(c) Canadian Mathematical Society 2011

Central Extensions of Loop Groups and Obstruction to Pre-Quantization

Derek Krepski

Abstract

An explicit construction of a pre-quantum line bundle for the moduli space of flat G-bundles over a Riemann surface is given, where G is any non-simply connected compact simple Lie group. This work helps to explain a curious coincidence previously observed between Toledano Laredo's work classifying central extensions of loop groups $L G$ and the author's previous work on the obstruction to pre-quantization of the moduli space of flat G-bundles.

1 Introduction

The moduli space $\mathcal{M}(\Sigma)$ of flat G-bundles over a surface Σ with one boundary component is known to admit a pre-quantization at integer level ${ }^{11}$ when the structure group G is a simply connected compact simple Lie group. If the structure group is not simply connected, however, integrality of the level does not guarantee the existence of a pre-quantization. It was found in [5] that for non-simply connected G, $\mathcal{M}(\Sigma)$ admits a pre-quantization if and only if the underlying level is an integer multiple of $l_{0}(G)$ listed in Table 1.1 for all non-simply connected, compact, simple Lie groups G.

G	$S U(n) / \mathbb{Z}_{k}$ $n \geq 2$	$P S p(n)$ $n \geq 1$	$S O(n)$ $n \geq 7$	$P O(2 n)$ $n \geq 4$	$S s(4 n)$ $n \geq 2$	$P E_{6}$	$P E_{7}$
$l_{0}(G)$	$\operatorname{ord}_{k}\left(\frac{n}{k}\right)$	$1, n$ even $2, n$ odd	1	$2, n$ even $4, n$ odd	$1, n$ even $2, n$ odd	3	2

Table 1.1: The integer $l_{0}(G)$. Here, $\operatorname{ord}_{k}(x)$ denotes the order of $x \bmod k$ in $\mathbb{Z}_{k}=\mathbb{Z} / k \mathbb{Z}$.

A curiosity observed in [5] is that the integer $l_{0}(G)$ also appears in Toledano Laredo's work [9], which classifies positive energy projective representations of loop groups $L G$ for non-simply connected, compact, simple Lie groups G. To be more specific, Toledano Laredo classifies central extensions

$$
1 \rightarrow U(1) \rightarrow \widehat{L G} \rightarrow L G \rightarrow 1
$$

[^0]showing they can only exist at levels that are integer multiples of the so-called basic level $l_{b}(G)$, which is then computed for each non-simply connected G (see [9, Proposition 3.5]). By inspection, it is easy to see that $l_{0}(G)=l_{b}(G)$, and this paper aims to understand this coincidence.

The main result of this work, which helps to account for the observed coincidence, is an explicit construction of a pre-quantum line bundle over the moduli space $\mathcal{N}(\Sigma)$ of flat G-bundles in the case when the structure group G is non-simply connected. The construction is an extension of the well-known constructions in the case when G is simply connected (see [6, 8]). It also appears in [1] for non-simply connected G, although using unnecessary assumptions on the underyling level. The necessary and sufficient condition for pre-quantization, found in [5], is that the underlying level must be an integer multiple of $l_{0}(G)$. Using the equality $l_{0}(G)=l_{b}(G)$, we show that the construction appearing in [1] applies at these levels.

The obstruction to applying this construction of the pre-quantum line bundle in the case of non-simply connected structure group G is related to a central extension

$$
\begin{equation*}
1 \rightarrow U(1) \rightarrow \widehat{\Gamma} \rightarrow \Gamma \rightarrow 1 \tag{1.1}
\end{equation*}
$$

where $\Gamma \cong \pi_{1}(G) \times \pi_{1}(G)$ (see (4.4) in). The proof of Theorem4.2 shows that this extension is trivial precisely when the underlying level is an integer multiple of the basic level $l_{b}(G)$. As a consequence, when the level is an integer multiple of the basic level, the well-known construction of the pre-quantum line bundle applies.

This paper is organized as follows. Section 2 reviews some of the relevant background material about loop groups and establishes some notation used throughout the paper. Section 3 reviews the construction of the moduli space, paying special attention to the fact that the underlying structure group is not simply connected. Finally, Section 4 contains the main results of this work, which include a careful study of the central extensions of the gauge groups and Theorem 4.2 whose proof shows that non-triviality of the central extension (1.1) is the obstruction to constructing the pre-quantum line bundle. This last section also contains the construction of the pre-quantum line bundle under the conditions when the above central extension is trivial.

2 Preliminaries and Notation

In this section, we establish notation that will be used in the rest of this paper and review some relevant background material.

Let G be a simply connected, compact, simple Lie group with Lie algebra \mathfrak{g}, and let $T \subset G$ be a maximal torus with Lie algebra $t \subset \mathfrak{g}$. For a non-trivial subgroup Z of the center $Z(G)$, let $G^{\prime}=G / Z$ with maximal torus $T^{\prime}=T / Z$, which identifies the quotient map $\pi: G \rightarrow G^{\prime}$ as the universal covering homomorphism, and $Z \cong$ $\pi_{1}\left(G^{\prime}\right)$. (Recall that all non-simply connected, compact, simple Lie groups G^{\prime} are of this form.)

Let $\Lambda=\operatorname{ker} \exp _{T}$ be the integer lattice for G, and let $\Lambda^{\prime}=\operatorname{ker} \exp _{T^{\prime}}$, be the integer lattice for G^{\prime}, so that $\Lambda \subset \Lambda^{\prime}$ and $Z \cong \Lambda^{\prime} / \Lambda$.

Let $B(\cdot, \cdot)$ denote the basic inner product, the invariant inner product on \mathfrak{g} normalized to make short co-roots have length $\sqrt{2}$.

Following [6], throughout this paper we fix a real number $s>1$. For a given manifold X (possibly with boundary) and $p \leq \operatorname{dim} X$, let $\Omega^{p}(X ; \mathfrak{g})$ be the space of \mathfrak{g}-valued p-forms on X of Sobolev class $s-p+\operatorname{dim} X / 2$. For a compact Lie group K with Lie algebra \mathfrak{f}, the space $\Omega^{0}(X ; \mathfrak{f})=\operatorname{Map}(X, \mathfrak{f})$ is the Lie algebra of the group $\operatorname{Map}(X, K)$ of maps of Soboloev class $s+\operatorname{dim} X / 2$.

