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Abstract

We show that if G is a group and G has a graph-product decomposition with finitely generated abelian
vertex groups, then G has two canonical decompositions as a graph product of groups: a unique
decomposition in which each vertex group is a directly indecomposable cyclic group, and a unique
decomposition in which each vertex group is a finitely generated abelian group and the graph satisfies
the T0 property. Our results build on results by Droms, Laurence and Radcliffe.
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1. Introduction

A labeled-graph is a pair (0, G0), where 0 is a non-trivial finite simplicial graph
with vertex set V0 and G0 = {Gu}u∈V0 is a family of non-trivial groups (the vertex
groups). The graph-product construction, first defined in [2], associates a group to
each labeled-graph: the graph product W (0, G0) is the quotient of the free product
∗u∈V0 Gu by relations that allow elements of Gu and Gu′ to commute if u and u′ are
adjacent in 0. The construction interpolates between the free product construction,
in the case when 0 is a discrete graph, and the direct product construction, in the
case when 0 is a complete graph. We say that the labeled-graph (0, G0) describes a
graph-product decomposition of a group G if G ∼= W (0, G0).

In the present article we study groups that have a graph-product decomposition with
finitely generated abelian vertex groups (or, equivalently, cyclic vertex groups). A
number of important classes of groups have this property, including finitely generated
abelian groups, finitely generated non-abelian free groups, right-angled Coxeter
groups and right-angled Artin groups (also known as ‘graph groups’).

A labeled-graph isomorphism f : (0, G0) → (6, G6) is a bijection f : V0 → V6

for which the following conditions hold:
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FIGURE 1. W (0, G0) ∼= W (6, G6) ∼= W (3, G3).

(1) for all u, v ∈ V0 (u, v adjacent in 0) ⇔ ( f (u), f (v) adjacent in 6);
(2) for all u ∈ V0 Gu ∼= G f (u).

We write (0, G0) ∼= (6, G6) in the case when a labeled-graph isomorphism exists.
The example in Figure 1 shows that non-isomorphic labeled-graphs may determine

isomorphic graph products. If one wishes to study a class of groups G, and
one hopes to take advantage of graph-product decompositions when doing so, it is
desirable to identify a canonical isomorphism class of labeled-graphs (0, G0) for each
isomorphism class of groups G ∈ G. Further, the choice of labeled-graph should
be sufficiently ‘natural’ that one may look to the structure of (0, G0) to explain the
structure of G. One way in which a graph-product decomposition may be considered
natural is if it is minimal, in some sense, and if any two such minimal decompositions
are isomorphic.

Droms [1] proved that if G has a graph-product decomposition with infinite
cyclic vertex groups, then any two such decompositions are isomorphic. Using
different methods, Laurence [5, Isomorphism Theorem for Graph Groups, p. 329]
proved a stronger statement that includes information about a particular labeled-graph
isomorphism. Radcliffe [6] proved that if G has a graph-product decomposition with
directly indecomposable finite vertex groups, then any two such decompositions are
isomorphic. Under the additional hypothesis that the vertex groups are cyclic, a
close reading of Radcliffe’s argument yields a result analogous to that of Laurence
(Theorem 4.4). None of the work mentioned above allowed both finite and infinite
vertex groups.

The main result of the present article is that if G has a graph-product decomposition
with directly indecomposable cyclic vertex groups, then any two such decompositions
are isomorphic (Theorem 5.3). It follows that if G has a graph-product decomposition
with finitely generated abelian vertex groups and a graph which satisfies the
T0 property (Definition 3.1), then any two such decompositions are isomorphic
(Corollary 5.4). Thus if G is a group and G has a graph-product decomposition with
finitely generated abelian vertex groups, then G has two canonical decompositions
as a graph product of groups: a unique decomposition in which each vertex group
is a directly indecomposable cyclic group (such as (0, G0) in Figure 1), and a unique
decomposition in which each vertex group is a finitely generated abelian group and the
graph satisfies the T0 property (such as (6, G6) in Figure 1). The first decomposition
is minimal in the sense that the vertex groups are minimal; the second decomposition
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is minimal in the sense that the graph has the least number of vertices when we allow
only finitely generated abelian groups as vertex groups.

