BASIC SEQUENCES IN F-SPACES AND THEIR APPLICATIONS

by N. J. KALTON (Received 30th June 1973)

1. Introduction

The aim of this paper is to establish a conjecture of Shapiro (10) that an F-space (complete metric linear space) with the Hahn-Banach Extension Property is locally convex. This result was proved by Shapiro for F-spaces with Schauder bases; other similar results have been obtained by Ribe (8). The method used in this paper is to establish the existence of basic sequences in most F-spaces.

It was originally stated by Banach that every B-space contains a basic sequence, and proofs have been given by Bessaga and Pelczynski (1), (2), Gelbaum (4) and Day (3). In (1) Bessaga and Pelczynski give a general method of construction in locally convex F-spaces, but we shall show in Section 3 that this construction can be modified to apply in any F-space (X, τ) on which there is a weaker vector topology ρ such that τ has a base of ρ -closed neighbourhoods. The basic result of the paper is Theorem 3.2, and this is a natural generalisation of a locally convex version due to Bessaga and Mazur and given (essentially) in Pelczynski (6), (7).

In Section 4 we study the problem of existence of a basic sequence in an arbitrary F-space, and show that in fact repeated applications of Theorem 3.2 give a basic sequence in any F-space with a non-minimal topology. Since the only example we know of a minimal F-space is the space ω of all sequences (which has a basis) it seems likely that every F-space contains a basic sequence.

The results of Section 5 do not depend on Section 4; in this section are gathered together the applications of the existence theory of Section 3. We show that if (X, τ) is an F-space and $\rho \le \tau$ is a topology defining the same closed linear subspaces as τ , then ρ and τ define the same bounded sets—a result familiar in locally convex theory. The Shapiro conjecture follows immediately. The final theorem is a generalisation of the Eberlein-Smulian theorem employing techniques developed by Pelczynski (7).

The author would like to thank Professor J. H. Shapiro for several helpful comments and supplying a copy of (8), and also the referee for pointing out some serious mistakes in the first draft of the paper.

2. Preliminary results

An F-semi-norm η on a vector space X is a non-negative real-valued function defined on X such that

- (i) $\eta(x+y) \le \eta(x) + \eta(y)$.
- (ii) $\eta(tx) \leq \eta(x) | t | \leq 1$,
- (iii) $\lim_{t\to 0} \eta(tx) = 0$ $x \in X$.

If in addition $\eta(x) = 0$ implies that x = 0 then we call η an F-norm. Any vector topology on X may be defined by a collection of F-semi-norms; any metrisable topology may be defined by one F-norm. From this point, unless specifically stated, all vector topologies are assumed to be Hausdorff.

Now suppose (X, ρ) is a topological vector space and τ is a vector topology on X; we shall say that τ is ρ -polar if τ has a base of neighbourhoods which are ρ -closed.

Proposition 2.1. If τ is ρ -polar then τ may be defined by a collection of F-semi-norms $(\eta_{\alpha}: \alpha \in A)$ of the form

$$\eta_{\alpha}(x) = \sup \{\lambda(x) : \lambda \in \Lambda_{\alpha}\}\$$

where each Λ_{α} is a collection of ρ -continuous F-semi-norms. If τ is metrisable then τ may be defined by one such F-norm.

Proof. Let $(\gamma_{\alpha}: \alpha \in A)$ be a collection of *F*-semi-norms defining τ such that every τ -neighbourhood of 0 contains a set $\{x: \gamma_{\alpha}(x) \leq \varepsilon\}$ for some $\alpha \in A$ and $\varepsilon > 0$; let Δ be the collection of all ρ -continuous *F*-semi-norms. We define Λ_{α} to be the collection of *F*-semi-norms of the form

$$\lambda_{\delta}^{\alpha}(x) = \inf (\delta(y) + \gamma_{\alpha}(z): y + z = x).$$

