Canad. Math. Bull. Vol. **56** (1), 2013 pp. 116–126 http://dx.doi.org/10.4153/CMB-2011-131-6 © Canadian Mathematical Society 2011

Central Extensions of Loop Groups and Obstruction to Pre-Quantization

Derek Krepski

Abstract. An explicit construction of a pre-quantum line bundle for the moduli space of flat *G*-bundles over a Riemann surface is given, where *G* is any non-simply connected compact simple Lie group. This work helps to explain a curious coincidence previously observed between Toledano Laredo's work classifying central extensions of loop groups *LG* and the author's previous work on the obstruction to pre-quantization of the moduli space of flat *G*-bundles.

1 Introduction

The moduli space $\mathcal{M}(\Sigma)$ of flat *G*-bundles over a surface Σ with one boundary component is known to admit a pre-quantization at integer levels¹ when the structure group *G* is a simply connected compact simple Lie group. If the structure group is not simply connected, however, integrality of the level does not guarantee the existence of a pre-quantization. It was found in [5] that for non-simply connected *G*, $\mathcal{M}(\Sigma)$ admits a pre-quantization if and only if the underlying level is an integer multiple of $l_0(G)$ listed in Table 1.1 for all non-simply connected, compact, simple Lie groups *G*.

G	$SU(n)/\mathbb{Z}_k$	PSp(n)	SO(n)	PO(2n)	Ss(4n)	PE_6	PE_7
	$n \ge 2$	$n \ge 1$	$n \ge 7$	$n \ge 4$	$n \ge 2$		
$l_0(G)$	$\operatorname{ord}_k(\frac{n}{k})$	1, <i>n</i> even	1	2, <i>n</i> even	1, <i>n</i> even	3	2
		2, <i>n</i> odd		4, <i>n</i> odd	2, <i>n</i> odd		

Table 1.1: The integer $l_0(G)$. Here, $\operatorname{ord}_k(x)$ denotes the order of $x \mod k$ in $\mathbb{Z}_k = \mathbb{Z}/k\mathbb{Z}$.

A curiosity observed in [5] is that the integer $l_0(G)$ also appears in Toledano Laredo's work [9], which classifies positive energy projective representations of loop groups *LG* for non-simply connected, compact, simple Lie groups *G*. To be more specific, Toledano Laredo classifies central extensions

$$1 \to U(1) \to \widehat{LG} \to LG \to 1,$$

Received by the editors April 5, 2010; revised July 3, 2010.

Published electronically June 29, 2011.

The author was supported by a NSERC Postdoctoral Fellowship.

AMS subject classification: 53D, 22E.

Keywords: loop group, central extension, prequantization.

¹The level l > 0 encodes a choice of invariant inner product on the simple Lie algebra g of G.

showing they can only exist at levels that are integer multiples of the so-called *basic level* $l_b(G)$, which is then computed for each non-simply connected *G* (see [9, Proposition 3.5]). By inspection, it is easy to see that $l_0(G) = l_b(G)$, and this paper aims to understand this coincidence.

The main result of this work, which helps to account for the observed coincidence, is an explicit construction of a pre-quantum line bundle over the moduli space $\mathcal{M}(\Sigma)$ of flat *G*-bundles in the case when the structure group *G* is non-simply connected. The construction is an extension of the well-known constructions in the case when *G* is simply connected (see [6,8]). It also appears in [1] for non-simply connected *G*, although using unnecessary assumptions on the underyling level. The necessary and sufficient condition for pre-quantization, found in [5], is that the underlying level must be an integer multiple of $l_0(G)$. Using the equality $l_0(G) = l_b(G)$, we show that the construction appearing in [1] applies at these levels.

The obstruction to applying this construction of the pre-quantum line bundle in the case of non-simply connected structure group *G* is related to a central extension

(1.1)
$$1 \to U(1) \to \widehat{\Gamma} \to \Gamma \to 1,$$

where $\Gamma \cong \pi_1(G) \times \pi_1(G)$ (see (4.4) in). The proof of Theorem 4.2 shows that this extension is trivial precisely when the underlying level is an integer multiple of the basic level $l_b(G)$. As a consequence, when the level is an integer multiple of the basic level, the well-known construction of the pre-quantum line bundle applies.

This paper is organized as follows. Section 2 reviews some of the relevant background material about loop groups and establishes some notation used throughout the paper. Section 3 reviews the construction of the moduli space, paying special attention to the fact that the underlying structure group is not simply connected. Finally, Section 4 contains the main results of this work, which include a careful study of the central extensions of the gauge groups and Theorem 4.2 whose proof shows that non-triviality of the central extension (1.1) is the obstruction to constructing the pre-quantum line bundle. This last section also contains the construction of the pre-quantum line bundle under the conditions when the above central extension is trivial.

2 Preliminaries and Notation

In this section, we establish notation that will be used in the rest of this paper and review some relevant background material.

Let *G* be a simply connected, compact, simple Lie group with Lie algebra \mathfrak{g} , and let $T \subset G$ be a maximal torus with Lie algebra $\mathfrak{t} \subset \mathfrak{g}$. For a non-trivial subgroup *Z* of the center *Z*(*G*), let G' = G/Z with maximal torus T' = T/Z, which identifies the quotient map $\pi: G \to G'$ as the universal covering homomorphism, and $Z \cong \pi_1(G')$. (Recall that all non-simply connected, compact, simple Lie groups G' are of this form.)

