ON STRONG AND ABSOLUTE SUMMABILITY

by D. BORWEIN
(Received 13 July, 1959 ; and in revised form 2 October, 1959)

1. Introduction. Suppose throughout that A > 0, « > -1, y is real and that

n+y i 1 o

Y X — X

€ = < )» 8y = X Oy Sy = € Y €8, (n=0,1,..).
n r=0 n r=0

o
The series Y, a, is said to be
0

(i) summable (C, «) to s if s; — s,
(ii) strongly summable (C, « +1) with index A, or summable |C, « +1|,, to s if

1
n+l,

Ma

| 87 —s|* = o(1),
0

I

(ili) absolutely summable (C, «} with indices y, A, or sammable |C, «, ¥|,, if

AL gl gy P < 0.
1

ﬁMs

Definitions (ii) and (iii), for general «, A, v, are due respectively to Hyslop [11] and Flett [4].
Their papers contain references to special cases considered earlier.
Let Q = (gs,) (n,r =0,1,...) be a (summability) matrix, and let
a0
on = Q(8y) = EO 9n,r Sr-
=

It is to be supposed that all matrices referred to in this paper are of the above type. The
symbol P will be reserved for matrices (p,,) with p,, >0 (n,r =0,1,...). The series

0
3 a, is said to be
1)

(iv) summable @ to s, and we write s, — s(Q), if o, is defined for all » and tends to s as
n—> 0.
We now generalise the above definitions of strong and absolute summability in a natural

way as follows. We say that § a, is
0
(v) summable [P, @], to s, and we write s,, — s[P, Q),, if

®
P(I On—8 |'\) = ZO Dny l Gy —8 ll\
ros

is defined for each # and tends to 0 as n — oo,
(vi) summable | @, y | if

[
”Zl w1 o, —o, ;P < c0.
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We also define “‘ product * processes of the form QR, [P, QR],, | @R, v |5, where R is any
matrix, by replacing @ in (iv), (v), (vi) by @R and taking o, to be Q{R(s,)}; ie. o, = Q(r,)
where 7, = R(s,).

Denoting by C, the matrix of the transformation which changes {s,} into {s}, we observe
that the summability processes [C, «+1], and | C, x, y |, are respectively the same as
(€, Claand | Cp, v |

The unit matrix will be denoted by I, so that I(s,) = s,.

Let ¥V and W be summability processes (or matrices). We shall use the notation

V=W
to mean that any series summable V to s is necessarily summable W to s provided that neither
V nor W is an absolute summability process ; otherwise we shall understand the notation to
mean simply that every series summable V is also summable . In either case we say that
V is included in W. We say that V and W are equivalent and write

V=W
if each is included in the other, and we write ¥V = W if ¥ and W denote the same process (or
matrix).
If I = V and V is not an absolute summability process, then V is said to be regular.
In this paper some of the properties of the strong and absolute summability processes
defined above are investigated.

2. Simple inclusions.

TreoreM 1. If Q is any matrix and P = (p,,), where

P Par <M (1= 0,1, 1)y eoeeereeneeeeeeeeeen e (1)

r=0

and if A > p > 0, then [P, @, = [P, €],..
In particular, the conclusion holds if A > p > 0 and P is regular.
This generalises a result proved by Hyslop [11, Theorem 1].

Proof. By Holder’s inequality,
@0 ) ufA
2 Pn | |t < <20 P | ®@r |A> M-sh
r= r=

for any sequence {w,}. The required inclusion follows.

To complete the proof we have only to note that (1) is a necessary condition for the regu-
larity of P [7, Theorem 2].

Note. Here and elsewhere an inclusion involving an arbitrary matrix ¢ is essentially no
more general than the same inclusion with I in place of @, the former being an immediate
congequence of the latter.

THEOREM 2. If Q is any matriz and X > p > 0, BA > ap > 0, then [C,, @y = [Cp, @],

Proof. Let p = Mu, ¢ = p/(p-1) and let {w,} be any sequence. Then, by Hélder’s
inequality (cf. Hyslop [11, Theorem 2]).
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—1Lay1
L& a1y P}"P{@n)“’” 2 (& )\
\ a n—r
Z,

Z, (1P

< M0, P {(n s yinte F, (7 Dpo-satn-s}

r=0
K M{C,(| wn [P, vttt (2)
since « > 0, B > 0, By —agq/p = (BA —au)g/A > 0. The numbers M, and M are independent
of » and the sequence {w,}.