Our techniques are combinatorial. Our arguments make essential use of the results
of Droms, Laurence and Radcliffe mentioned above. In Section 2 we discuss some
preliminary results on graphs and graph products, in Section 3 we remind the reader
of the T0 property and the T0-quotient of a labeled-graph as used by Radcliffe, in
Section 4 we state a result by Laurence and sharpen a result by Radcliffe and in
Section 5 we prove the main result.

2. Graphs and graph products

For a non-trivial finite simplicial graph 3 (that is, a graph with no circuits of length
less than three), we write V3 for the set of vertices of 3. The subgraph of 3 determined
by a subset U ⊆ V3 is the full subgraph of 0 determined by the vertices in U . We write
MCS(3) for the set of maximal complete subgraphs (or cliques) of 3.

Let (3, G3) be a labeled-graph. Each full subgraph 2 of 3 determines a labeled-
subgraph (2, G2). We write W (2) for the subgroup of W (3, G3) generated by
the natural image of the set

⋃
u∈V2

Gu, and we note that W (2) ∼= W (2, G2). In
particular, we shall often write W (3) for W (3, G3).

A cyclic group is primary if it has prime-power order, and directly indecomposable
if it has infinite order or it is primary. For the remainder of this section we assume that
G3 is a family of directly indecomposable cyclic groups. Following common practice,
we abuse notation by ignoring the formal distinction between the elements of V3 and
the generators of W (3).

We write 3T for the subgraph of 3 determined by the vertices u ∈ V3 for which
Gu has finite order and we write 3A for the subgraph of 3 determined by the vertices
u ∈ V3 for which Gu has infinite order (we have selected T for torsion and A for
Artin). The next lemma follows immediately from a more general result by Green
[2, Theorem 3.26].

LEMMA 2.1. If G3 is a family of directly indecomposable cyclic groups, then each
maximal finite subgroup of W (3) is abelian and

{W (2) | 2 ∈ MCS(3T )}

is a complete set of representatives for the conjugacy classes of maximal finite
subgroups of W (3).

Following [4, 5], a word w in the alphabet V ±1
3 is said to be reduced if there is

no shorter word w′ which defines the same element of W (3). For a group element

g ∈ W (3) and a word w in the alphabet V ±1
3 , we write g

red
= w if w is a reduced word

which equals g in the group W (3). For words w and w′ in the alphabet V ±1
3 , we write

w ≡ w′ if w and w′ are equal as words and we say that w is transformed into w′ by a
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letter swapping operation if w ≡ w1uεvδw2 and w′
≡ w1v

δuεw2 for some adjacent
vertices u, v ∈ V3, some exponents ε, δ ∈ {±1} and some reduced words w1, w2.
Laurence showed that for vertices v1, . . . , vp ∈ V3 and integers ε1, . . . , εp ∈ {±1},
if w ≡ v

ε1
1 . . . v

εp
p is not reduced, then there exists 1 ≤ i < j ≤ p such that vi = v j ,

εi + ε j = 0 and vi is adjacent to each of the vertices vi+1, . . . , v j−1 (the Deletion
Condition) [4, Corollary 3.1.1]. It follows from the Normal Form Theorem for Graph
Products [2] (see also [4]) that if two reduced words w, w′ define the same element
of W (3), then w can be transformed into w′ by a finite number of letter swapping
operations (the Transpose Condition). It follows from the Transpose Condition that
we may define

supp(g) := {u ∈ V3 | u or u−1 appears in some reduced word for g},

csupp(g) := {u ∈ V3 | ∀w ∈ W (3) u ∈ supp(wgw−1)}.

We say that d is a terminal segment of w if d is a reduced word and there exists a
reduced word w′ such that w ≡ w′d .

For an element g ∈ W (3), we write CW (3)(g) for the centralizer of g in W (3).
An element u ∈ W (3) is said to be a CP element (for commuting product) if there
exists a complete subgraph 1 ⊆ 0 such that u ∈ W (1). We write u? for the subgraph
of 0 generated by supp(u) and those vertices adjacent to each vertex in supp(u). The
centralizer of a CP element in W (3) has a particularly simple form.

