼ g̃(a)β2(1 −
β2)−1 e−2h, where g̃(a) = I′

1(a)I0(a). This leads to h−2 ∼ ω0 ∼ g̃(a)β2
0 (1 − β2

0 )
−1 e−2h,

from which we obtain β0 ∼ [1 + g̃(a)h2 e−2h]−1/2. We thus have ∂Hβ0 ∝ aH − 1, which
indicates that for fixed radius a, β0 decreases with H for H ∈ (0, a−1) but increases with
H for H ∈ (a−1,∞).

Finally, in figure 22, we show the model parameter values of ζF and β0 for a wide
range of helical vortex radius a with several representative values of core size e0 and
submergence parameter H. As a increases, ζF first grows and then decreases, whereas β0
first decreases and then increases. The dependence of β0 on a is consistent with the simple
model prediction discussed previously. From the variations of ζF and β0 with a, it is seen
that the helical vortex with moderate helix angle is most unstable under the influence of
free surface. Moreover, both ζF and β0 possess a weak dependence on core size e0. Recall
that for most vortex filaments studied here, the r = 0 perturbation mode is the only stable
perturbation mode when β < β0, therefore we could regard figure 22(b) as the stability
diagram of a helical vortex in the free surface case.

8. Conclusions

We have performed a theoretical investigation of the stability of a helical vortex of infinite
extent under an infinite horizontal free surface, in the context of an ideal fluid. The effect
of the deformations on the free surface is controlled by the Froude number Fr based
on the submergence depth. We have considered the general problem first for Fr → 0
corresponding to a rigid non-deforming wall (and for which the helix in unbounded fluid
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is a special case for infinite submergence depth); and then for Fr > 0 where, in addition to
the final stability, the wave features on the free surface is also of interest.

In the Fr → 0 rigid wall case, we have accounted for the interaction between the vortex
and the surface boundary, up to O(ε2) in the inverse of the distance of the vortex from the
boundary, to obtain the modified equilibrium form of the vortex, about which the linear
stability is analysed. It has been found that, as in the unbounded fluid case, the vortex is
stable to the super-harmonic perturbations. For the sub-harmonic perturbations, however,
the presence of the rigid wall destabilises (or stabilises) the vortex to relatively short- (or
long-)wave disturbances. Depending on the distance from the wall, the instability due to
the wall effect can be stronger than that from the self-induced flow effect. Such a wall
effect is found to be generally stronger for the helical vortex with smaller helix angle. The
instability has a weak dependence on the core size of the vortex filament with the growth
rate slightly reduced by increasing core size, as in the unbounded fluid case.

For Fr > 0, we derive the wave solution induced by the submerged helical vortex,
based on linear wave theory. In general, the wave field consists of two wave systems.
One is 1D waves that propagate at speed C0 along the longitudinal (x-)direction of the
helical vortex with the wave amplitude vanishing at large distance from the vortex in the
transverse direction (|y| � 1). The other is 2D oblique propagating waves with the wave
amplitude approaching a constant in the far field of |y|. Moreover, we find that there exists
a number of critical Froude numbers F(m), m = 1, 2, . . ., at which the corresponding mth
wave mode (whose wavelength in the longitudinal direction is equal to 1/m helix pitch)
becomes resonant and the resulting wave motion becomes unbounded. The resonance
condition is given by the relation hF2

r = C−2
0 m−1 which happens to be independent of

the submergence.
For the stability analysis, upon taking into account the leading-order wave-induced

velocity on the helical vortex, we find that the modified equilibrium form can exist if
and only if Fr < F(1). When Fr > F(1), the wave induces a non-zero mean velocity on
the vortex filament in the radial direction, leading to a constant increase or decrease of
vortex radius. The results of the stability analysis show that, unlike in the infinite fluid and
rigid wall cases, the wave effect destabilises the vortex to super-harmonic perturbations
and sub-harmonic long-wave perturbations. The destabilisation of the vortex is caused by
the modification of rotational speed of the vortex due to the wave effect, which is generally
stronger for larger Fr and smaller helix angle.

We finally remark that it is of interest and importance to compare the theoretical stability
results with direct simulation results. The comparison with direct simulations (using
arbitrary high-order pseudo-spectral method) is currently being undertaken but is beyond
the scope of this paper.