The required result follows from (2).
Note. Since C, = Cg (8> « > -1), it is evident that

[0 @ = [Cs @l (B>a>0,2>0),
and it follows from this and a well known Tauberian theorem [7, Theorem 93] that
[Co @ =[Cr, @ (x>1,A>0).
Consequently the condition BA > ap > 0 in Theorem 2 is only significant if 0 <o < 1.
When « > 1 the condition can be replaced by A > u.
TueoreM 3. If P, @ are matrices and P is regular, then
() @=[P,Ql, for A>0, (i) [P,Qlx= PQ for X=1.

Proof. (i) If s, —s, then, since P is regular, P(|s,-s|) =0, ie. I = [P, I], and
inclusion (i) follows.

(i) Suppose that s, — s[P, I],. Then, by Theorem 1, s, = s[P, I], and so
[ P(sn—8) | < P(|s,—5])=0(1)
Since P is regular, it follows that P(s,) —s. Hence [P, I], = P and inclusion (ii) is an im-

mediate consequence.
As a corollary of part (i) of Theorem 3 we have

(I). If P, Q are regular matrices and A > 0, then [P, Q), is regular.

TEEOREM 4. If A= >0,y > 3, then
@ 1/u @® 1/A
0 (£, et [ ) < 2 (& worert o, 1Y
n=1 n=1
where M is independent of the sequence {w,},
) 1@,y |i= 1@, 8|, for any matriz Q.

Proof of (i). The case A = p is evident. Suppose therefore that A > u. Then, by
Hoélder’s inequality,

0 o0 ulAf © 1-ufA
2 nlutu-1 | w, Iu < <2 nYMA-1 l w, IA) <Z na) ,
n=1 n=1

n=1 =

where «(l —p/A) = Sp+p-1—(YA+A=1)p/A = —p(y —=8) = (1 —pu/A), so that « < -1. The
required inequality follows.
Result (ii) is an immediate consequence of (i).
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Note. Thecase A = p = 1, ¥y = 0 of Theorem 4(i) is contained in a result proved by Flett

({4, Theorem 4]; take « = B, 7, = nw,,).
The following three results, which concern the relation of | @, y |, to | @, 3 |, when y =38,
were kindly communicated to me by Dr B. Kuttner. The first of these shows that it is not

valid to replace the condition y > & by y > 8 in either part of Theorem 4.
A. There are regular (and non-regular) matrices @ such that, for positive A, u and every

v, | @, y | is not included in | @, y |, unless A = p.
B. T'here are regular (and non-regular) matrices @ such that, for every y, | @, y | = | @, v |,

whenever A > p > 0.
C. If x> p> v > 0and Q is any matriz, then every series summable | @, v |, and | @, v |,
1s also summable | @, y |,

Proofs. A. Suppose that @ =(g,,) is a matrix having the property that given any
sequence {o,} there is a sequence {s,} (not necessarily unique) satisfying the equations

on = Q(s,) = 'go n, +Sr (m=0,1,..).
)

In particular, @ could be any matrix with ¢,, = 0 forr > =, ¢, ,#0 (n = 0, 1,

Leta>0; andlet x; = z, = 0,
z, = n~1(log n)~1*(loglog n)~1*~= for n > 3,
mlA-ad-m(-11y  forn = 2™ (m = 0,1, ...),

Yn = 0

otherwise.

o0 o
Then 3 (x,)* n#-!is convergent if and only if » > A and 3 (y,)* n#~! is convergent if and
n=1

n=l

n=1
only if u < A. Hence ¥ (%, +y,)* n#~!is convergent if and only if p = A,

Now let {s,}, {s,} be sequences such that
WY (0p =0py) = Ta+Yy (n=1)
and Q{s,) = o,. The series of which {s,} is the sequence of partial sums is then summable
(¢n ,) by repeating

@, ¥ |abut not | @, v |, for any p = A. Result A follows.
B. Given an arbitrary matrix @ = (g, ,), form the matrix @*

certain rows in @ as follows : let
q*(‘),r = qo,n» q::,r =qm,r for 2m1 < m < 27 (m = L2, ..).

Note that @* is regular if and only if @ is regular.

Lets, = ﬁ: a,, of = @*{(s,) and let
r=()
(m=0,1,..).

8 = o¥m—o¥m_,

o
_; = 0 whenn # 27 and so summability | Q*, y |, of 20] a, is equivalent to the

*_ %
Then o —op

convergence of
W
2 2m(yA+A—l) I 81" |4\.
m=0 '
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L
Consequently, if Zo a, is summable | @*, y |,, then
3, = 0(2~m(r+1-1/0)
a,nd SO 2"‘(‘}'}""“—1) l 81’1 Iﬂr o 0(2—7"(1‘#['\)),

from which it follows that the series is summable | Q*, y|, provided A > p> 0. ie.
|Q*:‘y|/\=’ |Q*,‘Y|uf0r/\>}b>0.
C. If A> u> v > 0 and {w,} is any sequence, then, by Hélder’s inequality,
@« A—v o u—v ] A—p
( Z nyutp-1 l w, |u) < ( Z pyAFA-L I w, IA) ( Z nyv+v—1 | w, |v> :
n=1 n=1 n=1

and the required ‘‘ convexity  result is a direct consequence.