Let $\Lambda = \ker \exp_T$ be the integer lattice for G, and let $\Lambda' = \ker \exp_T$ be the integer lattice for G', so that $\Lambda \subset \Lambda'$ and $Z \cong \Lambda' / \Lambda$.

Let $B(\cdot, \cdot)$ denote the *basic inner product*, the invariant inner product on g normalized to make short co-roots have length $\sqrt{2}$.

Following [6], throughout this paper we fix a real number s > 1. For a given manifold X (possibly with boundary) and $p \le \dim X$, let $\Omega^p(X; \mathfrak{g})$ be the space of \mathfrak{g} -valued p-forms on X of Sobolev class $s - p + \dim X/2$. For a compact Lie group K with Lie algebra \mathfrak{f} , the space $\Omega^0(X; \mathfrak{f}) = \operatorname{Map}(X, \mathfrak{f})$ is the Lie algebra of the group Map(X, K) of maps of Soboloev class $s + \dim X/2$.

Loop Groups and Central Extensions

For a compact Lie group K with Lie algebra \mathfrak{k} , let *LK* denote the (free) loop space Map(S^1, K), viewed as an infinite dimensional Lie group, with Lie algebra $L\mathfrak{k} = Map(S^1, \mathfrak{k})$.

Given an invariant inner product (\cdot, \cdot) on \mathfrak{k} , define the central extension $\widehat{L}\mathfrak{k} := L\mathfrak{k} \oplus \mathbb{R}$ with Lie bracket

$$\left[(\xi_1, t_1), (\xi_2, t_2) \right] := \left([\xi_1, \xi_2], \int_{S^1} (\xi_1, d\xi_2) \right).$$

If it exists, let \widehat{LK} denote a U(1)-central extension of LK with Lie algebra \widehat{Lt} .

For K = G, it is well known (see [7, Theorem 4.4.1]) that central extensions \widehat{LG} are classified by their *level l*—the unique multiple of the basic inner product that coincides with the chosen inner product—which is required to be a positive integer. (Since *G* is simple, any invariant inner product on g is necessarily of the form $lB(\cdot, \cdot)$ for some l > 0, called the *level*.)

For K = G', however, central extensions $\widehat{LG'}$ are classified by their level l, which is required to be an integer multiple of $l_b(G')$, and a character $\chi: Z \to U(1)$ (see [9, Proposition 3.4]). The integer $l_b(G')$ is defined as follows.

Definition 2.1 Let G' be a compact simple Lie group with integer lattice Λ' . The *basic level* $l_b(G')$ is the smallest integer l such that the restriction of $lB(\cdot, \cdot)$ to Λ' is integral.

As mentioned in the introduction, $l_b(G') = l_0(G')$, which appears in Table 1.1 for each non-simply connected, compact, simple Lie group G'.

Let $L\mathfrak{g}^* = \Omega^1(S^1;\mathfrak{g})$, sometimes called the *smooth dual* of $L\mathfrak{g}$. The pairing $L\mathfrak{g} \times L\mathfrak{g}^* \to \mathbb{R}$ given by $(\xi, A) \mapsto \int_{S^1} (\xi, A)$ induces an inclusion $L\mathfrak{g}^* \subset (L\mathfrak{g})^*$. Additionally, define $\widehat{L\mathfrak{g}}^* := L\mathfrak{g}^* \oplus \mathbb{R}$ and consider the pairing $\widehat{L\mathfrak{g}} \times \widehat{L\mathfrak{g}}^* \to \mathbb{R}$ given by

$$\left((\xi,a),(A,t)\right) = \int_{S^1} (\xi,A) + at.$$

Since the central subgroup $U(1) \subset \widehat{LG}$ acts trivially on \widehat{Lg} , the coadjoint representation of \widehat{LG} factors through LG. The coadjoint action of LG on \widehat{Lg}^* is (see [7, Proposition 4.3.3]),

$$g \cdot (A, t) = (\operatorname{Ad}_g(A) - tg^*\theta^R, t)$$

118

where θ^R denotes the right-invariant Maurer–Cartan form on G.

Notice that for each real number λ , the hyperplanes $t = \lambda$ are fixed. Identifying $L\mathfrak{g}^*$ with $L\mathfrak{g}^* \times {\lambda} \subset \widehat{L\mathfrak{g}}^*$ yields an action of LG on $L\mathfrak{g}^*$, called the (affine) level λ action.

3 The Moduli Space of Flat Connections $\mathcal{M}'(\Sigma)$

In this section, we review the construction of the moduli space of flat connections following [1], with special attention to the case where G' is a non-simply connected, compact, simple Lie group. The reader may wish to consult [1,2,6] and the references therein for more details.

