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ABSTRACT 

It has been demonstrated that if a particle is accelerated in an electromagnetic 
field between two points designated by subscripts (i) and (2), the particle will 
gain energy in passing from (1) to (2) provided that the quantity J defined by 

j-s-(U -U )2-2 ^ [s^-dt 
J~s ds[Us2 Usl) 2 dt J 6 ds d 

is positive, where ds is an element of path, Usl and Us2 are the initial and final 
values of the vector potential along the path, and t is the time. Moreover, if the 
particle is at rest at the point (1), its energy W2 at the point (2) is such that 

Wx>e\{U*-UJ\, 
here e is the charge on the particle. 

A study has been made of the problem in which the motivating agency 
responsible for the electromagnetic field is a toroid with currents circulating 
in such fashion as they would circulate if the anchor ring of the toroid were 
wound with a wire in which a current decayed with time. The particular 
case studied is that where a particle moves along the axes of symmetry, and 
dimensions are chosen of astronomical size such as to make them apply to such 
phenomena as are observed in certain nebulae. 

The magnitudes chosen are as follows: 
a = Radius of cross section of the toroidal winding = 1 light year. 
r0 = Mean radius of toroid = 2000 light years. 

HQ = Initial field in the toroid = io~3 gauss. 
v/a = Time for the current to decay to i/e of its initial value = 1000 years. 
With the above assumptions, a particle of electronic charge, starting from the 

center of the toroid and travelling along the axes of symmetry would acquire 
an energy in excess of 3 x io14 eV. 

* Supported in part by the joint program of the Office of Naval Research and the U.S. 
Atomic Energy Commission. 
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The general theory of acceleration of charged particles by magnetic 
induction invokes the application of Lagrange's equations to a Lagrangian 
function for a charge in an external electromagnetic field defined by a 
vector potential U and a scalar potential <fi. In many problems <f> is zero 
and the Lagrangian function becomes 

Z = - m 0 ^ 2 ( i ~ ^ 2 ) 1 / 2 + - ( U . u ) . (i) 

The magnetic field H, and the electric field E are given by 

H = c u r l U ; E = - - ^ . (2) 
c at w 

In many problems of changing magnetic fields it is possible, rather 
readily, to calculate line integrals of the electric field E along assigned 
paths, but such calculations are of no avail for calculating increase of 
particle energy unless we can show that the particles can describe paths 
such as to make use of the line integrals to the end of acquiring energy 
continually, at least over sufficiently long periods of time. The complexity 
of the particle motions is such that, usually it is not practicable to seek 
solutions for energy increase by calculating the path and calculating the 
increase of energy as the particle traverses it. In view of the foregoing con
siderations it is useful to develop criteria for continual increase of energy, 
and theorems which give information as to lower limits of energy attained 
in certain specified cases. A few of these matters are discussed in the 
following. 

1. ' G E N E R A L C O N S I D E R A T I O N S P E R T A I N I N G T O T H E C O N 
T I N U A L INCREASE OF ENERGY OF A PARTICLE STARTING 

FROM REST IN AN ELECTROMAGNETIC FIELD 

It is clear that the particle, starting from rest, will move initially so as 
to make an acute angle with the electric field, i.e. with the vector 

-(ilc)(d\Jldt). 
As long as it continues to move so as to make an acute angle with the 
positive direction of E, the energy will continue to increase. I t can only 
decrease by the motion developing a character in which the particle makes 
an obtuse angle with E, so that it has a component opposite to E. In order 
to acquire this condition, however, it would have to pass through a con
dition, at some point P, in which it moved perpendicular to E at the point. 
If there were no magnetic field, it certainly could not pass through this 
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latter condition because, at the point P, the particle would have acting on 
it a field tending to increase the component velocity parallel to E, and so 
to bring the particle's path back to the condition in which it made an acute 
angle with E. 