3. Hausdorff matrices. Given a real sequence {£,}, let

n—r _
{(n) > (=1y (n r)fm, for0 <r <m,
Ly = r) v=mo v

0 otherwise,

and denote the matrix (x, ,) by (k, £,). Matrices of this type are said to be real Hausdorff
matrices. We shall assume hereafter that all Hausdorff matrices considered are real.

Let X = (B, £,), Y = (k, n,). Then it is known that XY = YX = (&, £,9,). Conse-
quently X-! = (h, 1/£,) provided £, # 0, and it is familiar and easily verified that in this case
X = Y if and only if YX-! is regular.

Further, it is known that X is regular if and only if

1
én = Jo ¢ dx (2),
where y is a real function of bounded variation in [0, 1] such that
x(0+) = x{0) = x(1) =1, cevrririiiiiiiin e, 3)

it being assumed in the case of &, that 0° = 1.
The above results are proved in [7, Ch. XI].

n
Suppose as before that s, = ¥ a, and let o, = X(s,), o_; = 0. Since both X and

r=0

C7?! are Hausdorff matrices [7, § 11.2],

' XOTHS,) = CTIX(8,):  wvvvevereireeereeiireenieesineanens (4)
Also, it is easily verified that

CT(s,) = s, +may,
Consequently
oatX(na,) = X(s, +na,) = XOT'(s,) = OT'X(s,) = OT'(0,) = 0 +1(0p - 00y,
and so
X(ma,) =n(op—0,y) =120 viiiniiniiiiinnn (5)

Conversely, reversing the above argument, we see that (4) holds for any matrix X satis-
fying (5), and it is known [7, Theorem 198] that (4) implies that X must be a Hausdorff matrix.
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It follows from (5) that, for a Hausdorff matrix X, 3} @, is summable | X, y |, if and only
0
if
% n=1| X (na,) |* < oo.
n=1

We proceed to prove two general theorems about strong and absolute summability pro-
cesses associated with Hausdorff matrices. We shall use

Levmma 1. If X = (b, £,), X = (b, £,), where

1 1
b= [ raxo, &= [ rlix0l<eo @=-01,..),

and if X = 1, then, for any sequence {w,},
| X (w,) P < (E2Z( | wa .

Proof. Let X = (2,,), X = (%,,). Then it is known and easily verified that, for
0<r<n,

wr = (1) [ r0-0rr e g = (0) [ o0t 100

Hence, by Hoélder’s inequality,

A n A—-1 n
| X () = < ( Ox) B gl = G912 ).

n
Z Ty, v Wy
r=0 !

TuaEOREM 5. If P, X are reqular Hausdorff matrices, @ is any matriz and A = 1, then
[P, @l = [P, XQ]a
Proof. Let X = (b, £,) and let o, = X (s,). Since X is regular,
ou=8 = X(s,~3),
and

1
b= [ v

where y is a real function of bounded variation in [0, 1] satisfying (3). Hence, using Lemma 1
and its notation, we get
[on—s P < EP1X(|sn=s ).
Since P is a Hausdorff matrix with non-negative elements and X is a Hausdorff matrix, it
follows that

P(lop=s) < (EP PR (|88 = GV 1XP(|8, =8N covervevineennne (6)

Now it is easily verified by means of a variant of Toeplitz’s theorem {7, Theorem 4] that
X, though not necessarily regular, is such that X(u,) -0 whenever u, —0. Hence if
P(|s,-s|) = 0 then, by (6), P(|o,-s|)—0, ie. [P,I],=[P,X],. The required
inclusion follows.

As an immediate consequence of the above theorem we have

(II). If X = land P, Y, Z are Hausdorff matrices such that P is regular, Y = (h, »,) with
1 # 0, and ¥ = Z, then [P, Y], = [P, Z],.
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TaeorEM 6. If X = (h £,), where

1
£n = f thdy(t)y (n=0,1,..),
0
x being a real function of bounded variation in [0, 1], and if

1
f EY Ay ()| < 00 e (7)
0
and A = 1, then

o0 [: )
(i) X w1 | X(na,) P <M Y w1 na, [},
n=1 n=1

where M is independent of the sequence {a,},
(i) | @ ylr=|XQ, y|s for any matriz Q.