Let Σ denote a compact oriented surface of genus *h* with 1 boundary component. The affine space of connections $\mathcal{A}(\Sigma) = \Omega^1(\Sigma, \mathfrak{g})$ on the trivial *G'*-bundle over Σ admits an action of Map(Σ, G'), the space of maps $g: \Sigma \to G'$, by gauge transformations $g \cdot A = \operatorname{Ad}_g A - g^* \theta^R$. The kernel of the restriction map

$$\operatorname{Map}(\Sigma, G') \to \operatorname{Map}(\partial \Sigma, G'), \qquad g \mapsto g|_{\partial \Sigma}$$

will be denoted Map_{∂}(Σ, G'). Define the moduli space of flat G'-connections up gauge transformations whose restriction to $\partial \Sigma$ is trivial by

$$\mathcal{M}'(\Sigma) := \mathcal{A}_{\text{flat}}(\Sigma) / \text{Map}_{\partial}(\Sigma, G').$$

The Atiyah–Bott [2] symplectic structure on $\mathcal{M}'(\Sigma)$ is obtained by symplectic reduction (as in [4, Chapter 23]), viewing the moduli space as a symplectic quotient of the affine space of connections $\mathcal{A}(\Sigma)$. Recall that the affine space $\mathcal{A}(\Sigma)$ carries a symplectic form $\omega_{\mathcal{A}}(a_1, a_2) = \int_{\Sigma} lB(a_1, a_2)$ and a Hamiltonian action of $\operatorname{Map}_{\partial}(\Sigma, G')$ with momentum map the curvature; therefore, the zero level set of the moment map is the space of flat connections $\mathcal{A}_{\text{flat}}(\Sigma)$, and hence the resulting symplectic quotient is the moduli space $\mathcal{M}'(\Sigma)$.

The moduli space $\mathcal{M}'(\Sigma)$ carries an action by LG that can be described as follows. For $g \in \operatorname{Map}(\Sigma, G')$, the restriction $g|_{\partial\Sigma}$ is a contractible loop in G', since $\pi_1(G')$ is Abelian and $\partial\Sigma$ is homotopic to a product of commutators $\prod a_i b_i a_i^{-1} b_i^{-1}$ for loops a_i, b_i representing generators of $\pi_1(\Sigma)$. Thus the restriction map takes values in the identity component $\operatorname{Map}_0(\partial\Sigma, G')$, which, after choosing a parametrization $\partial\Sigma \cong$ S^1 , can be identified with the identity component L_0G' of the loop group LG'. The LG action on $\mathcal{M}'(\Sigma)$ is then defined using the natural projection $L\pi: LG \to LG'$ that takes values in L_0G' , and the identification $\operatorname{Map}(\Sigma, G')/\operatorname{Map}_{\partial}(\Sigma, G') \cong L_0G'$. The LG action is Hamiltonian, with momentum map $\Phi': \mathcal{M}'(\Sigma) \to L\mathfrak{g}^*$ given by pulling back the connection to the boundary.

The corresponding moduli space $\mathcal{M}(\Sigma) = \mathcal{A}_{\text{flat}}/\text{Map}_{\partial}(\Sigma, G)$ with simply connected structure group G is a finite covering of $\mathcal{M}'(\Sigma)$. This is a consequence of the following proposition found in [1].

Proposition 3.1 The following sequences are exact:

$$(3.1) 1 \to Z \to \operatorname{Map}(\Sigma, G) \to \operatorname{Map}(\Sigma, G') \to Z^{2h} \to 1,$$

(3.2)
$$1 \to \operatorname{Map}_{\partial}(\Sigma, G) \to \operatorname{Map}_{\partial}(\Sigma, G') \to Z^{2h} \to 1.$$

In sequences (3.1) and (3.2), the maps into Z^{2h} are defined by sending $g \mapsto g_{\sharp}$ in $\operatorname{Hom}(\pi_1(\Sigma), \pi_1(G')) \cong Z^{2h}$. Since $A \in \mathcal{A}(\Sigma)$ may be viewed as either a *G*-connection or a *G'*-connection on the corresponding trivial bundle over Σ , the moduli space $\mathcal{M}(\Sigma)$ admits a residual $Z^{2h} \cong \operatorname{Map}_{\partial}(\Sigma, G')/\operatorname{Map}_{\partial}(\Sigma, G)$ action, identifying $\mathcal{M}'(\Sigma) = \mathcal{M}(\Sigma)/Z^{2h}$. Also, the momentum map $\Phi \colon \mathcal{M}(\Sigma) \to Lg^*$ is clearly invariant under the Z^{2h} -action and descends to the momentum map $\Phi' \colon \mathcal{M}'(\Sigma) \to Lg^*$ above. Viewed this way, Φ' sends an equivalence class of G'-connections to its restriction to the boundary, considered as a *G*-connection on $\partial\Sigma$.

For $\mu \in L\mathfrak{g}^*$, the symplectic quotient

$$\mathcal{M}(\Sigma)_{\mu} := \Phi^{-1} (LG \cdot \mu) / LG$$

represents the moduli space of flat connections on the trivial G bundle over Σ whose restriction to the boundary is gauge equivalent to μ . Equivalently, $\mathcal{M}(\Sigma)_{\mu}$ is the moduli space of flat connections on the trivial G-bundle whose holonomy along the boundary is conjugate to Hol(μ). Similarly, the symplectic quotient $\mathcal{M}'(\Sigma)_{\mu} = (\Phi')^{-1}(LG \cdot \mu)/LG$ represents the moduli space of flat connections on the trivial G'-bundle over Σ whose holonomy along the boundary, when viewed as a G-connection on $\partial\Sigma$, is conjugate to Hol(μ).