Loop Groups and Central Extensions

For a compact Lie group K with Lie algebra \mathfrak{f}, let $L K$ denote the (free) loop space $\operatorname{Map}\left(S^{1}, K\right)$, viewed as an infinite dimensional Lie group, with Lie algebra $L \mathfrak{f}=$ $\operatorname{Map}\left(S^{1}, \mathfrak{f}\right)$.

Given an invariant inner product (\cdot, \cdot) on \mathfrak{f}, define the central extension $\widehat{L f}:=$ $L \mathfrak{f} \oplus \mathbb{R}$ with Lie bracket

$$
\left[\left(\xi_{1}, t_{1}\right),\left(\xi_{2}, t_{2}\right)\right]:=\left(\left[\xi_{1}, \xi_{2}\right], \int_{S^{1}}\left(\xi_{1}, d \xi_{2}\right)\right)
$$

If it exists, let $\widehat{L K}$ denote a $U(1)$-central extension of $L K$ with Lie algebra $\widehat{L £}$.
For $K=G$, it is well known (see [7] Theorem 4.4.1]) that central extensions $\widehat{L G}$ are classified by their level l-the unique multiple of the basic inner product that coincides with the chosen inner product-which is required to be a positive integer. (Since G is simple, any invariant inner product on \mathfrak{g} is necessarily of the form $l B(\cdot, \cdot$) for some $l>0$, called the level.)

For $K=G^{\prime}$, however, central extensions $\widehat{L G^{\prime}}$ are classified by their level l, which is required to be an integer multiple of $l_{b}\left(G^{\prime}\right)$, and a character $\chi: Z \rightarrow U(1)$ (see [9, Proposition 3.4]). The integer $l_{b}\left(G^{\prime}\right)$ is defined as follows.

Definition 2.1 Let G^{\prime} be a compact simple Lie group with integer lattice Λ^{\prime}. The basic level $l_{b}\left(G^{\prime}\right)$ is the smallest integer l such that the restriction of $l B(\cdot, \cdot)$ to Λ^{\prime} is integral.

As mentioned in the introduction, $l_{b}\left(G^{\prime}\right)=l_{0}\left(G^{\prime}\right)$, which appears in Table 1.1 for each non-simply connected, compact, simple Lie group G^{\prime}.

Let $L g^{*}=\Omega^{1}\left(S^{1} ; \mathfrak{g}\right)$, sometimes called the smooth dual of $L \mathfrak{g}$. The pairing $L \mathfrak{g} \times L g^{*} \rightarrow \mathbb{R}$ given by $(\xi, A) \mapsto \int_{S^{1}}(\xi, A)$ induces an inclusion $L g^{*} \subset(L \mathfrak{g})^{*}$. Additionally, define $\widehat{L g}^{*}:=L g^{*} \oplus \mathbb{R}$ and consider the pairing $\widehat{L g} \times \widehat{L g}^{*} \rightarrow \mathbb{R}$ given by

$$
((\xi, a),(A, t))=\int_{S^{1}}(\xi, A)+a t
$$

Since the central subgroup $U(1) \subset \widehat{L G}$ acts trivially on $\widehat{L g}$, the coadjoint representation of $\widehat{L G}$ factors through $L G$. The coadjoint action of $L G$ on $\widehat{L g}^{*}$ is (see [7, Proposition 4.3.3]),

$$
g \cdot(A, t)=\left(\operatorname{Ad}_{g}(A)-\operatorname{tg}^{*} \theta^{R}, t\right)
$$

where θ^{R} denotes the right-invariant Maurer-Cartan form on G.
Notice that for each real number λ, the hyperplanes $t=\lambda$ are fixed. Identifying $L \mathfrak{g}^{*}$ with $L \mathfrak{g}^{*} \times\{\lambda\} \subset \widehat{\operatorname{Lg}}^{*}$ yields an action of $L G$ on $L \mathfrak{g}^{*}$, called the (affine) level λ action.

3 The Moduli Space of Flat Connections $\mathcal{M}^{\prime}(\Sigma)$

In this section, we review the construction of the moduli space of flat connections following [1], with special attention to the case where G^{\prime} is a non-simply connected, compact, simple Lie group. The reader may wish to consult 412 ,6] and the references therein for more details.

Let Σ denote a compact oriented surface of genus h with 1 boundary component. The affine space of connections $\mathcal{A}(\Sigma)=\Omega^{1}(\Sigma, \mathfrak{g})$ on the trivial G^{\prime}-bundle over Σ admits an action of $\operatorname{Map}\left(\Sigma, G^{\prime}\right)$, the space of maps $g: \Sigma \rightarrow G^{\prime}$, by gauge transformations $g \cdot A=\operatorname{Ad}_{g} A-g^{*} \theta^{R}$. The kernel of the restriction map

$$
\operatorname{Map}\left(\Sigma, G^{\prime}\right) \rightarrow \operatorname{Map}\left(\partial \Sigma, G^{\prime}\right),\left.\quad g \mapsto g\right|_{\partial \Sigma}
$$

will be denoted $\operatorname{Map}_{\partial}\left(\Sigma, G^{\prime}\right)$. Define the moduli space of flat G^{\prime}-connections up gauge transformations whose restriction to $\partial \Sigma$ is trivial by

$$
\mathcal{M}^{\prime}(\Sigma):=\mathcal{A}_{\text {flat }}(\Sigma) / \operatorname{Map}_{\partial}\left(\Sigma, G^{\prime}\right)
$$

The Atiyah-Bott [2] symplectic structure on $\mathcal{M}^{\prime}(\Sigma)$ is obtained by symplectic reduction (as in [4, Chapter 23]), viewing the moduli space as a symplectic quotient of the affine space of connections $\mathcal{A}(\Sigma)$. Recall that the affine space $\mathcal{A}(\Sigma)$ carries a symplectic form $\omega_{\mathcal{A}}\left(a_{1}, a_{2}\right)=\int_{\Sigma} l B\left(a_{1}, a_{2}\right)$ and a Hamiltonian action of $\operatorname{Map}_{\partial}\left(\Sigma, G^{\prime}\right)$ with momentum map the curvature; therefore, the zero level set of the moment map is the space of flat connections $\mathcal{A}_{\text {flat }}(\Sigma)$, and hence the resulting symplectic quotient is the moduli space $\mathcal{M}^{\prime}(\Sigma)$.