When y > 0 the integral in condition (7) should be interpreted in the Lebesgue-Stieltjes
sense ; when y < 0 the condition is redundant.

Proof of (). Suppose first that y << 0. Then, by Lemma 1, since n** << " for n = r,

$ w1 X(oa) P < @t E ot B 1, (0 [ oo axin)
n=1 n=1 r=1 r 0

=@t [ 1) £ e $ (3700

n=r

[
< (&) Z ™t e ]
r=
as required.

Suppose now that y > 0, and let
r(n
£t = 3 (1) ra-orra,

r=0

where 0 <<t << 1. Then (cf. Hardy [7, § 11.17]), by Hélder’s inequality,
n Iy frn /o A—1
o< 3 (r>t’(l—t)""|m, M (r)t'(l—t)"-'}

r=0

-5 () ra-orimp,

r=1
and so

o0 w0 n
§wtinop<an $a 3 (Y) ra-oerfap
n=

1 n=1 r=1

O o
=M, Z,l & [ ra, P Y et (1 - gyt
r= n=r

< Myt=" 3, 71| ra, A,
r=1
where M, and M, are independent of {a.}.
1
Now X(na,) = [ falt1dx(0
0
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and so, by a form of Minkowski’s inequality,

(nél w1 | X (na,,) |">1/l\ < f: | dx(2) | <1§1 =1 fo(t) |">m

1 1 ) 1/A
<M} f t“"|dx(t)l(2‘,ry"—1|ra,|'\)
0 r=1

The proof of part (i) is thus complete.
It follows from (i) that | I, ¥ [, = | X, y |,, and inclusion (ii) is an immediate consequence.
The next theorem generalises a result given by Hyslop [11, Theorem 3].

THEOREM 7. If P is a regular matriz, @ is a matrix and X = 1, then necessary and sufficient
conditions for a series to be summable [P, @), to s are that it be summable PQ to s and summable
[P, I —=P)@], to 0.

Proof. Let o, = Q(s,), 7, = P(a,). We have to prove that

P(log=5P) = 0(1) coooreeeeereeerereeeiereeseeveneas (8)
if and only if
T (9)
and
P(|0n=7a ) = 0(1)e woveevrerireereeereeieeeeeeneans (10)

(i) Suppose that (8) holds. Then, by Theorem 3(ii), (9) holds, and so P( |7, -s[") = o(l)
since P is regular. Hence, by Minkowski’s inequality and (8),
{P(| on =7 PP <{P(| 0 =s WPA+{P(| 7, =5 [N} = 0(1)
and (10) follows.
(ii) Suppose that (9) and (10) hold. Since P is regular, it follows from (9) that
P(|ra=-58]) =o0(1).
Hence, by Minkowski’s inequality and (10),
{P(] on=s A <{P(| op =7 IR +{P(| 7o —s [N} = 0(1)

go that (8) holds.
The proof is thus complete.
Now it is known [7, Ch. XI] that C, = (&, 1/¢%) (« > -1) and that

0,0320«4_5 (a> —1,B> —1,a+ﬁ> —1). ..................... (11)
Further, if s, = f} a,, then for any Hausdorff matrix X,
r=(
(I-C)X(s,) = X(I -C))(8,) = X{8,-C1(8,)} = XCO,(may). .oevve.een. (12)

In virtue of (12) we have the following corollary of Theorem 7.
(III). If X is a Hausdorff matriz and A = 1, then necessary and sufficient conditions for a
0
series 3, a, to be summable (C, X1, to s are that it be summable C,X to s and that
0

na, = 0 [C,, C, X],.
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Now by (11), C,C,, = C, (x> 0), and so, by result (II), [C,, C,C,_,]» = [C}, C.]x
{x > 0,2 = 1). Consequently, by (III), we have

o
AVY. If X = 1, « > 0, then necessary and sufficient conditions for a series 3, a,, to be sum-
0

m
mable [C, &, to s are that it be summable (C, «) to s and that 3, | C,(na,) |* = o(m).
n=0
This result has been proved directly by Hyslop [11] and it suggested the following defini-
©
tion of summability [C, 0], to him : 3] a, is summable [C, 0], to s if it is convergent with sum s
0

and

% | nay, |} = o(m).

n=0

4. Equivalence of Cesaro and Holder summability processes. For any real alet H,
be the Hausdorff matrix (b, (n+1)"%). Then C,=H,, H Hg=H, g and it is known [7,
Theorem 211] that

Com H, (K> =1 it (13)
In conformity with the notation described in § 1, we denote the Hélder type summability

processes H,, [H,, H, ], and | H,, y |x by (H, a), [H,a], and | H, a, y |, respectively.
We now prove two theorems.