LEMMA 2.2. If G3 is a family of directly indecomposable cyclic groups and u is a
CP element of W (3), then CW (3)(u) = W (u?).

PROOF. Let u be a CP element of W (3). We shall abuse notation by also
writing u for a reduced word representing the group element u. It is clear that
W (u?) ⊂ CW (3)(u).

Suppose that CW (3)(u) − W (u?) is non-empty and let g be a minimal length (with
respect to the generating set V ±1

0 ) element of CW (3)(u) − W (u?). The minimality of

g implies that no terminal segment of g is contained in W (u?), so g
red
= w′yε for some

vertex y 6∈ u?, some exponent ε ∈ {±1} and some reduced word w′.
We claim that w′yεu is a reduced word. Suppose that w′yεu is not a reduced

word. It follows from the Deletion Condition that some sequence of letter swapping
operations will transform the word w′yε into a word w′′vδ , where v ∈ supp(u),
δ ∈ {±1} and v−δ appears in u. But then g has a terminal segment in W (u?). This
contradiction completes the proof of the claim.

By hypothesis, w′yεu = uw′yε and it follows that uw′yε is also a reduced word.
By the transpose condition, w′yεu may be transformed to uw′yε by a finite number
of letter swapping operations. Since yε

6∈ u?, we have that y 6∈ supp(u). It follows
that, to transform w′yεu to uw′yε by letter swapping operations, we must have
that y is adjacent to each vertex in supp(u). But this contradicts the hypothesis
that y 6∈ u?. 2
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3. An equivalence relation on the vertices of a graph

In this section we remind the reader of an equivalence relation on the vertices of a
graph which proved to be a key idea in [6].

Let (3, G3) be a labeled-graph. Following [6], we define a relation ∼3 on the set
V3 as follows:

u ∼3 v ⇔ (∀2 ∈ MCS(3) u ∈ 2 ⇔ v ∈ 2).

It is easily verified that ∼3 is an equivalence relation. We write ũ for the ∼3

equivalence class of u ∈ V3. It is immediate from the definitions that each ∼3

equivalence class determines a complete subgraph of 3.

DEFINITION 3.1. If each ∼3 equivalence class is a singleton set, then we say that
3 satisfies the T0 property.

The relation ∼3 determines a well-defined quotient of 3 and a well-defined
quotient of (3, G3).

DEFINITION 3.2. Let 30 denote the graph with vertex set V30 in one-to-one
correspondence with the ∼3 equivalence classes of V3 and with adjacency determined
by the following rule:

ũ and ṽ adjacent in 30 ⇔ u and v adjacent in 3 and u 6∼3 v.

For each ũ ∈ V30 , define G ũ := ×v∈ũ Gv . Write G30 := {G ũ}ũ∈V30
. The graph 30 is

called the T0-quotient of 3 and the labeled-graph (30, G30) is called the T0-quotient
of (3, G3).

We record some observations on the T0-quotients 30 and (30, G30).

LEMMA 3.3. Let (3, G3) be a labeled-graph and let (30, G30) be its T0-quotient.
The following properties hold:

(1) 30 satisfies the T0 property;
(2) vertices u, v ∈ V3 are adjacent in 3 if and only if either ũ and ṽ are adjacent in

30 or ũ = ṽ;
(3) W (3, G3) ∼= W (30, G30).

We now establish that in the case that G3 is a family of directly indecomposable
cyclic groups, the isomorphism class of (3, G3) is uniquely determined by the
isomorphism class of the T0-quotient (30, G30).

LEMMA 3.4. Let (3, G3) and (4, G4) be labeled-graphs with directly
indecomposable cyclic vertex groups. Then (3, G3) and (4, G4) are isomorphic if
and only if (30, G30) and (40, G40) are isomorphic.