Supplementary material. Supplementary material are available at https://doi.org/10.1017/jfm.2022.112.
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Appendix A. Magnitude of image-induced velocity Ui = Re[u0 + ui
1yi]

A.1. Term u0 related to unperturbed vortex
From (4.30a), we have u0 = ∑

n≥0 Ln[anû0], which represents the contribution from the
image of unperturbed helical vortex. To estimate the magnitude of u0, we retain algebraic
terms but neglect exponentially decaying terms in submergence H � 1. It follows from
Basset’s integral that all harmonic terms of λ in anû0 lead to exponentially decaying
functions of H. We thus need to analyse only the non-harmonic terms in anû0.

Letting ũ = (2jH − ejϕ) ejϕ and l̃ = 2(1 − 2H sinϕ), we have L̂0 = a2(l̃ + ũ ejλ +
¯̃u e−jλ) and û0 = a2(1 + ũ ejλ), leading to

anû0 = Cn
−3/2 a2n+2(1 + ũ ejλ)(l̃ + ũ ejλ + ¯̃u e−jλ)n, (A1)

from (4.26a). Clearly, only the non-harmonic terms in (A1) are the constant terms.
For any holomorphic complex function g(z) defined on annular R−1 ≤ |z| ≤ R with

R > 1, the constant term D0(g) in its Laurent series can be determined

D0(g) = 1
2πj

∮
|z|=1

z−1g(z)dz. (A2)

Using (A2) and the relation Ln(1) = (−1)n(2h)−2(n+1)/Cn
−3/2, we have

Ln[anû0] = ε2D0{(1 + ũz)[−ε2(l̃ + ũz + ¯̃uz−1)]n}. (A3)

Upon exchanging summation and integration in u0, we obtain

u0 = ε2D0

{
(1 + ũz)

∞∑
n=0

[−ε2(l̃ + ũz + ¯̃uz−1)]n

}

= ε2D0{(1 + ũz)[1 + ε2(l̃ + ũz + ¯̃uz−1)]−1} = D0

(
z

z + ¯̃u

)
= 0. (A4)

This shows that u0 is negligibly small for H � 1 as it decays exponentially with
submergence H.

A.2. Term ui
1yi related to perturbations

As an, bi
n ≤ O(ε−n), û0, ûi

1 ≤ O(ε−1) and Ln = O(ε2n+2), we have Ln[anûi
1 + û0bi

n] ≤
O(εn+1). Upon neglecting all terms higher than O(ε2), we obtain

ui
1 = L0[ûi

1] − 3
2L1[L̂0ûi

1 + Li
1û0]. (A5)

To analyse the magnitude of ui
1, we again retain algebraic terms and discard all

exponentially decaying terms in H that do not degenerate to algebraic terms.
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When i = 1, we have

û1
1 = 0, L1

1 = −2jλpm, û0 = a2(1 + ũ ejλ) = ja2ε−1 ejϕ ejλ + O(1). (A6a–c)

Substitution of these into (A5) yields

u1
1 ≈ −3a2ε−1 ejϕL1[λ(ej(m+1)λ − ejλ)] ≈ 0. (A7)

When i = 2, the n = 0 term is

L0[û2
1] = aL0[(m + 1)ũ ej(m+1)λ + (m + 1) ejmλ − e2jϕ ejλ]

≈ aL0[ejmλ] = a
2h

|m|K1(2|m|h). (A8)

For the n = 1 term, we have L̂0 ≈ 2jah[ejϕ p̂1 − e−jϕ ¯̂p1], û0 ≈ 2jah ejϕ ejλ, û2
1 ≈ 2jh(m +

1) ejϕ ej(m+1)λ, and L2
1 ≈ 2jh ejϕ p̂m+1, with which we obtain

L1[L̂0û2
1 + L2

1û0] ≈ −4ah2L1[(m + 1) e2jϕ(ej(m+2)λ + ej(m+1)λ)

− (m + 1)(ejmλ + ej(m+1)λ)+ e2jϕ(ej(m+2)λ + ejλ)]

≈ 4ah2L1[ejmλ] = a
3

m2K2(2|m|h). (A9)

Substitution of (A8) and (A9) into (A5) yields

u2
1 = a

2h
|m|K1(2|m|h)− a

2
m2K2(2|m|h), (A10)

which can be easily shown to vanish exponentially with increasing h for any m. By the
similar analysis, we can show that u3

1 ≈ u2
1 ≈ 0. With u1

1, u2
1, u3

1 ≈ 0, we thus obtain
ui

1yi ≈ 0.