The moduli space $\mathcal{M}^{\prime}(\Sigma)$ carries an action by $L G$ that can be described as follows. For $g \in \operatorname{Map}\left(\Sigma, G^{\prime}\right)$, the restriction $\left.g\right|_{\partial \Sigma}$ is a contractible loop in G^{\prime}, since $\pi_{1}\left(G^{\prime}\right)$ is Abelian and $\partial \Sigma$ is homotopic to a product of commutators $\prod a_{i} b_{i} a_{i}^{-1} b_{i}^{-1}$ for loops a_{i}, b_{i} representing generators of $\pi_{1}(\Sigma)$. Thus the restriction map takes values in the identity component $\operatorname{Map}_{0}\left(\partial \Sigma, G^{\prime}\right)$, which, after choosing a parametrization $\partial \Sigma \cong$ S^{1}, can be identified with the identity component $L_{0} G^{\prime}$ of the loop group $L G^{\prime}$. The $L G$ action on $\mathcal{N}^{\prime}(\Sigma)$ is then defined using the natural projection $L \pi: L G \rightarrow L G^{\prime}$ that takes values in $L_{0} G^{\prime}$, and the identification $\operatorname{Map}\left(\Sigma, G^{\prime}\right) / \operatorname{Map}_{\partial}\left(\Sigma, G^{\prime}\right) \cong L_{0} G^{\prime}$. The $L G$ action is Hamiltonian, with momentum map $\Phi^{\prime}: \mathcal{N}^{\prime}(\Sigma) \rightarrow L \mathfrak{g}^{*}$ given by pulling back the connection to the boundary.

The corresponding moduli space $\mathcal{M}(\Sigma)=\mathcal{A}_{\text {flat }} / \operatorname{Map}_{\partial}(\Sigma, G)$ with simply connected structure group G is a finite covering of $\mathcal{M}^{\prime}(\Sigma)$. This is a consequence of the following proposition found in [1].
Proposition 3.1 The following sequences are exact:

$$
\begin{gather*}
1 \rightarrow Z \rightarrow \operatorname{Map}(\Sigma, G) \rightarrow \operatorname{Map}\left(\Sigma, G^{\prime}\right) \rightarrow Z^{2 h} \rightarrow 1 \tag{3.1}\\
1 \rightarrow \operatorname{Map}_{\partial}(\Sigma, G) \rightarrow \operatorname{Map}_{\partial}\left(\Sigma, G^{\prime}\right) \rightarrow Z^{2 h} \rightarrow 1 \tag{3.2}
\end{gather*}
$$

In sequences (3.1) and (3.2), the maps into $Z^{2 h}$ are defined by sending $g \mapsto$ g_{\sharp} in $\operatorname{Hom}\left(\pi_{1}(\Sigma), \pi_{1}\left(G^{\prime}\right)\right) \cong Z^{2 h}$. Since $A \in \mathcal{A}(\Sigma)$ may be viewed as either a G-connection or a G^{\prime}-connection on the corresponding trivial bundle over Σ, the moduli space $\mathcal{M}(\Sigma)$ admits a residual $Z^{2 h} \cong \operatorname{Map}_{\partial}\left(\Sigma, G^{\prime}\right) / \operatorname{Map}_{\partial}(\Sigma, G)$ action, identifying $\mathcal{M}^{\prime}(\Sigma)=\mathcal{M}(\Sigma) / Z^{2 h}$. Also, the momentum map $\Phi: \mathcal{M}(\Sigma) \rightarrow L \mathfrak{g}^{*}$ is clearly invariant under the $Z^{2 h}$-action and descends to the momentum map $\Phi^{\prime}: \mathcal{N}^{\prime}(\Sigma) \rightarrow$ $L g^{*}$ above. Viewed this way, Φ^{\prime} sends an equivalence class of G^{\prime}-connections to its restriction to the boundary, considered as a G-connection on $\partial \Sigma$.

For $\mu \in L \mathfrak{g}^{*}$, the symplectic quotient

$$
\mathcal{N}(\Sigma)_{\mu}:=\Phi^{-1}(L G \cdot \mu) / L G
$$

represents the moduli space of flat connections on the trivial G bundle over Σ whose restriction to the boundary is gauge equivalent to μ. Equivalently, $\mathcal{M}(\Sigma)_{\mu}$ is the moduli space of flat connections on the trivial G-bundle whose holonomy along the boundary is conjugate to $\operatorname{Hol}(\mu)$. Similarly, the symplectic quotient $\mathcal{M}^{\prime}(\Sigma)_{\mu}=$ $\left(\Phi^{\prime}\right)^{-1}(L G \cdot \mu) / L G$ represents the moduli space of flat connections on the trivial G^{\prime}-bundle over Σ whose holonomy along the boundary, when viewed as a G-connection on $\partial \Sigma$, is conjugate to $\operatorname{Hol}(\mu)$.