The connected components of the moduli space of flat G'-bundles over a *closed* surface may then be described in terms of the symplectic quotients $\mathcal{M}'(\Sigma)_{\mu}$ with $\operatorname{Hol}(\mu) \in Z$. To see this, let $\widehat{\Sigma}$ be the closed surface obtained by gluing a disc D to Σ by identifying boundaries. Recall that there is a bijective correspondence between isomorphism classes of principal G'-bundles $P \to \widehat{\Sigma}$ and $\pi_1(G') \cong Z$: every such bundle $P \to \widehat{\Sigma}$ is isomorphic to one that can be constructed by gluing together trivial bundles over both Σ and D with some transition function $f: S^1 = \Sigma \cap D \to G'$. By [3, Proposition 4.33], the holonomy around $\partial\Sigma$ of a flat connection on P coincides with $[f] \in \pi_1(G') \cong Z$. It follows that the moduli space $M_{G'}(\widehat{\Sigma})$ of flat G'-bundles over a closed surface $\widehat{\Sigma}$ up to gauge transformations may be written as the (disjoint)! union of the symplectic quotients $\mathcal{M}'(\Sigma)_{\mu}$, where $\operatorname{Hol}(\mu) \in Z$.

4 The Pre-Quantum Line Bundle $L'(\Sigma) \rightarrow \mathcal{M}'(\Sigma)$

In this section, we construct a pre-quantum line bundle $L'(\Sigma) \to \mathcal{M}'(\Sigma)$, which is an adaptation of a well-known construction in the case where the underlying structure group is simply connected (see [6, 8]). The construction appears in [1] (using unnecessary assumptions on the underlying level). The main contribution here is to verify that this construction applies under the necessary and sufficient conditions obtained in [5]. For simplicity, we consider the case of genus h = 1.

Central Extensions of the Gauge Group

An important part of the construction of the pre-quantum line bundle is a careful discussion of certain central extensions of various gauge groups.

Recall that the cocycle defined by the formula $c(g_1, g_2) = \exp i\pi \int_{\Sigma} lB(g_1^* \theta^L, g_2^* \theta^R)$

Loop Groups and Pre-Quantization

defines central extensions

(4.1)
$$1 \to U(1) \to \widehat{\mathrm{Map}}(\Sigma, G) \to \mathrm{Map}(\Sigma, G) \to 1,$$
$$1 \to U(1) \to \widehat{\mathrm{Map}}(\Sigma, G') \to \mathrm{Map}(\Sigma, G') \to 1.$$

It is known (see [6, p. 431]) that when *l* is an integer, the restriction of the central extension $\widehat{\text{Map}}(\Sigma, G)$ to the subgroup $\text{Map}_{\partial}(\Sigma, G)$ is trivial; that is, the exact sequence

(4.2)
$$1 \to U(1) \to \widehat{\operatorname{Map}}_{\partial}(\Sigma, G) \to \operatorname{Map}_{\partial}(\Sigma, G) \to 1$$

splits, and we may view $\operatorname{Map}_{\partial}(\Sigma, G)$ as a subgroup of $\widehat{\operatorname{Map}}(\Sigma, G)$.

More precisely, the section $\sigma: \operatorname{Map}_{\partial}(\Sigma, G) \to \operatorname{Map}_{\partial}(\Sigma, G), g \mapsto (g, \alpha(g))$ composed with the inclusion $\operatorname{Map}_{\partial}(\Sigma, G) \hookrightarrow \operatorname{Map}(\Sigma, G)$ embeds $\operatorname{Map}_{\partial}(\Sigma, G)$ as a normal subgroup in $\operatorname{Map}(\Sigma, G)$, where $\alpha: \operatorname{Map}_{\partial}(\Sigma, G) \to U(1)$ is defined as follows. For $g \in \operatorname{Map}_{\partial}(\Sigma, G)$, choose a homotopy $H: \Sigma \times [0, 1] \to G$ with $H_0 = g, H_1 = e$ and $H_t|_{\partial\Sigma} = e$ for $0 \leq t \leq 1$ and define

$$\alpha(g) = \exp \frac{-i\pi}{6} \cdot l \int_{\Sigma \times [0,1]} H^* \eta$$

where $\eta = B(\theta^L, [\theta^L, \theta^L])$ denotes the canonical invariant 3-form on *G*. It is straightforward to check that α is well defined and satisfies the coboundary relation

$$\alpha(g_1g_2) = \alpha(g_1)\alpha(g_2)c(g_1,g_2)$$

so that σ is indeed a section. That we may view Map_{∂}(Σ , G) as a normal subgroup of $\widehat{Map}(\Sigma, G)$ is also straightforward (*cf.* Lemma 4.1 and the proof of Corollary 4.3).

Therefore, one obtains the central extension

$$1 \to U(1) \to \widehat{\mathrm{Map}}(\Sigma, G) / \mathrm{Map}_{\partial}(\Sigma, G) \to LG \to 1$$

using the identification $LG \cong \operatorname{Map}(\Sigma, G)/\operatorname{Map}_{\partial}(\Sigma, G)$.