PROOF. It is clear that each isomorphism (3, G3) → (4, G4) induces an
isomorphism (30, G30) → (40, G40). Now suppose that there exists an isomorphism
t0 : (30, G30) → (40, G40). Each element of G30 (respectively G40) is a finitely
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generated abelian group. It is well known that such groups have a unique
decomposition as a direct product of directly indecomposable cyclic groups. Thus,
for each ũ ∈ V30 , there exists a labeled-graph isomorphism tũ from the subgraph of 3

generated by the vertices in ũ to the subgraph of 4 generated by the vertices in t0(ũ).
Define t to be the bijection V3 → V4 which restricts to tũ for each equivalence class
ũ ∈ V30 . It follows from the definitions and Lemma 3.3(2) that t is a labeled-graph
isomorphism. 2

4. Some preliminary rigidity results

For the remainder of this paper we assume that (0, G0) and (6, G6) are labeled-
graphs with directly indecomposable cyclic vertex groups. As in Section 2, we
shall abuse notation by ignoring the formal distinction between the elements of V0

(respectively V6) and the generators of W (0) (respectively W (6)).
As stated in the introduction, Droms [1] proved that if G has a graph-product

decomposition with infinite cyclic vertex groups, then any two such decompositions
are isomorphic. Laurence proved the following stronger statement using peak
reduction techniques.

THEOREM 4.1 (Laurence [5, p. 329]). If G0 and G6 are families of infinite cyclic
groups and α : W (0) → W (6) is an isomorphism, then there exists a labeled-graph
isomorphism a : (0, G0) → (6, G6) for which the following property holds:

for all u ∈ V0, a(u) ∈ csupp(α(u)).

Also, as stated in the introduction, Radcliffe [6] proved that if G has a graph-product
decomposition with directly indecomposable finite vertex groups, then any two such
decompositions are isomorphic. In this section we work towards a full analogue of
Theorem 4.1, under the hypothesis of primary cyclic vertex groups.

By Lemma 2.1, if G3 is a family of directly indecomposable cyclic groups and
g ∈ W (3) is an element of finite order, then there exists a unique element [g] of
minimal length in the conjugacy class of g and there exists 2 ∈ MCS(3T ) such that
csupp(g) ⊆ 2 and [g] ∈ W (2). This fact plays a central role in the present article
because of the following lemma.

LEMMA 4.2. If G0 and G6 are families of primary cyclic groups and τ : W (0) →

W (6) is an isomorphism, then the map τ̂ : V0 → W (6) determined by the rule
u 7→ [τ(u)] extends to an isomorphism τ̂ : W (0) → W (6).

PROOF. Consider the presentation of W (0) implicit in the graph-product
decomposition (0, G0). We shall show that τ̂ extends to a homomorphism W (0) →

W (6) by checking that the relations in this presentation of W (0) are ‘preserved’ by
τ̂ . Since τ is an isomorphism and conjugation preserves the order of an element, it
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is clear that the order of each vertex is preserved by τ̂ . If u, v ∈ V0 are adjacent in
0, then 〈u, v〉 has finite order and so does 〈τ(u), τ (v)〉. By Lemma 2.1, there exists
2 ∈ MCS(6) and w ∈ W (6) such that τ(u), τ (v) ∈ wW (2)w−1. Then τ̂ (u), τ̂ (v)

are contained in the abelian subgroup W (2). Thus τ̂ (u)τ̂ (v)τ̂ (u)−1τ̂ (v)−1
= 1 and

the relation uvu−1v−1 is preserved by τ̂ .

We shall show that the homomorphism τ̂ is an isomorphism by showing that τ̂−1 ◦

τ̂ (v) = v for each v ∈ V0 . Let v ∈ V0 . There exists 2 ∈ MCS(6), a ∈ W (2) and
w ∈ W (6) such that τ(v) = waw−1 and τ̂ (v) = a. Then τ−1(a) = τ−1(w−1)vτ−1(w)

and τ̂−1(a) = v. So τ̂−1 ◦ τ̂ (v) = τ̂−1(a) = v, as required. 2

We also require the following result concerning the isomorphisms of finite abelian
groups.