The connected components of the moduli space of flat G^{\prime}-bundles over a closed surface may then be described in terms of the symplectic quotients $\mathcal{M}^{\prime}(\Sigma)_{\mu}$ with $\operatorname{Hol}(\mu) \in Z$. To see this, let $\widehat{\Sigma}$ be the closed surface obtained by gluing a disc D to Σ by identifying boundaries. Recall that there is a bijective correspondence between isomorphism classes of principal G^{\prime}-bundles $P \rightarrow \widehat{\Sigma}$ and $\pi_{1}\left(G^{\prime}\right) \cong Z$: every such bundle $P \rightarrow \widehat{\Sigma}$ is isomorphic to one that can be constructed by gluing together trivial bundles over both Σ and D with some transition function $f: S^{1}=\Sigma \cap D \rightarrow G^{\prime}$. By [3, Proposition 4.33], the holonomy around $\partial \Sigma$ of a flat connection on P coincides with $[f] \in \pi_{1}\left(G^{\prime}\right) \cong Z$. It follows that the moduli space $M_{G^{\prime}}(\widehat{\Sigma})$ of flat G^{\prime}-bundles over a closed surface $\widehat{\Sigma}$ up to gauge transformations may be written as the (disjoint)! union of the symplectic quotients $\mathcal{M}^{\prime}(\Sigma)_{\mu}$, where $\operatorname{Hol}(\mu) \in Z$.

4 The Pre-Quantum Line Bundle $L^{\prime}(\Sigma) \rightarrow \mathcal{M}^{\prime}(\Sigma)$

In this section, we construct a pre-quantum line bundle $L^{\prime}(\Sigma) \rightarrow \mathcal{N}^{\prime}(\Sigma)$, which is an adaptation of a well-known construction in the case where the underlying structure group is simply connected (see [6, 8]). The construction appears in [1] (using unnecessary assumptions on the underlying level). The main contribution here is to verify that this construction applies under the necessary and sufficient conditions obtained in [5]. For simplicity, we consider the case of genus $h=1$.

Central Extensions of the Gauge Group

An important part of the construction of the pre-quantum line bundle is a careful discussion of certain central extensions of various gauge groups.

Recall that the cocycle defined by the formula $c\left(g_{1}, g_{2}\right)=\exp i \pi \int_{\Sigma} l B\left(g_{1}^{*} \theta^{L}, g_{2}^{*} \theta^{R}\right)$
defines central extensions

$$
\begin{align*}
1 & \rightarrow U(1) \\
\rightarrow \widehat{\operatorname{Map}}(\Sigma, G) & \rightarrow \operatorname{Map}(\Sigma, G) \rightarrow 1 \tag{4.1}\\
1 & \rightarrow U(1) \rightarrow \widehat{\operatorname{Map}}\left(\Sigma, G^{\prime}\right)
\end{align*} \rightarrow \operatorname{Map}\left(\Sigma, G^{\prime}\right) \rightarrow 1 .
$$

It is known (see [6, p. 431]) that when l is an integer, the restriction of the central extension $\widehat{\operatorname{Map}}(\Sigma, G)$ to the subgroup $\operatorname{Map}_{\partial}(\Sigma, G)$ is trivial; that is, the exact sequence

$$
\begin{equation*}
1 \rightarrow U(1) \rightarrow \widehat{\operatorname{Map}}_{\partial}(\Sigma, G) \rightarrow \operatorname{Map}_{\partial}(\Sigma, G) \rightarrow 1 \tag{4.2}
\end{equation*}
$$

splits, and we may view $\operatorname{Map}_{\partial}(\Sigma, G)$ as a subgroup of $\widehat{\operatorname{Map}}(\Sigma, G)$.
More precisely, the section $\sigma: \operatorname{Map}_{\partial}(\Sigma, G) \rightarrow \widehat{\operatorname{Map}}_{\partial}(\Sigma, G), g \mapsto(g, \alpha(g))$ composed with the inclusion $\widehat{\operatorname{Map}}_{\partial}(\Sigma, G) \hookrightarrow \widehat{\operatorname{Map}}(\Sigma, G)$ embeds $\operatorname{Map}_{\partial}(\Sigma, G)$ as a normal subgroup in $\widehat{\operatorname{Map}}(\Sigma, G)$, where $\alpha: \operatorname{Map}_{\partial}(\Sigma, G) \rightarrow U(1)$ is defined as follows. For $g \in \operatorname{Map}_{\partial}(\Sigma, G)$, choose a homotopy $H: \Sigma \times[0,1] \rightarrow G$ with $H_{0}=g, H_{1}=e$ and $\left.H_{t}\right|_{\partial \Sigma}=e$ for $0 \leq t \leq 1$ and define

$$
\alpha(g)=\exp \frac{-i \pi}{6} \cdot l \int_{\Sigma \times[0,1]} H^{*} \eta
$$

where $\eta=B\left(\theta^{L},\left[\theta^{L}, \theta^{L}\right]\right)$ denotes the canonical invariant 3-form on G. It is straightforward to check that α is well defined and satisfies the coboundary relation

$$
\alpha\left(g_{1} g_{2}\right)=\alpha\left(g_{1}\right) \alpha\left(g_{2}\right) c\left(g_{1}, g_{2}\right)
$$

so that σ is indeed a section. That we may view $\operatorname{Map}_{\partial}(\Sigma, G)$ as a normal subgroup of $\widehat{\operatorname{Map}}(\Sigma, G)$ is also straightforward (cf. Lemma 4.1 and the proof of Corollary 4.3).

Therefore, one obtains the central extension

$$
1 \rightarrow U(1) \rightarrow \widehat{\operatorname{Map}}(\Sigma, G) / \operatorname{Map}_{\partial}(\Sigma, G) \rightarrow L G \rightarrow 1
$$

using the identification $L G \cong \operatorname{Map}(\Sigma, G) / \operatorname{Map}_{\partial}(\Sigma, G)$.
Assume that l is an integer. Under additional restrictions on l described in Theorem4.2, the same holds for the central extension $\widehat{\operatorname{Map}}\left(\Sigma, G^{\prime}\right)$ in (4.1) and we obtain a central extension

$$
1 \rightarrow U(1) \rightarrow \widehat{\operatorname{Map}}\left(\Sigma, G^{\prime}\right) / \operatorname{Map}_{\partial}\left(\Sigma, G^{\prime}\right) \rightarrow L_{0} G^{\prime} \rightarrow 1
$$

using the identification $L_{0} G^{\prime} \cong \operatorname{Map}\left(\Sigma, G^{\prime}\right) / \operatorname{Map}_{\partial}\left(\Sigma, G^{\prime}\right)$.
Lemma 4.1 Let $\widehat{\operatorname{Map}}_{\partial}\left(\Sigma, G^{\prime}\right)$ denote the restriction of the central extension (4.1) to $\operatorname{Map}_{\partial}\left(\Sigma, G^{\prime}\right)$. Using the section $\sigma: \operatorname{Map}_{\partial}(\Sigma, G) \rightarrow \widehat{\operatorname{Map}}_{\partial}(\Sigma, G)$ above and the inclusion $\widehat{\operatorname{Map}}_{\partial}(\Sigma, G) \rightarrow \widehat{\operatorname{Map}}_{\partial}\left(\Sigma, G^{\prime}\right)$ induced from the inclusion in (3.2), we may embed $\operatorname{Map}_{\partial}(\Sigma, G)$ as a normal subgroup in $\widehat{\operatorname{Map}}_{\partial}\left(\Sigma, G^{\prime}\right)$.