Assume that *l* is an integer. Under additional restrictions on *l* described in Theorem 4.2, the same holds for the central extension $\widehat{\text{Map}}(\Sigma, G')$ in (4.1) and we obtain a central extension

$$1 \to U(1) \to \widehat{\operatorname{Map}}(\Sigma, G') / \operatorname{Map}_{\partial}(\Sigma, G') \to L_0 G' \to 1$$

using the identification $L_0G' \cong \operatorname{Map}(\Sigma, G')/\operatorname{Map}_{\partial}(\Sigma, G')$.

Lemma 4.1 Let $\widehat{\operatorname{Map}}_{\partial}(\Sigma, G')$ denote the restriction of the central extension (4.1) to $\operatorname{Map}_{\partial}(\Sigma, G')$. Using the section $\sigma : \operatorname{Map}_{\partial}(\Sigma, G) \to \widehat{\operatorname{Map}}_{\partial}(\Sigma, G)$ above and the inclusion $\widehat{\operatorname{Map}}_{\partial}(\Sigma, G) \to \widehat{\operatorname{Map}}_{\partial}(\Sigma, G')$ induced from the inclusion in (3.2), we may embed $\operatorname{Map}_{\partial}(\Sigma, G)$ as a normal subgroup in $\widehat{\operatorname{Map}}_{\partial}(\Sigma, G')$.

https://doi.org/10.4153/CMB-2011-131-6 Published online by Cambridge University Press

Proof The inclusion $\operatorname{Map}_{\partial}(\Sigma, G) \to \operatorname{Map}_{\partial}(\Sigma, G')$ is given by $g \mapsto (\pi g, \alpha(g))$, where $\pi: G \to G'$ is the universal covering homomorphism. To verify that this includes $\operatorname{Map}_{\partial}(\Sigma, G)$ as a normal subgroup, a direct calculation shows that it suffices to verify that for $g \in \operatorname{Map}_{\partial}(\Sigma, G)$ and $h \in \operatorname{Map}_{\partial}(\Sigma, G')$,

(4.3)
$$\alpha(h\pi g h^{-1}) = c(h, \pi g h^{-1})c(\pi g, h^{-1})\alpha(g).$$

(Note that $c(h, h^{-1}) = 1$, since $(h^* \theta^L, (h^{-1})^* \theta^R) = -h^*(\theta^L, \theta^L) = 0$.) Note that $h\pi g h^{-1}$ is clearly in Map_{∂}(Σ, G) (using the inclusion of (3.2)) so that $\alpha(h\pi g h^{-1})$ is defined.

To compute $\alpha(h\pi gh^{-1})$, let $F: \Sigma \times [0,1] \to G$ be a homotopy for g such that $F_0 = g$, $F_1 = e$, and $F_t|_{\partial\Sigma} = e$ and let $H: \Sigma \times [0,1] \to G'$ be the homotopy $H(p,t) = h(p)\pi F(p,t)h(p)^{-1}$. Since $\pi: G \to G'$ is a covering projection, we may lift H to a homotopy $\tilde{H}: \Sigma \times [0,1] \to G$, and find that

$$\alpha(h\pi gh^{-1}) = \exp\frac{-i\pi}{6} \cdot l \int_{\Sigma \times [0,1]} \tilde{H}^* \eta = \exp\frac{-i\pi}{6} \cdot l \int_{\Sigma \times [0,1]} (h\pi Fh^{-1})^* \eta$$

A direct calculation now verifies that equation (4.3) holds. (See the proof of Corollary 4.3 for a sketch of a similar calculation.)

Theorem 4.2 The restriction of the central extension (4.1) to $\operatorname{Map}_{\partial}(\Sigma, G')$ splits if the underlying level l is a multiple of the basic level $l_b(G')$.

Proof It will be useful in what follows to choose representative loops in $T' \subset G'$ for elements of $Z \cong \pi_1(G')$. For each $z \in Z \cong \Lambda'/\Lambda$ let $\zeta_z \in \Lambda'$ be a (minimal dominant co-weight) representative for z. In particular, $\exp \zeta_z = z \in T \subset G$, and the loop $\zeta_z(t) = \exp(t\zeta_z)$ in $T' \subset G'$ represents z viewed as an element of $\pi_1(G')$.

For $\mathbf{z} = (z_1, z_2) \in Z \times Z$, construct a map $g_{\mathbf{z}} \colon \Sigma \to G'$ in $\operatorname{Map}_{\partial}(\Sigma, G')$ as follows. View the surface Σ as the quotient of the pentagon with oriented sides identified according to the word $aba^{-1}b^{-1}c$. Define $g \colon S^1 \to T'$ on the boundary of the pentagon so that $g|_a = \zeta_{z_1}, g|_b = \zeta_{z_2}$ and $g|_c = 1$. Since $\pi_1(T)$ is abelian, g is null homotopic and can be extended to the pentagon, defining $g_{\mathbf{z}} \colon \Sigma \to T' \to G'$. Note that the induced map $(g_{\mathbf{z}})_{\sharp} \colon \pi_1(\Sigma) \to \pi_1(G')$ satisfies $(g_{\mathbf{z}})_{\sharp}(a) = z_1$ and $(g_{\mathbf{z}})_{\sharp}(b) = z_2$, and hence $(g_{\mathbf{z}})_{\sharp} = \mathbf{z}$ in sequence (3.2).