(Thus $\Lambda_{\alpha} = \{\lambda_{\delta}^{\alpha} : \delta \in \Delta\}$.) As $\lambda_{\delta}^{\alpha} \leq \delta$ each $\lambda_{\delta}^{\alpha}$ is ρ -continuous and an F-semi-norm $(\lambda_{\delta}^{\alpha} \leq \delta \text{ implies condition (iii) in particular)}$. Now define

$$\eta_{\alpha}(x) = \sup (\lambda_{\delta}^{\alpha}(x): \delta \in \Delta).$$

Clearly $\eta_{\alpha} \leq \gamma_{\alpha}$ and so is an *F*-semi-norm. Now if *U* is a τ -neighbourhood of 0 we may find α_1 and $\varepsilon > 0$ such that if $x_0 \in \{x: \gamma_{\alpha_1}(x) \leq \varepsilon\}$ (closure in ρ) then $x_0 \in U$. Suppose now $x_0 \in \{x: \eta_{\alpha_1}(x) < \varepsilon\}$; then it is easy to show that $x_0 \in \{x: \gamma_{\alpha_1}(x) \leq \varepsilon\}$ and so $(\eta_{\alpha}: \alpha \in A)$ defines τ .

If τ is metrisable, A may be taken to be a singleton and therefore τ may be defined by a single F-norm of the required type.

Proposition 2.2. Suppose (X, τ) is an F-space (complete metric linear space) and suppose $\rho < \tau$ is a vector topology on X. Then

- (i) If the net $x_a \rightarrow 0(\rho)$ but $x_a \mapsto 0(\tau)$, then there are vector topologies α , β such that
 - (a) $\rho \leq \alpha < \beta \leq \tau$;
 - (b) β is metrisable and α -polar;
 - (c) $x_a \rightarrow 0(\alpha)$ but $x_a \mapsto 0(\beta)$.
- (ii) If U is a τ -neighbourhood of 0 but not a ρ -neighbourhood then there are vector topologies α , β satisfying (a), (b) and (c)' U is a β -neighbourhood of 0 but not an α -neighbourhood of 0.
- (iii) If τ is locally bounded then there is a topology α such that $\alpha < \tau$ but τ is α -polar.

Proof. (i) Let α be the largest vector topology such that $\rho \leq \alpha \leq \tau$ and $x_a \rightarrow 0(\alpha)$ (it is easy to see that there is such a topology). Let β be the vector topology with a base of neighbourhoods consisting of the α -closures of τ -neighbourhoods of 0. Since $\alpha \leq \tau$ it follows that $\alpha \leq \beta \leq \tau$. If $\alpha = \beta$ then the identity map $i: (X, \alpha) \rightarrow (X, \tau)$ is almost continuous and so by the Closed Graph Theorem (cf. Kelley (5), p. 213) $\alpha = \tau$ contrary to hypothesis on the net (x_a) . Therefore $\alpha < \beta$; clearly also since τ is metrisable so is β , and $x_a \rightarrow 0(\beta)$.

- (ii) (We are grateful to J. H. Shapiro for the following simplification of the original proof.) By an application of Zorn's Lemma it may be shown that there is a maximal vector topology α such that $\rho \le \alpha \le \tau$ and U is not an α -neighbourhood (we do not assert that α is the largest such topology). Then proceed as in (i).
- (iii) Follows from (ii) by considering a single bounded neighbourhood $(\beta = \tau)$.

Two vector topologies on X will be called *compatible* if they define the same closed subspaces.

Proposition 2.3. Let τ and ρ be compatible topologies on X; they define the same continuous linear functionals.

Proof. f is τ - or ρ -continuous according as its null space is τ - or ρ -closed. A sequence (x_n) in a topological vector space X is called a *basis* if every $x \in X$ has a unique expansion in the form

$$x = \sum_{i=1}^{\infty} t_i x_i.$$

In this case we may define linear functionals f_n such that

$$f_n(x) = t_n$$

and linear operators S_n by

$$S_n(x) = \sum_{i=1}^n t_i x_i = \sum_{i=1}^n f_i(x) x_i.$$

E.M.S.-19/2-L

If X is an F-space then it is well known (cf. (10), (12)) that each f_n is necessarily continuous and the family $\{S_n\}$ is equicontinuous.

Suppose now that X is metrisable but not necessarily complete; we shall call a sequence (x_n) in X a basic sequence if it is a basis for its closed linear span in the completion of X. We shall call (x_n) a semi-basic sequence if we simply have $x_n \notin \overline{\lim} \{x_{n+1}, x_{n+2}, ...\}$ for every n.

We now give a useful and elementary criterion for a sequence (x_n) to be basic or semi-basic. Let (x_n) be linearly independent and let E be the linear span of (x_n) ; then for $x \in E$

$$x = \sum_{i=1}^{\infty} t_i x_i$$

uniquely where (t_i) is finitely non-zero. Define

$$f_n(x) = t_n$$

and

$$S_n x = \sum_{i=1}^n f_i(x) x_i,$$

where $S_n: E \rightarrow E$ is linear.