Proof The inclusion $\operatorname{Map}_{\partial}(\Sigma, G) \rightarrow \widehat{\operatorname{Map}}_{\partial}\left(\Sigma, G^{\prime}\right)$ is given by $g \mapsto(\pi g, \alpha(g))$, where $\pi: G \rightarrow G^{\prime}$ is the universal covering homomorphism. To verify that this includes $\operatorname{Map}_{\partial}(\Sigma, G)$ as a normal subgroup, a direct calculation shows that it suffices to verify that for $g \in \operatorname{Map}_{\partial}(\Sigma, G)$ and $h \in \operatorname{Map}_{\partial}\left(\Sigma, G^{\prime}\right)$,

$$
\begin{equation*}
\alpha\left(h \pi g h^{-1}\right)=c\left(h, \pi g h^{-1}\right) c\left(\pi g, h^{-1}\right) \alpha(g) . \tag{4.3}
\end{equation*}
$$

(Note that $c\left(h, h^{-1}\right)=1$, since $\left(h^{*} \theta^{L},\left(h^{-1}\right)^{*} \theta^{R}\right)=-h^{*}\left(\theta^{L}, \theta^{L}\right)=0$.) Note that $h \pi g h^{-1}$ is clearly in $\operatorname{Map}_{\partial}(\Sigma, G)$ (using the inclusion of (3.2)) so that $\alpha\left(h \pi g h^{-1}\right.$) is defined.

To compute $\alpha\left(h \pi g h^{-1}\right)$, let $F: \Sigma \times[0,1] \rightarrow G$ be a homotopy for g such that $F_{0}=g, F_{1}=e$, and $\left.F_{t}\right|_{\partial \Sigma}=e$ and let $H: \Sigma \times[0,1] \rightarrow G^{\prime}$ be the homotopy $H(p, t)=h(p) \pi F(p, t) h(p)^{-1}$. Since $\pi: G \rightarrow G^{\prime}$ is a covering projection, we may lift H to a homotopy $\tilde{H}: \Sigma \times[0,1] \rightarrow G$, and find that

$$
\alpha\left(h \pi g h^{-1}\right)=\exp \frac{-i \pi}{6} \cdot l \int_{\Sigma \times[0,1]} \tilde{H}^{*} \eta=\exp \frac{-i \pi}{6} \cdot l \int_{\Sigma \times[0,1]}\left(h \pi F h^{-1}\right)^{*} \eta
$$

A direct calculation now verifies that equation (4.3) holds. (See the proof of Corollary 4.3 for a sketch of a similar calculation.)

Theorem 4.2 The restriction of the central extension (4.1) to $\operatorname{Map}_{\partial}\left(\Sigma, G^{\prime}\right)$ splits if the underlying level l is a multiple of the basic level $l_{b}\left(G^{\prime}\right)$.
Proof It will be useful in what follows to choose representative loops in $T^{\prime} \subset G^{\prime}$ for elements of $Z \cong \pi_{1}\left(G^{\prime}\right)$. For each $z \in Z \cong \Lambda^{\prime} / \Lambda$ let $\zeta_{z} \in \Lambda^{\prime}$ be a (minimal dominant co-weight) representative for z. In particular, $\exp \zeta_{z}=z \in T \subset G$, and the loop $\zeta_{z}(t)=\exp \left(t \zeta_{z}\right)$ in $T^{\prime} \subset G^{\prime}$ represents z viewed as an element of $\pi_{1}\left(G^{\prime}\right)$.

For $\mathbf{z}=\left(z_{1}, z_{2}\right) \in Z \times Z$, construct a map $g_{\mathbf{z}}: \Sigma \rightarrow G^{\prime}$ in $\operatorname{Map}_{\partial}\left(\Sigma, G^{\prime}\right)$ as follows. View the surface Σ as the quotient of the pentagon with oriented sides identified according to the word $a b a^{-1} b^{-1} c$. Define $g: S^{1} \rightarrow T^{\prime}$ on the boundary of the pentagon so that $\left.g\right|_{a}=\zeta_{z_{1}},\left.g\right|_{b}=\zeta_{z_{2}}$ and $\left.g\right|_{c}=1$. Since $\pi_{1}(T)$ is abelian, g is null homotopic and can be extended to the pentagon, defining $g_{\mathrm{z}}: \Sigma \rightarrow T^{\prime} \rightarrow G^{\prime}$. Note that the induced map $\left(g_{\mathrm{z}}\right)_{\sharp}: \pi_{1}(\Sigma) \rightarrow \pi_{1}\left(G^{\prime}\right)$ satisfies $\left(g_{\mathrm{z}}\right)_{\sharp}(a)=z_{1}$ and $\left(g_{\mathrm{z}}\right)_{\sharp}(b)=z_{2}$, and hence $\left(g_{z}\right)_{\sharp}=\mathbf{z}$ in sequence (3.2).