TEEOREM 8. Ifa =0, = 1, then [C, «], = [H, «]).

For o > 0 this follows from (13) by result (II), and for « = 0 it is a consequence of (III)
with X = H_, = CT".

The next theorem is a generalisation of the known result (see Knopp and Lorentz {12] and
Morley [14]) that

|C 0,0, = |H, 0] (0> -1).
THEOREM 9. (i) Ifa> -1, A= 1,y <min (1,1 +a), then
[Coayly = | oy
(i) Ifeithera> -L,LAZzLy<lora =23, .. A=l y <2 then
{Hoayy |y = | Coay i
In connection with the second part of (ii) it should be noted that
|H,0,y |, =|C,0,y|x and |H, L, y|, =|C, Ly

The cases y < 0 of the propositions contained in Theorem 9 follow directly from (13) by
Theorem 6(ii). To deal with the remaining cases we shall use

Lemma 2. If oy < 0 and g(s) is an analytic function of 8 = o + it in the region o > oy, and
if, for ¢ > o, and large | s |,
g(S) =K+0 (l § ‘-8)’

where K, 8 are constants and § > %, then
1
o) = [ rax) m>0),

0
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where y 18 a function of bounded variation wn [0, 1] such that

1
[ 1o <w
0
for every ¢ > o,

Proof. Let f(s) = g(s)—K. Then, for ¢ > ay+€ > oy,
fw [ flc+it) [P dt < M,,

where M, is a finite number independent of ¢. Hence, by a result due to Rogosinski [15,
185-6),
1
fo = [ vs0a >0,
0

where °¢ (t) € L (0, 1) for every ¢ > o, +¢ and so for every ¢ > a,.
Consequently

1
oo = [ raxe w0,
0
¢ 1
where x(t) = f d(u)dufor 0 <t < 1and x(1) = K+f ¢ (u) du.
0 0

1
It is evident that f t°| dx(t) | < oo for every ¢ > a,.
0

The lemma is thus proved.
Comgpletion of the proof of Theorem 9. Let

o Tls+a+l)

w(e) = 6+ D)™ Fo DT e+ 1)
and let W be the Hausdorff matrix (, w,), where w, = w(n).

(i) By Stirling’s theorem, w(s) satisfies the hypotheses of g(s) in Lemma 2 with 8 = i,
oo = max (-1, -1 -«). Hence by Theorem 6 (ii), with X = W,

|Cu’7|/\=> I Wcau'}’l)«

for —y > ag, i.e. for y < min (1,1 +«). Since WC, = H,, the proof of part (i) is complete.

(ii) The funetion 1/w(s) satisfies the hypotheses of g (s) in Lemma 2 with § = 1,0y = -1

whena> -land with § =1, 0y = -2 whena = 2,3,.... Hence by Theorem 6(ii), with
X = W,

l Ha? Y I)\ = [ W—lHa’ Y |A

for -y > -1whena> —1,and for —y > -2 whena = 2,3,.... Since W-1H, = C,, this
completes the proof of part (ii).

5. Hausdorff matrices associated with functions of class L?. In this section we deal

1
with Hausdorff matrices (k, §,) such that §&, =J 1"} (t) dt, where ¢(f)e L(0, 1) and
0

te¢ (t) € L? (0, 1) for some real ¢ and some p > 1. It is known [7, Theorem 215] that a Hausdorff
matrix (z, ,) satisfies these conditions with ¢ = 0 if and only if
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i |[Zg, P <M@n+1)*7 (n=0,1,...),
r=0

where M is independent of n. Note that if ¢(¢) is in L?(0, 1) then it is necessarily in L (0, 1).
We establish two theorems which augment Theorems 5 and 6. In the proof of the first
of these we use

Lemma 3. Let ¢(t) be a real function in the class L?(0, 1), where p > 1, and let

b= [ esan G- [ rIs0PE @ =010 X = (&) X0 < 60)
Ifu>A=1and 1 +1/u-1/A = 1/p, then, for any sequence {w,},
| X (w,) [* < (G-I, (| w, AKX @] 2w, ).
Proof. Let
it = 5 (M) ra-ore,

r=0
where 0 << ¢ << 1. Then, as in the proof of Theorem 6,

fa®) ' < f:() 1-t)n | w, A,

2 |w, ] = C{|wa ) oo, (14)

1
A
so that folf" |dt<n+1

1
and f [ @) [P [ fal® PdE S XOV( [0, ) oeeeeeeereeieeee e (15)
0
Further, using Holder’s inequality twice, we have

1 A
| X (w,) P = l [ son0a

A
< (f: [ $(8) |P=2 | d(2) |21 | f(8) | dt)
<([ 160ra)” [ 1600 a0 @

< (f%”’)*”( f ; | £alt) dt)l'”“( f ; 160) 2| f2 0 dt)”“. ......... (16)

The required result follows from (14), (15) and (16).