LEMMA 4.3. If 0 and 6 are complete graphs and G0 and G6 are families of
primary cyclic groups and τ : W (0) → W (6) is an isomorphism, then there exists a
labeled-graph isomorphism t : (0, G0) → (6, G6) for which the following property
holds:

for all u ∈ V0, t (u) ∈ supp(τ (u)).

PROOF. Without loss of generality we may assume that G0 and G6 are families of
p-primary cyclic groups for a fixed prime p.

Let V0 = {g1, g2, . . . , gk}, let V6 = {s1, s2, . . . , sk} and let A = (a`m) be the
matrix of integers such that sm appears with exponent sum a`m in τ(g`). Recall that

det A =

∑
σ∈Sym(n)

sgn(σ ) a1σ(1)a2σ(2) . . . akσ(k), (4.1)

where Sym(n) denotes the symmetric group on the set {1, 2, . . . , n}. By
[3, Theorem 3.6], A (mod p) ∈ GLk(Fp). Hence det A is not divisible by p and at
least one term of the sum (4.1) is not divisible by p. Thus there exists σ ∈ Sym(n)

such that am σ(m) is non-trivial modulo p for each m; hence sσ(m) ∈ supp(τ (gm))

for each m. Define t (gm) = sσ(m) for each 1 ≤ m ≤ k. By construction, t has the
required properties. 2

We now give an analogue of Theorem 4.1. The proof below is an interpretation
of Radcliffe’s argument [6], with Lemma 4.3 applied at the appropriate place to
strengthen the result.

THEOREM 4.4 (Radcliffe [6]). If G0 and G6 are families of primary cyclic groups
and τ : W (0) → W (6) is an isomorphism, then there exists a labeled-graph
isomorphism t : (0, G0) → (6, G6) for which the following property holds:

for all u ∈ V0 t (u) ∈ csupp(τ (u)).
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PROOF. In this paragraph we define a map t0 : V00 → V60 . Let ũ ∈ V00 . It
follows from the T0 property that ũ ∈ V00 is uniquely identified by its memberships
and non-memberships in elements of MCS(00). That is, the singleton set {ũ} is the
intersection of the maximal complete subgraphs of 00 which contain ũ minus the
union of the maximal complete subgraphs of 00 which do not contain ũ. It follows
from the definition that τ̂ determines a one-to-one correspondence between the sets
MCS(00) and MCS(60). Thus τ̂ (G ũ) may be written as an intersection of elements
in MCS(60) minus a union of elements in MCS(60). The T0 property then implies
that τ̂ (G ũ) = G ṽ for some ṽ ∈ V60 . Define t0(ũ) = ṽ.

From the definitions (or using Lemma 2.2), the reader may confirm that t0 is
a labeled-graph isomorphism and that τ̂ restricts to an isomorphism W (G ũ) →

W (G t0(ũ)) for each ũ ∈ V00 . Following the proof of Lemma 3.4, we may lift t0 to
a labeled-graph isomorphism t : (0, G0) → (6, G6).

Now, recall that each ∼0 (respectively ∼6) equivalence class of vertices ũ
determines a complete subgraph of 0 (respectively 6) and hence a finite abelian
subgroup of W (0) (respectively (W (6)). By Lemma 4.3, we may choose the lift t of
t0 so that, on each subgraph of 0 determined by a single equivalence class ũ of vertices,
t restricts to a labeled-graph isomorphism with the property that t (u) ∈ supp(τ̂ (u)) for
each u ∈ ũ. It follows that t (u) ∈ csupp(τ (u)) for each u ∈ V0 . 2

5. The main theorem

We remind the reader that (0, G0) and (6, G6) are labeled-graphs with directly
indecomposable cyclic vertex groups. We now assume that there exists a group
isomorphism φ : W (0) → W (6). Our task is to exhibit a labeled-graph isomorphism
(0, G0) → (6, G6).

Let T (0) (respectively T (6)) denote the subgroup of W (0) (respectively W (6))
generated by the elements of finite order. Let ρ6A : W (6) → W (6A) denote the
retraction homomorphism determined by

for all u ∈ V6, u 7→

{
u if u ∈ V6A ,

1 if u ∈ V6T .