Since sequence (4.2) splits, and by Lemma 4.1 we may view $\operatorname{Map}_{\partial}(\Sigma, G)$ as a normal subgroup of $\widehat{\operatorname{Map}}_{\partial}\left(\Sigma, G^{\prime}\right)$, the restriction of the central extension (4.1) to $\operatorname{Map}_{\partial}\left(\Sigma, G^{\prime}\right)$. Hence, by the exact sequence (3.2), we obtain a central extension

$$
\begin{equation*}
1 \rightarrow U(1) \rightarrow \widehat{\operatorname{Map}}_{\partial}\left(\Sigma, G^{\prime}\right) / \operatorname{Map}_{\partial}(\Sigma, G) \rightarrow Z \times Z \rightarrow 1 \tag{4.4}
\end{equation*}
$$

Therefore, the central extension $\widehat{\operatorname{Map}}_{\partial}\left(\Sigma, G^{\prime}\right)$ fits in the following pullback diagram:

where the map on the bottom of the square is the one appearing in (3.2). It follows that the central extension $\widehat{\operatorname{Map}}_{\partial}\left(\Sigma, G^{\prime}\right)$ splits if the central extension (4.4) is trivial.

Central $U(1)$-extensions over the abelian group $\Gamma=Z \times Z$ are determined by their commutator pairing $q: \Gamma \times \Gamma \rightarrow U(1)$. (In general, a trivial commutator pairing would only show that the given extension is abelian. However, abelian $U(1)$-extensions are necessarily trivial, since $U(1)$ is divisible.) For \mathbf{z} and \mathbf{w} in $Z \times Z$, recall that the commutator pairing is defined by

$$
q(\mathbf{z}, \mathbf{w})=\widehat{\mathbf{z}} \widehat{\mathbf{W}} \widehat{\mathbf{z}}^{-1} \widehat{\mathbf{w}}^{-1}
$$

where $\widehat{\mathbf{z}}$ and $\widehat{\mathbf{w}}$ in $\widehat{\operatorname{Map}}_{\partial}\left(\Sigma, G^{\prime}\right) / \operatorname{Map}_{\partial}(\Sigma, G)$ are arbitrary lifts of \mathbf{z} and \mathbf{w} respectively.
Next, we compute the commutator pairing q and determine when it is trivial. To that end, let $g_{\mathbf{z}}$ and $g_{\mathbf{w}}$ be constructed as above. Then since $g_{\mathbf{z}}$ and $g_{\mathbf{w}}$ lie in T^{\prime}, $g_{\mathbf{z}} g_{\mathbf{w}}=g_{\mathbf{w}} g_{\mathbf{z}}$, and

$$
\left(g_{\mathbf{z}}, 1\right)\left(g_{\mathbf{w}}, 1\right)\left(g_{\mathbf{z}}, 1\right)^{-1}\left(g_{\mathbf{w}}, 1\right)^{-1}=\left(1, c\left(g_{\mathbf{z}}, g_{\mathbf{w}}\right) c\left(g_{\mathbf{w}}, g_{\mathbf{z}}\right)^{-1}\right) .
$$

Therefore,

$$
\begin{aligned}
q(\mathbf{z}, \mathbf{w}) & =c\left(g_{\mathbf{z}}, g_{\mathbf{w}}\right) c\left(g_{\mathbf{w}}, g_{\mathbf{z}}\right)^{-1}=\exp \pi i \int_{\Sigma}\left(l B\left(g_{\mathbf{z}}^{*} \theta^{L}, g_{\mathbf{w}}^{*} \theta^{R}\right)-l B\left(g_{\mathbf{w}}^{*} \theta^{L}, g_{\mathbf{z}}^{*} \theta^{R}\right)\right) \\
& =\exp 2 \pi i \int_{\Sigma} l B\left(g_{\mathbf{z}}^{*} \theta, g_{\mathbf{w}}^{*} \theta\right)
\end{aligned}
$$

where θ denotes the Maurer-Cartan form on the torus T^{\prime}.
By collapsing the boundary of Σ to a point, we map view the maps g_{z} and g_{w} as maps from the 2-torus $T^{2} \rightarrow T^{\prime}$. If ω denotes the standard symplectic form on T^{2} with unit symplectic volume, then $l B\left(g_{\mathbf{z}}^{*} \theta, g_{\mathbf{w}}^{*} \theta\right)=\left(l B\left(\zeta_{z_{1}}, \zeta_{w_{2}}\right)-l B\left(\zeta_{z_{2}}, \zeta_{w_{1}}\right)\right) \omega$. Indeed,

$$
\begin{aligned}
& \left(g_{\mathbf{z}}^{*} \theta, g_{\mathbf{w}}^{*} \theta\right)\left(\left(u_{1}, u_{2}\right),\left(v_{1}, v_{2}\right)\right) \\
& \quad=l B\left(\theta\left(g_{\mathbf{z} *}\left(u_{1}, u_{2}\right)\right), \theta\left(g_{\mathbf{w} *}\left(v_{1}, v_{2}\right)\right)\right)-l B\left(\theta\left(g_{\mathbf{z}^{*}}\left(v_{1}, v_{2}\right)\right), \theta\left(g_{\mathbf{w} *}\left(u_{1}, u_{2}\right)\right)\right) \\
& \quad=l B\left(u_{1} \zeta_{z_{1}}+u_{2} \zeta_{z_{2}}, v_{1} \zeta_{w_{1}}+v_{2} \zeta_{w_{2}}\right)-l B\left(v_{1} \zeta_{z_{1}}+v_{2} \zeta_{z_{2}}, u_{1} \zeta_{w_{1}}+u_{2} \zeta_{w_{2}}\right) \\
& \quad=\left(l B\left(\zeta_{z_{1}}, \zeta_{w_{2}}\right)-l B\left(\zeta_{z_{2}}, \zeta_{w_{1}}\right)\right)\left(u_{1} v_{2}-v_{1} u_{2}\right) .
\end{aligned}
$$

Therefore,

$$
q(\mathbf{z}, \mathbf{w})=\exp 2 \pi i\left(l B\left(\zeta_{z_{1}}, \zeta_{w_{2}}\right)-l B\left(\zeta_{w_{1}}, \zeta_{z_{2}}\right)\right)
$$

and q is trivial if and only if l is a multiple of the basic level $l_{b}\left(G^{\prime}\right)$.
Corollary 4.3 If the level is an integer multiple of the basic level, there is a central extension

$$
1 \rightarrow U(1) \rightarrow \widehat{\operatorname{Map}}\left(\Sigma, G^{\prime}\right) / \operatorname{Map}_{\partial}\left(\Sigma, G^{\prime}\right) \rightarrow L_{0} G^{\prime}
$$

Proof As in the proof of Theorem4.2, at any integer level, the central extension

$$
1 \rightarrow U(1) \rightarrow \widehat{\operatorname{Map}}_{\partial}\left(\Sigma, G^{\prime}\right) \rightarrow \operatorname{Map}_{\partial}\left(\Sigma, G^{\prime}\right) \rightarrow 1
$$

is the pullback of the central extension (4.4) over the abelian group $Z \times Z$. Moreover, if the underlying level is a multiple of the basic level, the proof of Theorem 4.2 shows that this extension is abelian and hence split.