If there is a magnetic field when the particle is at P, with its path per
pendicular to E, there will arise from this magnetic field a force v x H/c 
perpendicular to v and parallel to E. This force may be in the direction of 
E or in the opposite direction, depending on the circumstances. If, however, 
| E | > | H |, we shall certainly have | E | > | v x H/c | so that even if v x Hjc 
is in the opposite direction to E, the resultant force will be in the direction 
of E and will bring the particle back to the condition in which its path 
makes an acute angle with E, and so the particle gains energy at P. 

The condition | E | > | H | as a criterion for continual gain of energy is 
thus sufficient* but not always a necessary condition for continual increase 
of energy. 

There is one exception to the above theorem. It is to be found in the case 
where the particle passes through a place where E reverses sign. In this 
case, the argument fails. An example is to be found in the case of a particle 
traveling along the general direction of propagation of a plane wave. It 
will be acted on by the field of the wave, which will oscillate in sign along a 
direction perpendicular to the general direction of the particle, and indeed, 
in this case the particle will alternately gain and lose energy. Of course, in 
the plane wave we have cited we have H = E at all times, so that, strictly 
speaking, the test of our theorem is too severe. However, we are certainly 
on the safe side if we exclude from the theorem cases where the particle 
passes through a place of reversal of E. 

Concerning the looping of a particle around a line 
If | E | > | H |, or less stringently, if the path of the particle always makes 

an acute angle with E, the particle can never describe an angle 2zr around 
any line, OP, unless there is a finite line integral of E (at the particle) 
taken along the path of the particle projected in a plane perpendicular to 
OP. The reason is as follows: In the light of the hypothesis, there is a finite 
component of E in the direction of the projected path at each point thereof, 
and therefore, if the projected path curves through an angle 27r, E (at the 
particle) projected on that path will have a finite line integral taken over 
the range 27r. 

* The sufficiency of the condition for an axially symmetrical field with the z and r components 
of U zero, was established in the writer's first paper on this subject[l]. A simplified version of the 
theory is given by the writer in [2]; also in a later paper, 'The Acquirement of Cosmic Ray 
energies by Electromagnetic Induction in Galaxies'[3]. 
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The lower limit of the energy gained along a path 
If T'is the kinetic energy of the particle, and W= T+mc2, it is readily 

possible, by the application of Lagrange's equations, to show that 

W\-W\ = *(U„-U.tf+\\fi^ (Us-Usl)*-2e*d-£jsd-£dt^ dt, 

(3) 
where U8 refers to the vector potential resolved along the direction of the 
path, at an arbitrary point on the path, s is the velocity along the path, 
subscripts (i) and (2) refer respectively to values at the point occupied at 
£ = 0 and the point occupied at some later time. If we define J as 

7 - i £ W-IU--. ? £ J i ^ * (4) 
then, in cases where, at all instants, J is positive, we can write 

W%-W\>e*{Us2-Usiy. 
In cases where the particle starts from rest and where, for large kinetic 

energies, mc2 is neglected, this expression assumes the simple form 
\W2\>e\(Us2-Usl)\. (5) 

This relation is of value in certain cases. 

2. CASE OF AN A X I A L L Y SYMMETRICAL FIELD, IN WHICH 
THE VECTOR P O T E N T I A L U HAS NO COMPONENT 

ALONG T H E r OR Z DIRECTIONS 

The case cited has many interesting features, some of which have been 
developed by the writer in a paper [3]. We shall summarize a few of these. 
It results from Lagrange's equations that 

2 dt 6\Ue r ) dt> W 

where r0 U0 apply at the instant and position when the particle commences 
to change its kinetic energy. 

Criteria for continual increases of energy in the axially symmetrical case 
Confining ourselves, without loss of generality, to the case where dUeldt 

is positive, we see that the necessary condition for continued increase of 
energy is ~ 77 

U,-r-&>o (7) 
except at t = o. 
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A sufficient, but not always a necessary condition for (7) to hold is that, 
for all positions of the particle 

dt (rUd-r0U0)>o 

or, since r0 U0 is a constant -j {rUe) > o. 