Lemma 2.4. (i) (x_n) is semi-basic if and only if each S_n is continuous or equivalently each f_n is continuous.

(ii) (x_n) is basic if and only if the family $\{S_n\}$ is equicontinuous.

Proof. (i) If $\{x_n\}$ is semi-basic, let N_k be the null space of f_k ; then N_k is a maximal linear subspace of E. Then $N_1 = \lim \{x_i : i \ge 2\}$ and since $x_1 \notin \overline{N}_1$, N_1 is closed and f_1 is continuous; while if $k \ge 2$,

 $N_k = \lim \{x_i : i \neq k\} = \lim \{x_i : i < k\} + \lim \{x_i : i > k\}.$

Hence

$$\overline{N}_k = \lim \{x_i : i < k\} + \overline{\lim} \{x_i : i > k\},$$

since the former space is finite-dimensional. Suppose $x_k \in \overline{N}_k$; then

$$x_k = \sum_{i=1}^{k-1} t_i x_i + y,$$

where $y \in \overline{\lim} \{x_i: i > k\}$. Since $x_k \notin \overline{\lim} \{x_i: i > k\}$ we conclude that there is a first index l such that $t_l \neq 0$. Then we obtain $x_l \in \overline{\lim} \{x_{l+1}, x_{l+2}, ...\}$ and a contradiction. Hence $x_k \notin \overline{N}_k$ and by the maximality of N_k , N_k is closed and f_k is continuous.

The converse is trivial.

(ii) (Cf. Shapiro (12), Proposition C.)

It follows from the definition of basic sequence that if (x_n) is basic then the family $\{S_n\}$ is equicontinuous (consider (x_n) as a basis of its closed linear span in the completion of X). Conversely, $S_n(x) \rightarrow x$ for $x \in E$ and if the family is

equicontinuous $S_n(x) \to x$ for $x \in \overline{E}$ (closure in the completion of X), and it easily follows that (x_n) is a basis for \overline{E} .

3. Construction of basic sequences

Lemma 3.1. Let E be a finite-dimensional space and suppose V is a closed balanced subset of E. If V intersects every one-dimensional subspace of E in a bounded set then V is bounded.

Proof. We may suppose E is normed; suppose $x_n \in V$ and $||x_n|| \to \infty$. Then by selecting a subsequence we may suppose $||x_n||^{-1}x_n \to z$ where ||z|| = 1. Then for any N there is an m such that for $n \ge m$, $||x_n|| \ge N$ and

$$||x_n||^{-1}x_n \in ||x_n||^{-1}V \subset N^{-1}V.$$

Therefore $z \in N^{-1}V$ for all N and hence $V \supset \lim \{z\}$.

Theorem 3.2. Suppose (X, τ) is a metric linear space and ρ is a vector topology on X such that τ is ρ -polar. Suppose (x_a) is a net such that $x_a \rightarrow 0(\rho)$ but $x_a \leftrightarrow 0(\tau)$; suppose $z_1 \neq 0 \in X$. Then there is a sequence $(a(k): k \geq 2)$ such that

$$a(k+1) > a(k)$$

for all $k \ge 2$ and the sequence $(z_n)_{n=1}^{\infty}$ is a basic sequence where $z_n = x_{a(n)}$ $n \ge 2$.

Proof. We may suppose (Proposition 2.1) that (X, τ) is normed by an F-norm $\|.\|$ such that

$$||x|| = \sup (\lambda(x): \lambda \in \Lambda),$$

where Λ is a collection of ρ -continuous F-norms. Let $\theta > 0$ be chosen such that

- (i) $||z_1|| \ge 4\theta$.
- (ii) For all a, $\exists a' \ge a$ such that $||x_{a'}|| \ge 4\theta$.

Let $V = \{x : ||x|| \le \theta\}$; then $V \cap \lim \{z_1\}$ is compact (since $||z_1|| \ge 4\theta$). We shall construct the sequence $(a(n): n \ge 2)$ by induction so that if

$$E_n = \lim (z_1, x_{a(2)}, ..., x_{a(n)})$$

then $E_n \cap V$ is compact.

Suppose $\{a(2), ..., a(n)\}$ have been chosen (this set can be empty at the first step, the selection of a(2)) and let $E_n = \lim (z_1, x_{a(2)}, ..., x_{a(n)})$. By the inductive hypothesis $V \cap E_n$ is compact.