Each choice of section $\delta: Z \times Z \rightarrow \widehat{\operatorname{Map}}_{\partial}\left(\Sigma, G^{\prime}\right) / \operatorname{Map}_{\partial}(\Sigma, G)$ of the central extension (4.4) induces a canonical section $s: \operatorname{Map}_{\partial}\left(\Sigma, G^{\prime}\right) \rightarrow \widehat{\operatorname{Map}}_{\partial}\left(\Sigma, G^{\prime}\right)$ as follows. For $g \in \operatorname{Map}_{\partial}\left(\Sigma, G^{\prime}\right)$, write $\delta\left(g_{\sharp}\right)=[(h, z)]$. Since $h_{\sharp}=g_{\sharp}$, by the exactness of (3.2), there is a unique $a \in \operatorname{Map}_{\partial}(\Sigma, G)$ with $h \pi a=g$. Define

$$
s(g)=(g, c(h, \pi a) z \alpha(a))
$$

It is easy to check that s is well-defined and is indeed a section. It remains to verify that the induced inclusion

$$
\operatorname{Map}_{\partial}\left(\Sigma, G^{\prime}\right) \xrightarrow{s} \widehat{\operatorname{Map}}_{\partial}\left(\Sigma, G^{\prime}\right) \hookrightarrow \widehat{\operatorname{Map}}\left(\Sigma, G^{\prime}\right)
$$

includes $\operatorname{Map}_{\partial}\left(\Sigma, G^{\prime}\right)$ as a normal subgroup.
To that end, observe first that it suffices to check that $\operatorname{Map}_{\partial}\left(\Sigma, G^{\prime}\right)$ is closed under conjugation by elements of $\widehat{\operatorname{Map}}\left(\Sigma, G^{\prime}\right)$ in the image of $\widehat{\operatorname{Map}}(\Sigma, G) \rightarrow \widehat{\operatorname{Map}}\left(\Sigma, G^{\prime}\right)$ induced from (3.1). Indeed, sequences (3.1) and (3.2) show that each k in $\operatorname{Map}\left(\Sigma, G^{\prime}\right)$ can be expressed as $k=\pi x f$, where $f \in \operatorname{Map}_{\partial}\left(\Sigma, G^{\prime}\right)$ satisfies $k_{\sharp}=f_{\sharp}$ and $x \in$ $\operatorname{Map}(\Sigma, G)$.

Let $g \in \operatorname{Map}_{\partial}\left(\Sigma, G^{\prime}\right)$ and choose $x \in \operatorname{Map}(\Sigma, G)$. Then

$$
(\pi x, w) s(g)(\pi x, w)^{-1}=\left(\pi x g \pi x^{-1}, c\left(\pi x g, \pi x^{-1}\right) c(\pi x, g) c(h, \pi a) z \alpha(a)\right)
$$

where $\delta\left(g_{\sharp}\right)=[(h, z)]$ and $h \pi a=g$ for $a \in \operatorname{Map}_{\partial}(\Sigma, G)$. Since $\left(\pi x g \pi x^{-1}\right)_{\sharp}=g_{\sharp}$, $s\left(\pi x g \pi x^{-1}\right)=\left(\pi x g \pi x^{-1}, c\left(h, a^{\prime}\right) z \alpha\left(a^{\prime}\right)\right)$, where $\pi x g \pi x^{-1}=h a^{\prime}$. Therefore we must verify that

$$
c\left(\pi x g, \pi x^{-1}\right) c(\pi x, g) c(h, \pi a) \alpha(a)=c\left(h, a^{\prime}\right) \alpha\left(a^{\prime}\right)
$$

which, since $a^{\prime}=a \cdot g^{-1} \pi x g \pi x^{-1}$, simplifies to

$$
\begin{equation*}
c\left(\pi x, g \pi x^{-1}\right) c(\pi x, g)=c\left(g, g^{-1} \pi x g \pi x^{-1}\right) \alpha\left(g^{-1} \pi x g \pi x^{-1}\right) \tag{4.5}
\end{equation*}
$$

In order to compute $\alpha\left(g^{-1} \pi x g \pi x^{-1}\right)$ in (4.5), let $F: \Sigma \times[0,1] \rightarrow G$ be a homotopy such that $F_{0}=x$ and $F_{1}=e$. (Such a homotopy exists, since G is 2-connected.) Let $H: \Sigma \times[0,1] \rightarrow G^{\prime}$ be defined by $H(p, t)=g(p)^{-1} \pi F(p, t) g(p) \pi F(p, t)^{-1}$, and argue as in the proof of Lemma 4 .1 that

$$
\alpha\left(g^{-1} \pi x g \pi x^{-1}\right)=\exp \frac{-i \pi}{6} \int_{\Sigma \times[0,1]}\left(g \pi F g^{-1} \pi F^{-1}\right)^{*} \eta
$$

A direct calculation verifies that equation (4.5) holds.