It can readily be shown that 

d 
dt (rUe) = [-Ee-(vxH)elcl 

(8) 

(9) 

Fig. 1 

where v is the velocity of the particle. Since -Ed ( = dUejdt) is positive, a 
sufficient, but not always necessary, condition for (8) to be true is therefore 

| £ , | > | H | , (10) 

which is a condition already cited for the more general case in which axial 
symmetry is not demanded. Thus conditions (7), (8) and (10) stand in 
order of stringency. Condition (10) is sufficient for (7) and (8). Condition 
(8) is sufficient for (7), while (7) is necessary and sufficient. 

Case where, in axial symmetry, the particle starts from rest at the place and instant 
when Ue = o 

In this case, (6) becomes 
dW* | 3 / r n . 

so that the energy in this case increases continually under all circumstances. 
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Criterion for absence of'looping', in the case of axial symmetry 
We have seen that (7) is the necessary and sufficient condition for con

tinual increase of energy. Now it can readily be shown from Lagrange's 
equations that r . /rT 

H rWd=-ce{Ud-r0U0lr). 

Hence, if there is continual increase of energy, 6 must always be of the same 
sign and finite. Thus, in such a case, the particle can never ' loop ' , except 
aroung the z-axis; for if the particle should loop in any other manner, there 
would have to be a place where 6 was zero. 

Mechanisms in which there is no magnetic field in the space surrounding the motivating 
currents when those currents are steady 

Tempting problems are presented by the discussion of an infinite solenoid, 
and by an anchor ring-winding. Here, there is no external magnetic field 
in the steady state, and even if the currents vary with the time, the magnetic 
field remains small for slow variations, in spite of the existence of a very 
definite electromotive force over a path encircling the solenoid outside 
thereof, or encircling the anchor ring so as to thread it.* If we could neglect 
the external magnetic field completely on such problems, we should always 
have I E I > I H I and the sufficient criterion for continual gain of energy 
would be assured. 

Although, in cases of the type cited, there is no magnetic field in the 
space surrounding the motivating currents when these currents are steady, 
there certainly is some magnetic field when the currents vary with the time. 
This can most readily be seen from the electromagnetic equations for free 
space, which demand a finite value for curl H and so for H if there is a 
finite value for dE/dt. In free space we have in fact, all of the electromagnetic 
vectors, E, H, U, obeying the wave equation; and, as far as our interests 
are concerned, we need confine our attentions only to the wave equation 
for U. 

T72TT l d*U 

* In such problems, the role of the vector potential presents a more realistic picture of the 
origin of the electric field at a point than does the behavior of the magnetic field. Thus, in the 
steady state problem for a solenoid, there is no magnetic field at a point P outside the solenoid, 
but there is a very definite vector potential. It is true that the Faraday law survives to the extent 
of predicting that around a path encircling the solenoid there is an electromotive force equal to 
the magnetic flux through the path; but this magnetic flux is confined for the most part to the 
area inside the solenoid. As a matter of fact, even when, as in the case of a long finite solenoid, 
there is a small magnetic field outside the solenoid, that field is in a direction opposite to that of 
the flux in the solenoid. 
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For the case of axial symmetry exemplified in Fig. i, this equation assumes 
the form &UB &Ua 3 [Ug\ x dzn m dr2 ' dz2 ' dr\r ) c2 dt2 * 
A useful problem which serves as a basis for the discussion of other problems 
is that of a circular current of small size, flowing around the axis of z at the 
origin. For the steady state case, this entity acts like a magnet of moment /i 
given b y /i = na2I, 
where a is the radius and / the current flowing in the positive direction 
of 6. Thus ji is in the positive direction of the axis of z. It can easily be 

Fig. 2 

verified that, for the case where /varies with the time according to the law 
I=I0f(t), where/(o) = i, the appropriate solution of (i i) is 

Ue=fMli^M 1 l^rf'^RIC) 
R* CR2 (12) 

where /i0 = 7ra2I0; R2 = z2 + r2. The solution (12) can by the combination of 
a number of such circular current elements, serve as the basis for the solu
tion of a solenoid, or of a toroidal winding in which the current varies with 
the time. 