LEMMA 5.1. Let α : V0A → W (6A) be defined by v 7→ ρ6A ◦ φ(v). Then α

extends to an isomorphism α : W (0A) → W (6A).

PROOF. Since φ(T (0)) = T (6), the isomorphism φ : W (0) → W (6) induces
an isomorphism φ̂ : W (0)/T (0) → W (6)/T (6). Since W (0A) ∩ T (0) = {1} and
V0T ⊂ T (0), the quotient map W (0) → W (0)/T (0) restricts to an isomorphism
π0A : W (0A) → W (0)/T (0). Similarly, the quotient map W (6) → W (6)/T (6)

restricts to an isomorphism π6A : W (6A) → W (6)/T (6). Thus (π6A)−1
◦ φ̂ ◦ π0A

is an isomorphism W (0A) → W (6A). Calculation confirms that (π6A)−1
◦ φ̂ ◦ π0A

= ρ6A ◦ φ. 2
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Recall that, for an element w of finite order in W (6), we write [w] for the unique
element of minimal length in the conjugacy class of w. As with Lemma 4.2, the
following lemma may be verified by elementary means.

LEMMA 5.2 (Compare with Lemma 4.2). Let τ : V0T → W (6T ) be defined by
u 7→ [φ(u)]. Then τ extends to an isomorphism τ : W (0T ) → W (6T ).

Lemmas 5.1 and 5.2 allow us to use Theorems 4.1 and 4.4 to prove our main result.

THEOREM 5.3. If (0, G0) and (6, G6) are labeled-graphs with directly
indecomposable cyclic vertex groups and there exists a group isomorphism
φ : W (0) → W (6), then there exists a labeled-graph isomorphism f : (0, G0) →

(6, G6).

PROOF. By Lemma 5.1 and Theorem 4.1, there exists a labeled-graph isomorphism
a : (0A, G0A) → (6A, G6A) as in the statement of Theorem 4.1. By Lemma 5.2 and
Theorem 4.4, there exists a labeled-graph isomorphism t : (0T , G0T ) → (6T , G6T )

as in the statement of Theorem 4.4. Define f : V0 → V6 to be the bijection

u 7→

{
a(u) if u ∈ V0A ,

t (u) if u ∈ V0T .

We claim that f is a labeled-graph isomorphism.
It is immediate from the definitions that Gu ∼= G f (u) for each u ∈ V0 . It remains to

show only that f preserves the structure of 0. Since we know a and t to be labeled-
graph isomorphisms, it remains to show only that f preserves adjacency between
vertices in V0A and vertices in V0T .

Let u ∈ V0T and v ∈ V0A be adjacent in 0. Since u has finite order in W (0),
φ(u) has finite order in W (6). By Lemma 2.1, there exists an inner automorphism
ι of W (6) such that ι ◦ φ(u) is a CP element of W (6). Write x := ι ◦ φ(u) and
y := ι ◦ φ(v). Since x and y commute and x is a CP element of W (6), we have by
Lemma 2.2 that y ∈ W (x?). Hence supp(y) ⊂ x?. But f (u) = t (u) ∈ csupp(φ(u)) =

supp(x) and f (v) = a(v) ∈ csupp(φ(v)) = csupp(y) ⊂ supp(y). Hence f (u) and
f (v) are adjacent in 6.

It follows from the above paragraph that 6 has at least as many edges as 0.
Similarly, by considering φ−1 we may show that 0 has at least as many edges as
6, and hence the edges of 0 and the edges of 6 are in one-to-one correspondence. It
follows that if u ∈ V0T and v ∈ V0A are not adjacent in 0, then t (u) and a(v) are not
adjacent in 6.

Thus f preserves the structure of 0 and f is a labeled-graph isomorphism. 2

COROLLARY 5.4. If (0, G0) and (6, G6) are labeled-graphs with directly
indecomposable cyclic vertex groups and there exists a group isomorphism
φ : W (0) → W (6), then there exists a labeled-graph isomorphism f0 : (00, G00) →

(60, G60).
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PROOF. The result follows immediately from Theorem 5.3 and Lemma 3.4. 2
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