THEOREM 10. Letn > A= 1,1/p = 1+1/u-1/A and let X = (h, &), where
¢ =f (1) dt with $(t) e L?(0, 1) and & =

Then [Cy, Q)x = [Cy, XQ], for any matriz Q.

Proof. Observe that X is a regular Hausdorff matrix and (in the notation of Lemma 3)
that X‘?) is a Hausdorff matrix such that X®)(v,) — 0 whenever », — 0.
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Suppose that s, — s[C}, @),, and let

Wy = Qs =8 = 0,—=8, v, = Cy(|w, ), k = (ePy41 sup R Sa

Then v,, — 0 so that k is finite and, by Lemma 3,
01( ' X(Un) -8 |‘J) = 01( | X(wﬂ) I#) < kClX(p)( I Wy |A) = ICX“J)(U”) = 0(1)
Hence s, — s[C,, X@],, and the theorem is established.

Remark. I am indebted to Dr B. Kuttner for pointing out that Theorem 10 continues to
hold when p = co (with 1/p =1-1/Aif A> 1 and p = oo if A = 1) provided the following
natural conventions are taken to apply : (i) [C}, X@]«» denotes the same summability process
as X@ (cf. Glatfeld [6, Theorem 4]), (ii) ¢ (¢) € L (0, 1) means that ¢ (¢) is measurable and essen-
tially bounded in (0, 1). To justify this assertion suppose that the hypotheses of Theorem 10
hold with p = co. Then (16) can be replaced by the simpler inequality

1
| X (w,) <mf0|f,,(a) e,

1 a-1
where m = (f | 6(2) |1’dt> if A> 1 and m = ess-sup | $(¢) | if A = 1. Since (14) applies
0 0<t<l1
unchanged, it follows that
| X (wa) ! <mCy(|wa |Y);

and this yields the required inclusion, namely | Cy, @ |, = X@.

TaeorEM 11. Let p>A>1,1/p = L+1ju-1/A, y > 0, and let X = (b, £,), where
1
£, = f 1 (1) dt with ¢ (t) € L(0, 1) and 8-r=2¢ (1) e L?(0, 1).
0

Then
] 0 1/A
(i) ( w1 | X (nay,) I“)”“ <M ( Y w1 | na, |’\) )
n=1 n=1

where M is independent of the sequence {a,},
(i) | @ y|a=> | XQ, y |, for any matriz Q.
Proof of (1). We shall use the symbols M,, M,, M,, M, to denote positive numbers inde-

pendent of %, ¢t and the sequence {a,}.
Let

Ms

S =3 a1 na, ! < oo,

1

ny ., _\n—r
0<r>t(1 H-* ra,,

n

M=

and let falt) =

<
1

where 0 <t << 1. Then, as before,

o r < (7)ra-o i p,

and so
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1 n 1
w [oinora<e § e p())[ oea-gea
0 r=1 0

YA n N
= e_"‘,gl et |ra, |
=

<M S 1 10, [P = MyS. oo, (17)
r=1
Also
§] w1 L) P << My E} L g, A= MSET (18)
n=1 r=1

for y > 0 this has been established in the proof of Theorem 6 (i), and an argument similar to
that used in the proof of the case y = 0 of Theorem 6 (i), involving the identity

1/m\ 1/n-1
n\r) r\r-1)’
shows that the inequality is valid when y = 0.
Now let ¢ = 1 -y —1fp, $(t) = t¢(t), and let

1
k=f0|¢(t) v dt.

Then % is finite, and, as in the proof of Lemma 3,

fﬁmwnmm

A

| X (na,)]* =

1
<= [ Pt | 1,0
0

< B ( f : A | (0) dz)H'" ( f : (@) [pashmesvpnt | £, (1) | dz)”"
_ ( f : 41| £ (0) dt)"”“ ( f : L6 207 | fa 0) P dz)”“ ,

since p/A —pc —py = p/A—p(l -1/p) = 1. Hence

1 A-1 r1
Wt | X (na,) ¢ < KA-Dui (nw f RSP dt)“ f B ot | £ P

and so, by (17) and (18),

o 1 <
2 nys—1 | X(mn) ‘“ < Masu//\_l,[‘o | ‘/’(t) Ipt}"\ dt n§1 nﬂ—l Ifn (t) |I\

n=1
< M Sk M, 8 = M, SHA,
Result (i) follows. Hence | I, y |, = | X, y |,, and result (ii) is an immediate consequence.
We state next two propositions.