For
$$1 \le k \le 2^{n+3}$$
 let

$$W_k^n = \{x: ||x|| = k \cdot 2^{-(n+3)}\theta\} \cap E_n.$$

Each W_k^n is compact and so we may choose finite subsets U_k^n so that for $w \in W_k^n$ there exists $u \in U_k^n$ with

$$|| w - u || \le 2^{-(n+3)} \theta.$$

Let $U^n = \bigcup_{k=1}^{2^{n+3}} U_k^n$, and for $u \in U^n$ choose $\lambda_u \in \Lambda$ so that

$$\lambda_{u}(u) \ge ||u|| - 2^{-(n+3)}\theta.$$
 (1)

Then choose b > a(n) so that if $c \ge b$ then

$$\lambda_{u}(x_{c}) \le 2^{-(n+3)}\theta \tag{2}$$

for $u \in U^n$ (possible since U^n is finite and $x_a \rightarrow 0(\rho)$).

Choose a subnet $(x_d: d \in D)$ of $(x_c: c \ge b)$ such that $||x_d|| \ge 4\theta$, and suppose for every such x_d the set $V \cap \text{lin}(E_n, x_d)$ is unbounded. By Lemma 3.1, for every d there exists $t_d x_d + u_d \ne 0$ where $u_d \in E_n$ such that the linear span of $(t_d x_d + u_d)$ is contained in V. Clearly $u_d \ne 0$ and so we may normalize in such a way that $||u_d|| = \theta$ (since $V \cap E_n$ is compact). Then

$$\parallel t_d x_d \parallel \leq \parallel t_d x_d + u_d \parallel + \parallel u_d \parallel$$
$$\leq 2\theta$$

so that $|t_d| \le 1$. Hence since $x_d \to 0(\rho)$, $t_d x_d \to 0$ in (ρ) . By selection again of a subnet we may suppose $u_d \to u$ in E_n (since $V \cap E_n$ is compact) and $||u|| = \theta$. Then for any $t \in \mathbb{R}$

$$\parallel tu \parallel \leq \liminf_{d \to \infty} \parallel t(t_d x_d + u_d) \parallel$$
$$\leq \theta$$

so that $\lim \{u\} \subset V \cap E_n$, a contradiction.

Hence we may choose $a(n+1) \ge b$ such that $||x_{a(n+1)}|| \ge 4\theta$ and $V \cap E_{n+1}$ is compact. This completes the construction of a(n); now let $z_n = x_{a(n)}$ $n \ge 2$. It remains to establish that by using (1) and (2) (z_n) is a basic sequence.

For convenience we shall replace ||.|| by an equivalent F-norm ||.||* given by

$$||x||^* = \min(||x||, \theta).$$

We next show that if $t_1, ..., t_{n+1}$ is a scalar sequence

$$\left\| \sum_{i=1}^{n+1} t_i z_i \right\|^* \ge \left\| \sum_{i=1}^n t_i z_i \right\|^* - 2^{-(n+1)} \theta. \tag{3}$$

Choose the greatest integer k such that

$$\left\| \sum_{i=1}^{n} t_i z_i \right\|^* \ge k \cdot 2^{-(n+3)} \theta.$$

Then $0 \le k \le 2^{n+3}$; if k = 0 there is nothing to prove. If $k \ge 1$ then we may choose a scalar s with $|s| \le 1$ such that

$$\left\| \sum_{i=1}^{n} st_i z_i \right\| = k \cdot 2^{-(n+3)} \theta.$$

Then choose $u \in U_k^n$ so that

$$\left\| u - \sum_{i=1}^{n} st_i z_i \right\| \leq 2^{-(n+3)} \theta.$$

If $|st_{n+1}| \leq 1$ then

$$|| u + st_{n+1}z_{n+1} || \ge \lambda_u(u) - \lambda_u(z_{n+1})$$

 $\ge (k-2) \cdot 2^{-(n+3)}\theta$

by (1) and (2). If $|st_{n+1}| \ge 1$ then

$$\| u + st_{n+1}z_{n+1} \| \ge \| z_{n+1} \| - \| u \|$$

$$\ge 3\theta \ge (k-2)2^{-(n+3)}\theta.$$

Hence

$$\left\| s \sum_{i=1}^{n+1} t_i z_i \right\| \ge (k-2) 2^{-(n+3)} \theta - 2^{-(n+3)} \theta$$

$$= (k-3) 2^{-(n+3)} \theta$$

$$\ge \left\| \sum_{i=1}^{n} t_i z_i \right\|^* - 2^{-(n+1)} \theta.$$

Hence since $|s| \le 1$

$$\left\|\sum_{i=1}^{n+1} t_i z_i\right\| \ge \left\|\sum_{i=1}^{n} t_i z_i\right\|^* - 2^{-(n+1)}\theta$$

and (3) follows.