Appendix B. Eigenvalue of coefficient matrix A0(m)

We derive the eigenvalue and eigenvector of A0(m) for any m ∈ R. For an unperturbed
helical vortex filament with the geometric configuration of x = α and y + jz = a ejα for
α ∈ R, the self-induced velocity components are known from (4.12) and (4.16) to be

Us = U0, jVs − Ws = −aΩ0 ejα. (B1a,b)

Substitution of α = θ + μ ejmθ + μ̄ e−jmθ , where |μ| � 1 and m ∈ R, yields a modified
helical vortex with the equilibrium configuration given by

x = θ + μ ejmθ + μ̄ e−jmθ , y + jz = a ejθ [1 + jμ ejmθ + jμ̄ e−jmθ ], θ ∈ R, (B2a,b)

and the self-induced velocity up to order O(|μ|) in the form

Us = U0 + j{μ ejmθAu(m)+ μ̄ e−jmθAu(−m)} · [1, a,−a]T,

jVs − Ws = −aΩ0 ejθ + j ejθ {μ ejmθAv(m)+ μ̄ e−jmθAv(−m)} · [1, a,−a]T.

}
(B3)

By comparing (B1) and (B3), we obtain

Au(m) · [1, a,−a]T = 0, Av(m) · [1, a,−a]T = −aΩ0, ∀ m ∈ R. (B4a,b)

From (B4), (3.19) and (3.20), it follows that

A(m)[1, a,−a]T = 0, A0(m)[1, a,−a]T = −mΩ0[1, a,−a]T, ∀ m ∈ R. (B5a,b)

This indicates that −mΩ0 is the eigenvalue of matrix A0(m) with the corresponding
eigenvector of [1, a,−a]T.
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Appendix C. Fourier transform of function Kn(mR) e−jnφ

For function fm(n, y, z) = Kn(mR) e−jnφ , z ≥ 0, where m ∈ N, n ∈ Z, and R ≡
√

y2 + z2

and φ ≡ arctan(z/y), we find its Fourier transform coefficient

Fm(n, k, z) = 1
2π

∫
R

fm(n, y, z) ejkydy. (C1)

As Fm(−n, k, z) = Fm(n,−k, z) for any n ∈ Z, we need to consider n ≥ 0 only. By the
recurrence relations of modified Bessel functions (DLMF 2021), we have the relation

(∂y − j∂z)fm(n − 1, y, z) = −mfm(n, y, z), (C2)

for n ∈ Z. Substituting (C2) into (C1) and using integration by parts, we have

Fm(n, k, z) = − 1
m

1
2π

∫
R

(∂y − j∂z)fm(n − 1, y, z) ejkydy

= jm−1(k + ∂z)Fm(n − 1, k, z). (C3)

Using this recurrence relation starting from n = 1, we obtain

Fm(n, k, z) = (jm−1)n(k + ∂z)
nFm(0, k, z), (C4)

from which we find Fm(n, k, z) for any n > 0 from Fm(0, k, z).
By the use of integration representation of Kν(z) (DLMF 2021)

Kν(z) = 1
2

( z
2

)ν ∫ ∞

0
exp

(
−t − z2

4t

)
dt

tν+1 , (C5)

we obtain

Fm(0, k, z) = 1
2π

∫
R

K0(m
√

y2 + z2) ejkydy

= 1
4π

∫ ∞

0
exp

(
−t − m2z2

4t

)
dt
t

∫
R

exp
(

−m2

4t
y2 + jky

)
dy

= 1
2
√

π
(m2 + k2)−1/2

∫ ∞

0
exp

[
−t − z2

4t
(m2 + k2)

]
dt√

t
. (C6)

Using the identity ∫ ∞

0
exp

(
−t − z2

4t

)
dt√

t
= √

π e−z, (C7)

we obtain

Fm(0, k, z) = 1

2
√

m2 + k2
exp(−z

√
m2 + k2). (C8)

Substitution of this solution into (C4) yields

Fm(n, k, z) = jnm−n

2
√

m2 + k2
[k −

√
m2 + k2]n e−z

√
m2+k2

. (C9)

It is straightforward to verify that (C9) also holds for n < 0. Thus, formula (C9) holds for
n ∈ Z.
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