(V). If Q is any matriz and either (i) p=A=1, p>1A-1jp or (i) p>A> 1,
p = 1/A=1/u, then

[01’ Q]A = [01’ CpQ]u'
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(VI). If @ is any matriz and either () p = AZ=1, p>1A-1/u, «a+1>y=0 or
({yp>2a>1, p=1/A-1/p, a+l>y =0, then

l C.Q vy I)\ = I Ca+pQ’ Y |u‘

Proposition (V) follows directly from the case « = 0 of a theorem on strong Cesaro sum-
mability given by Flett (Theorem 2 in [5], where the notation {C, o}, is used with the same
meaning as [C, « + 1], in the present paper). The case « > - 1/k of this theorem is a corollary
of an earlier result on strong Rieszian summability due to Glatfeld ([6, Theorem 8] ; see also
line 7 on p. 130 and the references there given). Proposition (VI) can be immediately derived
from a result due to Flett [4, Theorem 1].

To indicate the scope of Theorems 10 and 11 we shall employ them, together with (II)
and Theorem 6 (ii), to give alternative proofs of (V) (i) and (VI) (i). Parts (ii) of propositions
(V) and (VI) cannot be deduced from the general theorems of the present paper ; the proofs of
Flett and Glatfeld, pertaining to these parts of the propositions, depend ultimately on a deep
but special inequality of Hardy, Littlewood and Pélya [9] (see also [3, 120]).

Proof of (V) (i). The case A = pu is a direct consequence of result (II). Suppose therefore
that p > Aandlet 1/p = 1 +1/u~1/A. Now C, = (h, 1/¢") and

/ey = f; " (8) dt,

where ¢(t) = p(l1 -t)-1. Further, p-1> —-1-1/p+1/A = -1/p so that p(p-1)> -1.
Hence ¢ (t) e L7 (0, 1), and the required inclusion follows by Theorem 10.

Proof of (VI) (i). Note that C,,, = CHPC;'IO’, = XC, where X = (B, e;/e;t"), and
1
that e3/ent® = f "¢ (2) dt, where
0

_ T(a+p+1)

HO = Tl )

Suppose first that A = . Then, since a —y > -1, p > 0, we see that t7¢(t) e L(0, 1),

and so, by Theorem 6(ii), | C,, ¥ |» = | Cusp» ¥ |a- The required inclusion is an immediate

consequence.

Suppose now that p > A and let 1/p = 1 +1/u —-1/A. Then, as above, p(p-1) > -1,

and, since a +1 -y > 0, p(a+1 -y —-1/p) > —-1. Hence ¢(¢) e L(0, 1) and
tl—y—llp¢(t) e L7(0, 1),

and the required inclusion follows by Theorem 11 (ii).

(1 —)e-1,

Many special inclusions can be established with the aid of the above results. As an illus-
tration we prove the following (cf. [5, Theorem 2]) :

[H) a]l\ = [Hs B]I‘
tfeither p=>A>21,8>a+lA-1porp>2a>1 8 =a+lfA-1/u.

By (13), C,H,, ~ H,,,; (p > -1), and the result is therefore a consequence of (II)
and (V). Note that « can be any real number.
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6. Relations between summability processes of different types. We first prove

o
TueoreMm 12. IfA>1, 2> p> -1, X isa Hausdorff matriz, and if ¥, a,, ts (i) summable
0

| C1X, 0 |, and (ii) summable AC,X to s, then the series is summable [C,, X], to s.

When A = 1 condition (ii) 1s not required.

Here A denotes the Abel method of summability and summability AC,X is to be inter-
preted as follows : s, - s(4C,X) means that o, = C,X(s,) — s(4), i.e. that

lim (1 - x)z g, " = 8.

z—1—

It is known (see [1] and the references there given) that
C,=> A0y = AC, (> -Ly> B> =1} coiciviiniiiiiiininnn, (19)
Proof. Let s, = i a,, 7, = 0;X(na,). Then, by hypothesis (i),

1 & PO |Tr|'\ 1 |Tr|'\_
1§ Il _,E'l r n+1,§ (n+1-7) r = o),

so that
na, — 0[C,, C,X],.

Hence, by result (III), we have only to show that

8p = S(C1X) i (20)
in order to complete the proof. When A = 1, (20) is an immediate consequence of hypothesis
(1), and so hypothesis (ii) is redundant in this case.