Since sequence (4.2) splits, and by Lemma 4.1 we may view $\operatorname{Map}_{\partial}(\Sigma, G)$ as a normal subgroup of $\widehat{\operatorname{Map}}_{\partial}(\Sigma, G')$, the restriction of the central extension (4.1) to $\operatorname{Map}_{\partial}(\Sigma, G')$. Hence, by the exact sequence (3.2), we obtain a central extension

$$(4.4) 1 \to U(1) \to \widehat{\operatorname{Map}}_{\partial}(\Sigma, G') / \operatorname{Map}_{\partial}(\Sigma, G) \to Z \times Z \to 1.$$

Therefore, the central extension $Map_{\partial}(\Sigma, G')$ fits in the following pullback diagram:

$$\begin{array}{ccc} \widehat{\operatorname{Map}}_{\partial}(\Sigma, G') & \longrightarrow & \widehat{\operatorname{Map}}_{\partial}(\Sigma, G') / \operatorname{Map}_{\partial}(\Sigma, G) \\ & & & & \\ & & & \\ & & & & \\$$

122

where the map on the bottom of the square is the one appearing in (3.2). It follows that the central extension $\widehat{\text{Map}}_{\partial}(\Sigma, G')$ splits if the central extension (4.4) is trivial.

Central U(1)-extensions over the abelian group $\Gamma = Z \times Z$ are determined by their commutator pairing $q: \Gamma \times \Gamma \to U(1)$. (In general, a trivial commutator pairing would only show that the given extension is abelian. However, abelian U(1)-extensions are necessarily trivial, since U(1) is divisible.) For \mathbf{z} and \mathbf{w} in $Z \times Z$, recall that the commutator pairing is defined by

$$q(\mathbf{z},\mathbf{w}) = \widehat{\mathbf{z}}\widehat{\mathbf{w}}\widehat{\mathbf{z}}^{-1}\widehat{\mathbf{w}}^{-1},$$

where $\hat{\mathbf{z}}$ and $\hat{\mathbf{w}}$ in $\widehat{\mathrm{Map}}_{\partial}(\Sigma, G')/\mathrm{Map}_{\partial}(\Sigma, G)$ are arbitrary lifts of \mathbf{z} and \mathbf{w} respectively.

Next, we compute the commutator pairing q and determine when it is trivial. To that end, let g_z and g_w be constructed as above. Then since g_z and g_w lie in T', $g_z g_w = g_w g_z$, and

$$(g_{\mathbf{z}}, 1)(g_{\mathbf{w}}, 1)(g_{\mathbf{z}}, 1)^{-1}(g_{\mathbf{w}}, 1)^{-1} = (1, c(g_{\mathbf{z}}, g_{\mathbf{w}})c(g_{\mathbf{w}}, g_{\mathbf{z}})^{-1}).$$

Therefore,

$$q(\mathbf{z}, \mathbf{w}) = c(g_{\mathbf{z}}, g_{\mathbf{w}})c(g_{\mathbf{w}}, g_{\mathbf{z}})^{-1} = \exp \pi i \int_{\Sigma} \left(lB(g_{\mathbf{z}}^* \theta^L, g_{\mathbf{w}}^* \theta^R) - lB(g_{\mathbf{w}}^* \theta^L, g_{\mathbf{z}}^* \theta^R) \right)$$
$$= \exp 2\pi i \int_{\Sigma} lB(g_{\mathbf{z}}^* \theta, g_{\mathbf{w}}^* \theta),$$

where θ denotes the Maurer–Cartan form on the torus T'.

By collapsing the boundary of Σ to a point, we map view the maps g_z and g_w as maps from the 2-torus $T^2 \to T'$. If ω denotes the standard symplectic form on T^2 with unit symplectic volume, then $lB(g_z^*\theta, g_w^*\theta) = (lB(\zeta_{z_1}, \zeta_{w_2}) - lB(\zeta_{z_2}, \zeta_{w_1}))\omega$. Indeed,

$$\begin{aligned} (g_{\mathbf{z}}^*\theta, g_{\mathbf{w}}^*\theta)((u_1, u_2), (v_1, v_2)) \\ &= lB\Big(\theta\Big(g_{\mathbf{z}*}(u_1, u_2)\Big), \theta\Big(g_{\mathbf{w}*}(v_1, v_2)\Big)\Big) - lB\Big(\theta\Big(g_{\mathbf{z}*}(v_1, v_2)\Big), \theta\Big(g_{\mathbf{w}*}(u_1, u_2)\Big)\Big) \\ &= lB(u_1\zeta_{z_1} + u_2\zeta_{z_2}, v_1\zeta_{w_1} + v_2\zeta_{w_2}) - lB(v_1\zeta_{z_1} + v_2\zeta_{z_2}, u_1\zeta_{w_1} + u_2\zeta_{w_2}) \\ &= \Big(lB(\zeta_{z_1}, \zeta_{w_2}) - lB(\zeta_{z_2}, \zeta_{w_1})\Big) (u_1v_2 - v_1u_2). \end{aligned}$$

Therefore,

$$q(\mathbf{z}, \mathbf{w}) = \exp 2\pi i \left(lB(\zeta_{z_1}, \zeta_{w_2}) - lB(\zeta_{w_1}, \zeta_{z_2}) \right),$$

and q is trivial if and only if l is a multiple of the basic level $l_b(G')$.

