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Error bounds for the

modified Newton's method

A.L. Andrew

A strengthened form of the Kantorovich convergence theorem for

the modified Newton's method is proved. The result is compared

with previously known results.

1 . Introduction

Let F be a continuously Frechet differentiable mapping of an open

subset S of a Banach space X into a Banach space Y . This note

concerns the numerical solution of

(1) F(x) = 0

by the modified Newton's method, that i s by the i te ra t ion

= Xn ~

where T = [_F'[x]"]'1 , the inverse of the Frechet derivative of F at

x . Dennis [?] has strengthened Kantorovich's convergence theorem [2,

Theorem 6 (1.XVIII)] for both (2) and the original Newton's method.

Theorem 1 below further strengthens Dennis's result for (2). It proves

existence and local uniqueness of the solution of (1) and the convergence

of (2) to this solution under weaker conditions on F , and for a given F

establishes a rate of convergence for (2) which is at least as fast as, and

generally faster than, that proved by Dennis. Ways in which Theorem 1 may

be further strengthened are noted. Theorem 1 may be proved by modifying

Dennis's proof, but in this case the proof given below, which follows [2]

even more closely, is simpler. For further" references, see [31.
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2. Error bounds

THEOREM 1. Let ftQ = {x : \\x-xQ\\ 5 r} c ft . Let TQ exist in

L(Y, X) , the set of bounded linear mappings from Y into X , and let

n = llr0F(x0) || . Let

(3) ||J-r0F'(x)|| < K\\xQ-x\\ for all x in ftQ ,

where I is the identity operator. Let 0 < h = Kr\ S % and r > r

27ien all elements of the sequence defined by (2) lie in ft. } and the

sequence converges to a solution x* of (l) with

(k) ||x*-xnl| 5 -^ [l-(l-2h)^]W+1 , „ = l , 2

inequality is strict if n > 1 . 1/ also either r < r or
r_ = r = r+ , then x* is the only solution of (l) in ft .

Note that if h = 0 , then either (l) is linear or F[xr] = 0 , so that

in neither case does the question of convergence arise. The proof of
Theorem 1 uses the following two lemmas.

LEMMA 1. Let ty € (^[0, r] be a real valued function with

oQ = [ -^ ' (O)]" 1 > 0 and 1 + cQil>'(t) > 0 for all t 2 0 . Let

(5) <Kt) = o
have a root in the interval [0, r] and let t* be the smallest root of
(5) in [0, r] . Let T 6 L(Y, X) and, for some nonnegative integer p ,

let

(i) llr/Cx^H 5 eQ*[tJ , i= 0, ..., p , and

(ii) | | j-rof '(x) | | 5 1 + cJ>'(t) whenever

< t - tp S , - tp .

where tQ = 0 and t ^ = tn - *(*„)/•'(*„) ,
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n = 0, 1

Then (1) has a solution x* in Q = {x : \\x-x \\ £ r-t } , all members of

the sequence defined by (2) lie in ft , and

||x*-ag| r=t* - t n , n = 0, 1, . . . .

If also ty'(r) £ 0 and (5) has a unique solution in [0, r] then (1) has

a unique solution in fl .

The proof is omitted since it requires only minor changes in the

proofs of Theorems 1, 2, 3, and h (1.XVIII) of [2]. Note that Q c JJ

and the proof of Theorem 1 (1.XVIII) of [Z] shows that if conditions (i)

and (ii) of Lemma 1 are satisfied for some integer p , they are also

satisfied for p + 1 .

LEMMA 2. Let f{t) = Kt2 - 2t + 2n where K, T\ are the constants

defined in Theorem 1 and 0 < h = Xn 5 % . Let t = 0

V l = tn~ fbrJ'f'&o) ' n = 0, 1 Then tn •* r_ as n •*• « and,

/or n > 1 , * « i < t : n < 2 '

ft
i = 0

ith strict inequality in (6) wfeew n > 1 .

The proof, which uses the fact that f{r+) = 0 , is by induction.

It is readily verified that / has the properties required of i() in
Lemma 1 with r = t* so that Theorem 1 follows.

The proof of Theorem 1 uses only the case p = 0 in Lemma 1. The
case p = 1 yields the following result.

THEOREM 2. Let all the conditions of Theorem 1 be satisfied except

that K is not required to satisfy (3) . Let ||r F(x ) | | < Xn2/2 and let

P-ro*'(x) | | 5 tffllx-xj+n) for all x in il± .