Suppose now that A > 1 and that 2 > p = 1 +1/A. In view of (19) the additional restric-
tion of p can be imposed without loss in generality. Let

OpX (sn) =Wy = i Uy,
r=0
so that, by (5), nu, = C X (na,).
p

Then, by (ii),
w0

i.e. X u, is summable 4 to S.
0

Further, by result (VI), |C,X,0|,=>|CX,0|, (> A) since p-1>1/A-1/p.
Hence, by (i),

Now by a Tauberian theorem of Hardy and Littlewood [8] (see also Flett [3, Theorem 4]),
)
a consequence of (21) and (22) is that, for every 8 > 1/u -1, 3’ u,, is summable (C, 8) to s, i.e.
0
that
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But x can be taken arbitrarily large and so (23) holds for every 8 > —1. Consequently
Oy (w,) = C,_C,X(s,) >

and, since C,_,C, =~ C,, (20) follows.
In order to establish the next theorem we require

Lemma 4. If Q is any matriz and either
DA=p=2lLy=20a+l>y>8=2a-y+§ 8> -1,
or {@iA>p=2l,y=200+l>y>8B8>a-y+8, 8> -1,
then | C,Q, v [» = | Ca@, 8 |,..

The two results incorporated in this lemma are immediate consequences of theorems due
to Flett [4, Theorems 3 and 4].

THEOREM 13. If X is @ Hausdorff matriz, A =2 1,a >y >0, 8 = a—vy -1, then
| C.X, y |2 = [Ch, CpX)h.
Proof. Let Y = C7'C,_,X, so that, by (11)
Y~(C,,,X and C,,,Y=CX.
Then, by Lemma 4 and (19),
|CX, v |y = | C.X, 0|y = OX = 4C,¥
for every p > -1. Further, by Lemma 4 (i),
| CuX, 9 = | 1Y, 0|5
Hence, by Theorem 12 and result (II), | C,X, y |\ = [Cy, Y], = [C}, CpX]a.
We conclude with some corollaries of Theorems 12 and 13, but first we prove the inclusion :
[Hyala=(H,B) A>1LB>a-1+1A) i, (24)
By Theorem 2,
(H, a]y =[Oy, Hyeals = [Cpasrs Hamhy
since B -a+1 > 1/A. Consequently, by Theorem 3 (ii) and (13),
(H, a]y = CppiiH oy = Hp,

and (24) is thus established. Alternatively, (24) can be deduced directly from the case u = o
of Theorem 10. By Theorem 3 (ii), the inclusion is also valid when A =1, 8 > .

Similarly we can prove the companion inclusion :
[C,ala=(C,B) A>1,8>a-1+1/A,a>=0).

This result is known (except possibly for the case « = 0), the casesx = 1,2 > 1/Aand « > 0
being due respectively to Kuttner [13], Hyslop {11] and Chow [2] (see also Flett [5]).

(VIT). IfA>1, L+a> p,and if%an is (i) summable | H, a, 0 | and (ii) summable AH, to s,

then the series is summable [H, ], to s and consequently summable (H, B) to s for every
B> a-1+1/A.
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Proof. Let & be a positive number such that 2> 8 = p+1—-a. Then, by (13),
H,»> HH, ,~ CH,_,, and so, by a result due essentially to Hausdorff ([9]; see also
[1, Theorem 4]),

AH, = ACH,_,.
Since H, = C,H,_;, we obtain the required result by applying first Theorem 12 (with & in
place of p) and then inclusion (24).
In the same way we can prove

(VIIY. IfA>1L14a>p>0,8>a-1+1/A and if 3 a, is (i) summable | C, e, 0|,
0

and (i) summable AC, to s, then the series is summable (H, B) to s.

The case o = 0, p = 0 of this result is effectively the theorem of Hardy and Littlewood
used in the above proof of Theorem 12. The case A = 2, p = 0, « > -4, is due to Zygmund
[16], and Flett [4] has established the case « > —1/A, p = 0.

(VIII). IfA> 1,9 > 0, 8> a—1—y +1/A, then
| H, o,y |y = [H,a—yly = (H, B).
Proof. Let X = C,'H, where p > y. Then C,X = H, and, by (13),
CpyaX=~H,, ,
Consequently, by Theorem 13 and results (II) and (24),
I H, «, Y |4\ = I CpX’ Y ,A = [01’Op—y—1X]A =~ [Hp Ha—'y—l])\ = [H, o ")’]A = (H, ﬁ)
A similar proof shows that
(VIIIY. IfA>)l,a> -1, y>0,8> a-1 —'y+1‘//\, then

| C> ay'yl/\ = (H’ ﬁ)'
The case « > y —1/X of this result has been proved by Flett [4].
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