From (3) it is clear that (z_n) is linearly independent for if $\left\|\sum_{i=1}^n t_i z_i\right\| \ge \theta$

then
$$\left\|\sum_{i=1}^{n+1} t_i z_i\right\| \ge \frac{1}{2}\theta$$
; thus if $\sum_{i=1}^{n+1} t_i z_i = 0$, then for every s , $\left\|s\sum_{i=1}^{n} t_i z_i\right\| \le \theta$

and so since $V \cap E_n$ is compact, $\sum_{i=1}^n t_i z_i = 0$. Let E be the linear span of $\{z_n\}$ and define S_k by

$$S_k\left(\sum_{i=1}^{\infty}t_iz_i\right)=\sum_{i=1}^kt_iz_i$$

where (t_i) is finitely non-zero. Then by (3)

$$||S_{n+k}x||^* \ge ||S_nx||^* - 2^{-n}\theta \quad (k \ge 0)$$

and therefore for $x \in E$ and $n \ge 1$

$$||x||^* \ge ||S_n x||^* - 2^{-n}\theta.$$

Suppose $\|x_m\| \to 0$ but $\|S_k x_m\| \to 0$; then since $V \cap E_k$ is compact we may, by selecting a subsequence and multiplying by a bounded sequence of scalars, suppose that $\|S_k x_m\| = \theta$. Thus $\|x_m\| \ge \frac{1}{2}\theta > 0$, and we have a contradiction. Thus each S_k is continuous.

To establish equicontinuity of $\{S_m: m \ge 1\}$ we must show that if p(m) is any sequence and $x_m \to 0$ then $S_{p(m)}x_m \to 0$. Suppose not; then we may suppose

for all m. Then

$$|| S_{p(m)} x_m ||^* \ge \gamma > 0$$

$$|| x_m ||^* \ge \gamma - 2^{-p(m)} \theta$$

and as $||x_m||^* \to 0$ we conclude that p(m) is bounded. But then we may select a constant subsequence and this contradicts the continuity of each S_n . Thus by Lemma 2.4 we have established the theorem.

Corollary 3.3. Under the assumptions of Theorem 3.2 suppose μ is a pseudometrisable topology on X such that $\mu \leq \rho$. Then (z_n) may be chosen so that $z_n \to 0(\mu)$.

An examination of the proof of Theorem 3.2 reveals that we can insist that $\eta(z_n) \to 0$ for any single ρ -continuous *F*-semi-norm.

Corollary 3.4. Suppose that (X, τ) is an F-space and that ρ is a vector topology on X with $\rho < \tau$. Suppose $x_a \to 0(\rho)$ but $x_a \mapsto 0(\tau)$, and that $z_1 \in X$. Then there is a sequence a(k) so that a(k+1) > a(k) $k \ge 2$ and such that the sequence (z_n) is a semi-basic sequence where $z_n = x_{a(n)}n \ge 2$.

Proof. Proposition 2.2 combined with Theorem 3.2 establishes that we may choose (z_n) to be a basic sequence in a weaker topology than τ . This clearly implies that (z_n) is at least a semi-basic sequence in (X, τ) .

4. Existence of basic sequences

In this section we consider the question of whether an F-space need possess a basic sequence. The results we obtain will not be used in Section 5, and this section may be omitted. We shall call a topological vector space (E, τ) minimal if for every Hausdorff vector topology $\rho \le \tau$ we have $\rho = \tau$. It is well known that ω is minimal if we restrict to locally convex topologies.

Proposition 4.1. ω is a minimal F-space.

Proof. Suppose ρ is a weaker vector topology on ω and $x_a \to 0(\rho)$ but $\|x_a\| \ge \theta$ (where $\|.\|$ is an F-norm determining the topology of ω). Then there is a sequence (z_n) , with $\|z_n\| \ge \theta$, which is a basic sequence for some weaker Hausdorff vector topology on ω (Proof of 3.4). Let E be the closed linear span of (z_n) in the original topology, then $E \cong \omega$. However, the dual functionals of (z_n) induce on E a weaker Hausdorff locally convex topology. It follows that $z_n \to 0$ contrary to assumption.