Corollary 4.3 If the level is an integer multiple of the basic level, there is a central extension

$$1 \to U(1) \to \operatorname{Map}(\Sigma, G')/\operatorname{Map}_{\partial}(\Sigma, G') \to L_0G'.$$

Proof As in the proof of Theorem 4.2, at any integer level, the central extension

$$1 \to U(1) \to \widehat{\operatorname{Map}}_{\partial}(\Sigma, G') \to \operatorname{Map}_{\partial}(\Sigma, G') \to 1$$

is the pullback of the central extension (4.4) over the abelian group $Z \times Z$. Moreover, if the underlying level is a multiple of the basic level, the proof of Theorem 4.2 shows that this extension is abelian and hence split.

Each choice of section $\delta: Z \times Z \to \operatorname{Map}_{\partial}(\Sigma, G')/\operatorname{Map}_{\partial}(\Sigma, G)$ of the central extension (4.4) induces a canonical section $s: \operatorname{Map}_{\partial}(\Sigma, G') \to \operatorname{Map}_{\partial}(\Sigma, G')$ as follows. For $g \in \operatorname{Map}_{\partial}(\Sigma, G')$, write $\delta(g_{\sharp}) = [(h, z)]$. Since $h_{\sharp} = g_{\sharp}$, by the exactness of (3.2), there is a unique $a \in \operatorname{Map}_{\partial}(\Sigma, G)$ with $h\pi a = g$. Define

$$s(g) = (g, c(h, \pi a) z \alpha(a))$$

It is easy to check that *s* is well-defined and is indeed a section. It remains to verify that the induced inclusion

$$\operatorname{Map}_{\partial}(\Sigma, G') \xrightarrow{\circ} \widehat{\operatorname{Map}}_{\partial}(\Sigma, G') \hookrightarrow \widehat{\operatorname{Map}}(\Sigma, G')$$

includes $\operatorname{Map}_{\partial}(\Sigma, G')$ as a normal subgroup.

To that end, observe first that it suffices to check that $\operatorname{Map}_{\partial}(\Sigma, G')$ is closed under conjugation by elements of $\widehat{\operatorname{Map}}(\Sigma, G')$ in the image of $\widehat{\operatorname{Map}}(\Sigma, G) \to \widehat{\operatorname{Map}}(\Sigma, G')$ induced from (3.1). Indeed, sequences (3.1) and (3.2) show that each k in $\operatorname{Map}(\Sigma, G')$ can be expressed as $k = \pi x f$, where $f \in \operatorname{Map}_{\partial}(\Sigma, G')$ satisfies $k_{\sharp} = f_{\sharp}$ and $x \in \operatorname{Map}(\Sigma, G)$.

Let $g \in \operatorname{Map}_{\partial}(\Sigma, G')$ and choose $x \in \operatorname{Map}(\Sigma, G)$. Then

$$(\pi x, w)s(g)(\pi x, w)^{-1} = \left(\pi xg\pi x^{-1}, c(\pi xg, \pi x^{-1})c(\pi x, g)c(h, \pi a)z\alpha(a)\right),$$

where $\delta(g_{\sharp}) = [(h, z)]$ and $h\pi a = g$ for $a \in \text{Map}_{\partial}(\Sigma, G)$. Since $(\pi xg\pi x^{-1})_{\sharp} = g_{\sharp}$, $s(\pi xg\pi x^{-1}) = (\pi xg\pi x^{-1}, c(h, a')z\alpha(a'))$, where $\pi xg\pi x^{-1} = ha'$. Therefore we must verify that

$$c(\pi xg, \pi x^{-1})c(\pi x, g)c(h, \pi a)\alpha(a) = c(h, a')\alpha(a'),$$

which, since $a' = a \cdot g^{-1} \pi x g \pi x^{-1}$, simplifies to

(4.5)
$$c(\pi x, g\pi x^{-1})c(\pi x, g) = c(g, g^{-1}\pi xg\pi x^{-1})\alpha(g^{-1}\pi xg\pi x^{-1}).$$

In order to compute $\alpha(g^{-1}\pi xg\pi x^{-1})$ in (4.5), let $F: \Sigma \times [0, 1] \to G$ be a homotopy such that $F_0 = x$ and $F_1 = e$. (Such a homotopy exists, since *G* is 2-connected.) Let $H: \Sigma \times [0, 1] \to G'$ be defined by $H(p, t) = g(p)^{-1}\pi F(p, t)g(p)\pi F(p, t)^{-1}$, and argue as in the proof of Lemma 4.1 that

$$\alpha(g^{-1}\pi xg\pi x^{-1}) = \exp\frac{-i\pi}{6}\int_{\Sigma\times[0,1]} (g\pi Fg^{-1}\pi F^{-1})^*\eta.$$

A direct calculation verifies that equation (4.5) holds.