Case of a toroidal winding 
It is convenient to transpose the current ring, for which (12) is the solu

tion, to the position shown in Fig. 2, where it now forms an element of a 
toroidal winding, the anchor ring of the toroid having its plane of sym
metry perpendicular to the axis off. 
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Let the old axis of z corresponding to (12) be in the downward direction 
through the paper, so that the current is in the direction shown. The plane 
of the paper shall be the old plane z = o, and r shall continue to have its 
original meaning. The positive direction of 6 is in the direction of the 
arrow and the value of Ue at the point P is, from (12) 

U,=*At-rlc)+*&f'(t-rlc). 

The component of U in the positive direction of £ is thus 

U<= -*?f[t-rlc) -Hshf(t-rlc), (13) 

where r0 is as indicated. 
If now we consider the toroidal winding to be made up of a large number 

of circular currents like that shown, each of them will make a contribution 
to U^. If I0 as defined above, is taken to be the current per unit length 
measured around the solenoid, and if <j> is measured around the £ axis, the 
moment appropriate to the element of angle d(j> is 7ra2I0r0d<f> which replaces 
/i0 in (13) for the contribution of d<f> to the total vector potential Ar along the 
? direction. Integrating with respect to 0, we find for A% itself the value 

4 - - 2 - ^ ^ [flt-rlc)+!f(t-rlc)]. (14) 

It is convenient to express I0 in terms of the magnetic field inside the toroid 
for the steady case. IfH0 is this field, we have 

27Tr0H0 = 47r(27rr0I0) 

so that //0 = 47r/0. 

Writing ^ S A T 0 (15) 

we have Ac= - ^ \_f{t-rlc) +r-f'(t-rjc)j. (16) 

All components of the vector potential perpendicular to the £ axis cancel, 
from symmetry, so that A^ represents the complete vector potential along 
the £axis. 

In the steady state, there is no magnetic field anywhere outside the 
toroid. Such is not the case for the non-steady state, however, for in general 
there is in such a case, a rate of change of vector potential and so an electric 
field at all points in the space around the toroid, and there is in general a 
rate of change of electric field which demands the existence of a magnetic 
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field. However, along the £ axis there is no magnetic field in a plane per
pendicular to that axis; for if there were a field perpendicular to the axis 
at any part P, there would from symmetry be a magnetic flux towards or 
away from the axis at that point, and this is impossible. Any magnetic 
field in the vicinity of the f axis must take the form of circular fines around 
that axis, the situation conforming to 

I - ^ = (cur lH) , 

Applying this to a small tube of radius or surrounding the axis we have 
ncr2 dEc 

where H^ is the magnetic field in the direction of increase of 0, thus, 

and HQ vanishes with the vanishing of a* for a finite value ofdEJdt. 
In the light of the above we see that the only force on a charged particle 

on the axis of £ is a force along that axis, and the force is —(i/c) dAJdt 
per unit charge. 

We are now in a position to make use of (16). We shall choose f{t) to 
qe of the form f(t)=e-°* 

so that f(t - rjc) = er**-*® = e-^e™'0 

and / ' (t - r/c) = - aa-««-r® = - oce-^e"^. 

Thus Ar= - ^ ["*! _ ? f l e-cdfr/c. ( I ? ) 

The electric field Er along the £ axis is given by 

i dAc Nnrlcc T ocr~\ . , „. 