We do not know any other examples of minimal F-spaces; their existence is crucial to the problem of basic sequences in view of the following theorem.

Theorem 4.2. Every non-minimal F-space contains a basic sequence.

Before proceeding to the proof of Theorem 4.2 we first prove a stability theorem for basic sequences similar to a locally convex version given by Weill (13) (cf. also Shapiro (11), p. 1085). A sequence in a topological vector space is regular if it is bounded away from zero.

Lemma 4.3. Suppose X is an F-space and (x_n) is a regular basic sequence. Suppose $\Sigma ||u_n|| < \infty$, and let $y_n = x_n + u_n$. If whenever

$$\sum_{n=1}^{\infty} t_n y_n = 0$$

then $t_n = 0$, then (y_n) is also a basic sequence.

Proof. Define a map S: $l_{\infty} \to X$ by

$$S(t) = \sum_{n=1}^{\infty} t_n u_n.$$

Since $\Sigma \| u_n \| < \infty$, S is well defined and S is continuous by the Banach-Steinhaus Theorem. Now suppose $(t^{(n)})$ is a sequence in l_{∞} such that

$$\sup \| t^{(n)} \|_{\infty} < \infty$$

and

$$\lim_{n\to\infty}t_k^{(n)}=0\quad\text{for each }k.$$

Then it is easy to verify that $||S(t^{(n)})|| \rightarrow 0$.

Let E be the closed linear span of $\{x_n\}$ and suppose $f_n \in E'$ is the bi-orthogonal sequence. For $x \in E$, $\lim_{n \to \infty} f_n(x) = 0$, since (x_n) is regular. We define $R: E \to c_0$ by $R(x) = (f_n(x))$; R is continuous by the Closed Graph Theorem. Hence the map $T: E \to X$ defined by T = I + SR is also continuous. Since T takes the form

$$T(x) = \sum_{n=1}^{\infty} f_n(x) y_n.$$

T is injective. Now suppose $(z_n) \subset E$ is a sequence such that $||T(z_n)|| \to 0$; suppose $||z_n|| > \varepsilon > 0$. We suppose at first

$$\sup \| R(z_n) \|_{\infty} < \infty.$$

Then by selecting a subsequence we may suppose $R(z_n) \rightarrow t$ co-ordinatewise in l_{∞} and hence

$$S(R(z_n)) \rightarrow S(t)$$
 in X.

Now

$$z_n = T(z_n) - S(R(z_n)) \rightarrow -S(t).$$

Therefore $S(t) \in E$ and

$$R(z_n) + RS(t) \rightarrow 0$$
 in l_{∞} .

i.e.

$$t + RS(t) = 0$$
$$S(t) + SRS(t) = 0$$
$$T(S(t)) = 0$$
$$S(t) = 0$$

and so

$$\lim_{n\to\infty}z_n=0$$

contrary to assumption. It follows that no subsequence of $(\|Rz_n\|_{\infty})$ is bounded.

If, on the contrary, $||Rz_n||_{\infty} \to \infty$, then we may consider $(||Rz_n||_{\infty}^{-1}z_n)$ and obtain a similar contradiction. We establish that for such a sequence $||Rz_n||_{\infty}^{-1}z_n\to 0$ and hence $||Rz_n||_{\infty}^{-1}Rz_n\to 0$ in I_{∞} which is a contradiction. Hence T is an isomorphism on to its image, and as $Tx_n = y_n$, (y_n) is a basic sequence.

Proof of Theorem 4.2. Let U_n be a base of neighbourhoods of 0 in (X, τ) ; We may assume, without loss of generality, that U_1 is not a neighbourhood of 0 in some weaker vector topology. By Proposition 2.2 there are vector topologies α , β in X such that $\alpha < \beta \le \tau$, β is metrisable and α -polar and U_1 is a β -neighbourhood. Then by Theorem 3.2 there is a basic sequence $(w_k^{(1)})$ in (X, β) . Then let E_1 be the τ -closed linear hull of the sequence $(w_k^{(1)})$ and let F_1 be the linear span; let $\gamma_1 = \beta$. Then by induction we construct sequences $(h_k^{(n)})$, E_n , F_n , γ_n such that $F_n = \lim \{w_k^{(n)}: k = 1, 2, ...\}$, E_n is the τ -closure of F_n and γ_n is a metrisable vector topology on E_n such that $(w_k^{(n)}: k = 1, 2, ...)$ is a basis of (E_n, γ_n) . Furthermore