Loop Groups and Pre-Quantization

The main strategy to verify (4.5) is to recognize $\rho = (g\pi Fg^{-1}\pi F^{-1})^*\eta$ as a coboundary $\rho = d\tau$ and use Stokes' Theorem, so that

$$\int_{\Sigma \times [0,1]} \rho = \int_{\partial \Sigma \times [0,1]} \tau + \int_{\Sigma \times 0} \tau + \int_{\Sigma \times 1} \tau,$$

where

$$\frac{1}{6}\tau = B\big((\pi F)^*\theta^L, (g\pi F^{-1})^*\theta^R\big) + B\big((\pi F)^*\theta^L, g^*\theta^R) - B(g^*\theta^L, (g^{-1}\pi Fg\pi F^{-1})^*\theta^R\big).$$

The first term does not contribute because $g|_{\partial \Sigma} = e$, and the third term above does not contribute because $F_1 = e$.

The Pre-Quantum Line Bundle

As mentioned in the introduction, the construction of the pre-quantum line bundle over $\mathcal{M}'(\Sigma)$ appears in [1]. Nevertheless, the main steps in the construction are summarized next, focussing on the obstruction related to central extensions of the gauge group.

The pre-quantum line bundle $L'(\Sigma) \to \mathcal{M}'(\Sigma)$ is obtained through a reduction procedure. Recall that $\widehat{\mathrm{Map}}(\Sigma, G')$ acts on the trivial bundle $\mathcal{A}(\Sigma) \times \mathbb{C}$ by

$$(g,w) \cdot (A,a) = \left(g \cdot A, \exp\left(-i\pi \int_{\Sigma} lB(g^*\theta^L, A)\right)wa\right).$$

The 1-form $\alpha \mapsto \frac{1}{2} \int_{\Sigma} lB(A, \alpha)$ on $\mathcal{A}(\Sigma)$ defines an invariant connection, whose curvature can be verified to be $\omega_{\mathcal{A}}$.

By Corollary 4.3, when l is a multiple of $l_b(G')$ (see Definition 2.1), the central extension $\widehat{\text{Map}}_{\partial}(\Sigma, G') \subset \widehat{\text{Map}}(\Sigma, G')$ splits, and we may define the pre-quantum line bundle over $\mathcal{M}'(\Sigma)$ by

$$L'(\Sigma) = (\mathcal{A}_{\text{flat}}(\Sigma) \times \mathbb{C}) / \text{Map}_{\partial}(\Sigma, G').$$

As in the proof of Corollary 4.3, each choice of splitting of the central extension (4.4) induces a splitting of the central extension $\widehat{\text{Map}}_{\partial}(\Sigma, G')$ over $\text{Map}_{\partial}(\Sigma, G')$ used in the above construction. Since any two sections of the central extension (4.4) differ by a character $Z \times Z \rightarrow U(1)$, it is not hard to see that the set of pre-quantum line bundles are therefore in one-to-one correspondence with a group of characters $\text{Hom}(Z \times Z, U(1))$ (cf. [1, Theorem 4.1(b)]).

Finally, note that since the symplectic quotients $\mathcal{M}'(\Sigma)_{\mu}$, where $\operatorname{Hol}(\mu) \in Z$, are the connected components of the moduli space $M_{G'}(\widehat{\Sigma})$ of flat G'-bundles over the closed surface $\widehat{\Sigma}$ (see the end of Section 3), the pre-quantum line bundle $L'(\Sigma)$ descends to a pre-quantization of $M_{G'}(\widehat{\Sigma})$.

Acknowledgements The author is grateful to E. Meinrenken for very useful conversations and to the referee for insightful comments.

D. Krepski

References

- [1] A. Alekseev, E. Meinrenken, and C. Woodward, *Formulas of Velinde type for non simply-connected groups.* arxiv:math/0005047.
- M. F. Atiyah and R. Bott, *The Yang-Mills equations over Riemann surfaces*. Philos. Trans. Roy. Soc. London Ser. A 308(1982), no. 1505, 523–615. http://dx.doi.org/10.1098/rsta.1983.0017
- [3] J.-M. Bismut and F. Labourie, Symplectic geometry and the Verlinde formulas. In: Surveys in differential geometry: differential geometry inspired by string theory, Surv. Differ. Geom, 5, Int. Press, Boston, MA, 1999, pp. 97–311.
- [4] A. Cannas da Silva, *Lectures on symplectic geometry*. Lecture Notes in Mathematics, 1764, Springer-Verlag, Berlin, 2001.
- [5] D. Krepski, Pre-quantization of the moduli space of flat G-bundles over a surface. J. Geom. Phys. 58(2008), no. 11, 1624–1637. http://dx.doi.org/10.1016/j.geomphys.2008.07.009
- [6] E. Meinrenken and C. Woodward, Hamiltonian loop group actions and Verlinde factorization. J. Differential Geom. 50(1998), no. 3, 417–469.
- [7] A. Pressley and G. Segal, *Loop groups*. Oxford Mathematical Monographs, Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1986.
- [8] T. R. Ramadas, I. M. Singer, and J. Weitsman, Some comments on Chern-Simons gauge theory. Comm. Math. Phys. 126(1989), no. 2, 409–420. http://dx.doi.org/10.1007/BF02125132
- [9] V. Toledano Laredo, Positive energy representations of the loop groups of non-simply connected Lie groups. Comm. Math. Phys. 207(1999), no. 2, 307–339. http://dx.doi.org/10.1007/s002200050728

Department of Mathematics and Statistics, McMaster University, Hamilton, ON e-mail: krepskid@math.mcmaster.ca

126