%- -c~¥=--y- L1 T J e <*"- (i8) 

The electric field reverses sign at the value of r given by ar/c= i. There 
are thus two categories of interest corresponding to cur\c< i and ocr/o i. 
We shall call them cases A and B, respectively. The second contribution 
(involving ar/c) on the right-hand side of (18) is of course a close mathe
matical relative of the radiation field from an electric dipole, which field 
varies less rapidly with the distance—to the extent of one power of r—than 
does the non-radiation field, whose counterpart, is the first term on the 
right-hand side of (18). At small distances the non-radiation term dominates, 
but at great distances the radiation term dominates. 
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Regarding the role played by the scale of the phenomena 

For such phenomena as occur on stars, ( i /a) may be expected to be of 
the order of a few days, as in the case of sunspots, for example. For these 
cases a may be taken to be of the order io~6 or less, so that the quantity 
C\CL is of the order 3 x io16 cm. This is much larger than stellar dimensions* 
so that in general for particles accelerated in stars we shall be concerned 
with the case where ocr/c <̂  1. 

For phenomena on a galactic scale such as we encounter in the nebulae, 
a may be expected to be much smaller than io~6. On the other hand, the 
dimensions available in a nebula are such that ar/c can approach or even 
exceed unity, and the scale of the space occupied by the motivating currents 
can afford to be correspondingly large so as to provide for significant 
acceleration at the great distances concerned. Thus, both cases A and B 
are likely to be of interest to us in cosmological speculations. 

Case A, where ocr/c < 1 

This corresponds to (£2 -f rf) < £2/a2, i.e. to the region 

{C2I<X2 - rg)l/2 > £ > _ ( ^ 2 _ r2)l/2j 

/ c2 \1 /2 

i.e. to the region ( - ^ 2 - 11 >£/ r 0 > - (£2/a2r2- i)V2. (19) 

For a = io - 6 , and r0~ io1 1 for stellar dimensions c2/a2rl = Q x io10. Thus 
(19) becomes 

ar0 r0 ar0 

or, for the magnitudes cited 
r 

3 x i o 5 > —>—3X io5. ro 

In this region, the field is always negative, and a positive particle starting 
in the region moves in the negative direction and gains energy continually. 

Let us consider a case where a = 1 o9 cm; r0 = 1 o10 cm; a = 1 o~5; 
H 0 = io4, so that, from (15), N0= 1-5 x io22. 

Let us calculate the gain in energy of a proton in traveling from 
— £ = 0 to — £ = r 0 = io10 cm. The quantity aur\c will, over the whole path, 

* Of course for special phenomena in which (i/a) might be of the order of 1 sec, ar/c would 
be comparable with unity even for stellar dimensions. 
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always be less than 0-5 x i o - 5 , so that, replacing the factor e-^e0*10 by 
unity, as will subsequently be justified, 

- N0rja 

E c = — ^ 3 - . 

The energy gained will be given by 

N0rlaeCd£, W= — 
Jt*' c 

Writing — ^/r0 = tan A, we have TT\\ for the upper limit of A, and 

Thus 

rAr NQaer*l± sec2A</A NQaeCn^ w , 
W=——I ra = —-— cosArfA. c Jo ( i+ tan 2 r ) t c J 0 

XAT Naae . 7T N0ae 300 N0oc x r W= —— sin - = —£— = - — eV., £ 4 1-4̂  1 -4^ 

W = i o 9 e V . 

If Em is the field at the end of the above path, the time taken to de
scribe the path is less than r as given by r0 = Em£T2/2m, where m is the 
relativistic mass at the end of the path, m is not greatly different from 
the rest mass, i-6 x io - 2 4 , so that it results that r0 = iV0ar§^r2/2mr3c and, on 
inserting the values with rjr0 — 2*, we find r of the order 1 second. Thus the 
replacement of e'^e^^ by unity as above is justified. 

Case B where arjc > 1 over the path 

Let us write ar0jc = 7jy and let us consider a case where 0 = i o 1 8 c m 
( = 1 light year); H 0 = io~3 gauss, (so that N0= 1-5 x io3 3); i /a = 3 x io10, 
(corresponding to the decay of the motivating currents to ije of their 
initial values in 1000 years); ?/ = 2, so that r0 = 2 x i o 2 1 c m ( = about 
2000 light years). 