The main strategy to verify (4.5) is to recognize $\rho=\left(g \pi F g^{-1} \pi F^{-1}\right)^{*} \eta$ as a coboundary $\rho=d \tau$ and use Stokes' Theorem, so that

$$
\int_{\Sigma \times[0,1]} \rho=\int_{\partial \Sigma \times[0,1]} \tau+\int_{\Sigma \times 0} \tau+\int_{\Sigma \times 1} \tau
$$

where
$\frac{1}{6} \tau=B\left((\pi F)^{*} \theta^{L},\left(g \pi F^{-1}\right)^{*} \theta^{R}\right)+B\left((\pi F)^{*} \theta^{L}, g^{*} \theta^{R}\right)-B\left(g^{*} \theta^{L},\left(g^{-1} \pi F g \pi F^{-1}\right)^{*} \theta^{R}\right)$.
The first term does not contribute because $\left.g\right|_{\partial \Sigma}=e$, and the third term above does not contribute because $F_{1}=e$.

The Pre-Quantum Line Bundle

As mentioned in the introduction, the construction of the pre-quantum line bundle over $\mathcal{M}^{\prime}(\Sigma)$ appears in [1]. Nevertheless, the main steps in the construction are summarized next, focussing on the obstruction related to central extensions of the gauge group.

The pre-quantum line bundle $L^{\prime}(\Sigma) \rightarrow \mathcal{M}^{\prime}(\Sigma)$ is obtained through a reduction procedure. Recall that $\widehat{\operatorname{Map}}\left(\Sigma, G^{\prime}\right)$ acts on the trivial bundle $\mathcal{A}(\Sigma) \times \mathbb{C}$ by

$$
(g, w) \cdot(A, a)=\left(g \cdot A, \exp \left(-i \pi \int_{\Sigma} l B\left(g^{*} \theta^{L}, A\right)\right) w a\right)
$$

The 1-form $\alpha \mapsto \frac{1}{2} \int_{\Sigma} l B(A, \alpha)$ on $\mathcal{A}(\Sigma)$ defines an invariant connection, whose curvature can be verified to be $\omega_{\mathcal{A}}$.

By Corollary 4.3, when l is a multiple of $l_{b}\left(G^{\prime}\right)$ (see Definition 2.1), the central extension $\widehat{\operatorname{Map}}_{\partial}\left(\Sigma, G^{\prime}\right) \subset \widehat{\operatorname{Map}}\left(\Sigma, G^{\prime}\right)$ splits, and we may define the pre-quantum line bundle over $\mathcal{M}^{\prime}(\Sigma)$ by

$$
L^{\prime}(\Sigma)=\left(\mathcal{A}_{\text {flat }}(\Sigma) \times \mathbb{C}\right) / \operatorname{Map}_{\partial}\left(\Sigma, G^{\prime}\right)
$$

As in the proof of Corollary 4.3, each choice of splitting of the central extension (4.4) induces a splitting of the central extension $\widehat{\operatorname{Map}}_{\partial}\left(\Sigma, G^{\prime}\right)$ over $\operatorname{Map}_{\partial}\left(\Sigma, G^{\prime}\right)$ used in the above construction. Since any two sections of the central extension (4.4) differ by a character $Z \times Z \rightarrow U(1)$, it is not hard to see that the set of pre-quantum line bundles are therefore in one-to-one correspondence with a group of characters $\operatorname{Hom}(Z \times Z, U(1))(c f .[1$, Theorem 4.1(b)]).

Finally, note that since the symplectic quotients $\mathcal{M}^{\prime}(\Sigma)_{\mu}$, where $\operatorname{Hol}(\mu) \in Z$, are the connected components of the moduli space $M_{G^{\prime}}(\widehat{\Sigma})$ of flat G^{\prime}-bundles over the closed surface $\widehat{\Sigma}$ (see the end of Section 3), the pre-quantum line bundle $L^{\prime}(\Sigma)$ descends to a pre-quantization of $M_{G^{\prime}}(\widehat{\Sigma})$.
Acknowledgements The author is grateful to E. Meinrenken for very useful conversations and to the referee for insightful comments.

References

[1] A. Alekseev, E. Meinrenken, and C. Woodward, Formulas of Velinde type for non simply-connected groups. arxiv:math/0005047
[2] M. F. Atiyah and R. Bott, The Yang-Mills equations over Riemann surfaces. Philos. Trans. Roy. Soc. London Ser. A 308(1982), no. 1505, 523-615. http://dx.doi.org/10.1098/rsta.1983.0017
[3] J.-M. Bismut and F. Labourie, Symplectic geometry and the Verlinde formulas. In: Surveys in differential geometry: differential geometry inspired by string theory, Surv. Differ. Geom, 5, Int. Press, Boston, MA, 1999, pp. 97-311.
[4] A. Cannas da Silva, Lectures on symplectic geometry. Lecture Notes in Mathematics, 1764, Springer-Verlag, Berlin, 2001.
[5] D. Krepski, Pre-quantization of the moduli space of flat G-bundles over a surface. J. Geom. Phys. 58(2008), no. 11, 1624-1637. http://dx.doi.org/10.1016/j.geomphys.2008.07.009
[6] E. Meinrenken and C. Woodward, Hamiltonian loop group actions and Verlinde factorization. J. Differential Geom. 50(1998), no. 3, 417-469.
[7] A. Pressley and G. Segal, Loop groups. Oxford Mathematical Monographs, Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1986.
[8] T. R. Ramadas, I. M. Singer, and J. Weitsman, Some comments on Chern-Simons gauge theory. Comm. Math. Phys. 126(1989), no. 2, 409-420. http://dx.doi.org/10.1007/BF02125132
[9] V. Toledano Laredo, Positive energy representations of the loop groups of non-simply connected Lie groups. Comm. Math. Phys. 207(1999), no. 2, 307-339. http://dx.doi.org/10.1007/s002200050728

Department of Mathematics and Statistics, McMaster University, Hamilton, ON
e-mail: krepskid@math.mcmaster.ca

[^0]: Received by the editors April 5, 2010; revised July 3, 2010.
 Published electronically June 29, 2011.
 The author was supported by a NSERC Postdoctoral Fellowship.
 AMS subject classification: 53D, 22E.
 Keywords: loop group, central extension, prequantization.
 ${ }^{1}$ The level $l>0$ encodes a choice of invariant inner product on the simple Lie algebra \mathfrak{g} of G.