Then all the conclusions of Theorem l follow except possibly the uniqueness
in fi of the solution of (1). The solution is however unique in il^ .
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The proofs of Theorems 1 and 2 show that sharper but more complicated

s for ||x*-x || may e

of the inequality in (6).

bounds for ||x*-x || may easily be obtained by using the equality instead

3. Comparison with previously known results

Theorem 1 strengthens Corollary U.I of [7] in two respec ts . The

r e s u l t in [ / ] proves only weak inequal i ty in (it) and, more importantly, i t

rep laces (3) with the s tronger condition

(7) \\TQF'U)-T0F'(y)\\ < K\\x-y\\ for a l l x and y in fiQ .

Otherwise the results are identical.

Let h. , ft_, h be the smallest possible values of h = KT\ when K

i s defined as in Theorem 1, Theorem 2, and (7), respectively. Clearly

h 2 h , and the one dimensional example

(8) P(x) = x - 1 + a sin e x , xQ = 0 ,

with a and b constants, b large and a very small, shows that the

ratio h Ih. may be arbitrarily large. Also the remark following Lemma 1

shows that h i 7i and the one dimensional example

F(x) = x - 1 + a'1 cos(cx/5) , x Q = 0 ,

where a = IOMTT + 1 and n is a large integer, shows that h /h may be

arbitrarily large. Since r increases with h in (0, %) , it is clear

that decreasing h in Theorem 1 sharpens the error bounds (U) and weakens

the conditions required for convergence. Moreover it is sometimes easier

to calculate h or h^ , or upper bounds for them that are smaller than

h , than it is to calculate h. . As shown in [I], Kantorovich's result

is still weaker than the results in [/].

As well as giving a priori error bounds, Theorem 1 may also be used to

calculate more accurate a posteriori error bounds. Let y be an

approximation to x* obtained by (2) or by any other means. Set x = y

and calculate x by (2). Then {h) with n - 1 gives an error bound for
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x . Generally this will be better than can be obtained from known bounds

for Newton's method as such bounds involve 7j instead of h, . However

since the difference between 7i_ and h. is generally smaller when xQ

is nearer x* , the gain from using (h) will be less than is the case with

a •priori bounds.

Both a priori and a posteriori error bounds for (2) are sometimes

obtained from the following special case of the contraction mapping theorem

[2, 4].

THEOREM 3. Using the seme notation as before, let V exist and let

a = sup ||J-r F'(x)|| < 1 ,

where Q c Q and r = n / ( l - a ) . Then (1) has a unique solution x* in

ttQ , and, for n > \ , xn € fiQ and

Note that each of Theorems 1, 2, and 3 proves convergence of (2) for

(8) when, say, a = 10~ , b = 5 , although the theorems of Kantorovich

and Dennis both fail in this case.

In their important book on shooting methods, Roberts and Shipman [4,

p. 126] showed that if F € C2(fiQ) , then

(9) a2 - a + hk > 0 ,

whenever h^ > Hr^ 'WIln for a l l x in SlQ • Clearly h^ > h^ > h^ .

From (9) they deduced, erroneously as (8) shows, that

> [l_(x-Ja >

and hence that Kantorovich's Theorem always gave sharper error bounds than

does Theorem 3« In fact the one dimensional example

Fix) = 10 - x + c[min(0, x2-l)]2 , xQ = 0 ,
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where c is a constant, shows that sometimes Theorem 3 also gives sharper

error bounds than Theorem 1. However Theorem k below shows that for an

important class of functions Theorem 1 gives sharper error bounds than

Theorem 3. For many, but not all, of these functions, Kantorovich's

Theorem also proves sharper error bounds than Theorem 3-

THEOREM 4. Let F have the properties required in Theorems 1 and 3

and in addition let the maximum value of

\\l-VQF'{x)\\/\\xQ-x\\

for x satisfying 0 < ||xo-x|| 5 r be attained on the boundary

||xQ-x|| = r . Let the bounds for ||x*-x || given by Theorem 1 with h = h

and by Theorem 3 be A and B respectively. Then Theorem 3 proves

convergence of (2) only if h 2 % . Also B IA increases with h and

n and is always greater than 2 .

Proof, A simplification of the proof of (9) [4] shows that in th i s

case

o
a - a + h = 0 .

It follows that, since a must be real, Theorem 3 is applicable only when

h £ ̂  and that in this case

a > |l- (l-U

Hence for 0 < h S k and n > 1 ,

khl

where g(h) = [i+(l-2fc)*]/[l+(l-li7z)\] . Clearly g(h) > 1 and g'(h) > 0

for 0 < h 5 h . The result follows.
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