The exponential factor in the expression for E^ is composed of two 
factors exp ctr/c and exp ( — oct). We shall first examine the consequences 
of neglecting the second factor, so that 

It is easy to show that E^ increases continually with r. We have 
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over the range of integration concerned. Writing £/r0 = tan A 

w>N^e j-ap JA dA_j\os Adq 5 

W > — — ^ [T/A - sin A] electron volts. ro 
Now a proton with a velocity 99 per cent of the velocity of light has an 
energy of 6 x io9eV. I t has a mass m equal to 7 m0. For such a proton, and 
with 7 = 2 

. . 2 x 10% 
2A — sin A <——77- < i#r) x i o - 5 

2 x JVo J 

so that A =1-5 x io~5 and the corresponding value of £ is 1-5 x io~5r0. 
Since the minimum value of E^ occurs at r = r0, and in this case is given 
bY Emin. = (Nolro) (arolc) (^o/c-i) exp (arjc), we have, for y = 2, 
Emin. = 2(7'3) ^o/ro? a n d if T is the time for the particle to reach the 
point £ = 1*5 x io~5r0, we have, with m = j x i-6 x io - 2 4 

14-6 Naer2 

1-5 x i o - 5 r 0 > - - — r - ^ — . 

Hence r < 4 x io5 sec and ar< 1-3 x io~5. Thus, the neglect of the factor 
exp (— at) in the expression for E^ is valid for the above calculation, in 
which A is limited to the small value 1-5 x io~5. 

We may now evaluate the total situation as follows: The least value 
of ocr/c is otrjc. The total time to travel a distance £ larger than the value 
1-5 x io~5r0 considered above will be less than £/z> + r, where z> = 99^/100, 
and r = 4 x io6sec. Thus, if £ is such that a£/v + aT is not greater than 
ocrjc, the exponent (ocr/c — at) in the general expression for E^ will always 
be positive. This gives 

£<ro0/<r-»T< (99/100) ( r 0 - 4 x i o 5 c ) . 

Since r0 = 2 x io21, the quantity 4 x io5£ may be neglected and £ may be 
permitted a value sensibly as large as r0, so that the upper limit A = TT\\ may 
be used in the expression for W. We thus find that, in travelling over the 
said range, the particle gains energy W such that 

'o L4 i'4J 

Putting i) = 2, N0 = 1 -5 x io3 3 and r0 = 2 x io21 

W>3 x i o u e V . 
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Of course, the numbers here cited are susceptible of enormous variations 
without exceeding the realm of reason, and our example is taken simply 
as an illustration. 
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Discussion 
Alfven: My only remark is that I think we all are very glad that the senior of 

all accelerating processes has worked very well! 
Singer: Would your theory be applicable to all values of {dHjdt)jH, say, when 

the line integral cannot be defined? 
Swann: Yes, the mechanism works for all values of (dH\dt)\H. This indeed is 

my quantity — a. 
Singer: Gould the process work statistically, i.e. the particle gains and loses 

energy, but on the average gets accelerated? 
Swann: Yes, it could work under suitable circumstances, but I have confined 

my attention to a problem where the energy increases continually. 
Schluter: Has your theory been worked out solely for the case of vacuum, 

without electrical conductivity? 
Swann: Yes. 
Bunemann: What gauge of potentials has one to use in order to make the 

formula W>e\ Us2 — Usl | right? You seem to have used a particular gauge, 
the retarded potentials. 

Swann: The potentials used are the retarded potentials defined by 

1 d2U 1 d26 V2U = -pule: A2^ - = - p . V c2 dt2 H ' ' ^ c2 dt2 H 

However, any equivalent pair of potentials could give equivalent results but in 
general with great analytical difficulty. 
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