(i) $(w_k^{(n)})$ is block basic with respect to $(w_k^{(n-1)})$ for $n \ge 2$, i.e. $w_k^{(n)}$ takes the form

$$W_k^{(n)} = \sum_{m=1+1}^{p_k} c_i W_i^{(n-1)},$$

where $p_0 = 0 < p_1 < p_2 ...$ Thus $F_n \subset F_{n-1}$ for $n \ge 2$ and $E_n \subset E_{n-1}$ $n \ge 2$.

- (ii) The topology γ_n on E_n is finer than γ_{n-1} restricted to E_n for $n \ge 2$, and coarser than τ .
 - (iii) $U_n \cap E_n$ is a γ_n -neighbourhood of 0.

We now describe the inductive construction; suppose $(w_k^{(n)})$, E_n , F_n and γ_n have been chosen. If $U_{n+1} \cap E_n$ is a γ_n -neighbourhood of 0 then let $\gamma_{n+1} = \gamma_n$ and $w_k^{(n+1)} = w_k^{(n)}$ for all k. Otherwise by Proposition 2.2 we may find topologies α and γ_{n+1} on E_n such that $\gamma_n \leq \alpha < \gamma_{n+1} \leq \tau$, γ_{n+1} is α -polar and metrisable and $U_{n+1} \cap E_n$ is a γ_{n+1} -neighbourhood of 0 but not an α -neighbourhood.

Since F_n is τ -dense in E_n , F_n is also γ_{n+1} -dense and hence $\alpha < \gamma_{n+1}$ on F_n . Thus by Corollary 3.3 we may determine a γ_{n+1} -regular basic sequence (z_k) in F_n such that $z_k \to 0(\gamma_n)$. Thus

$$z_k = \sum_{i=1}^{q(k)} c_{k,i} w_i^{(n)},$$

where $\lim_{k\to\infty} c_{k,i} = 0$ for each i (since the co-ordinate functionals for $(w_i^{(n)})$ are γ_n -continuous). It follows easily that we may find a subsequence (y_k) and a block basic sequence $(w_k^{(n+1)})$ such that $\sum_k \|y_k - w_k^{(n+1)}\|_{n+1} < \infty$ where $\|.\|_{n+1}$ is an F-norm determining γ_{n+1} . If

$$\sum_{k=1}^{\infty} t_k w_k^{(n+1)} = 0 \quad (\gamma_{n+1})$$

then

$$\sum_{k=1}^{\infty} t_k w_k^{(n+1)} = 0 \quad (\gamma_n)$$

and thus since the co-ordinate functionals for $w_i^{(n)}$ are γ_n -continuous $t_k = 0$ for all k. Thus $(w_k^{(n+1)})$ is a γ_{n+1} -basic sequence, and we proceed by letting $F_{n+1} = \lim \{w_k^{(n)}\}, \ E_{n+1} = \overline{F}_{n+1}$ (in τ). This completes the inductive construction.

Finally take the "diagonal sequence"

$$v_n = w_n^{(n)}$$
.

Then for each n, $(v_k: k \ge n)$ is block basic with respect to $(w_k^{(n)})$. In particular (v_k) is block basic with respect to $(w_k^{(1)})$ and hence there are γ_1 -continuous linear functionals (f_k) defined on $\{v_k\}$ such that $f_i(v_j) = \delta_{ij}$. These are then also τ -continuous and extend to the closed linear span H of $\{v_k\}$. Now suppose $x \in H$; we show

$$\sum_{i=1}^{\infty} f_i(x)v_i = x.$$

For any n, $(v_k: k \ge n)$ is a basic sequence in (E_n, γ_n) ; let

$$R_n(x) = x - \sum_{i=1}^{n-1} f_i(x)v_i.$$

Then $R_n(x)$ is in the τ -closure of $\lim \{v_k : k \ge n\}$, as this space is easily seen to be $\bigcap_{i=1}^{n-1} f_i^{-1}(0)$. Thus $R_n(x)$ is in E_n and in the γ_n -closure of $\lim \{v_k : k \ge n\}$. Therefore

$$R_n(x) = \sum_{i=n}^{\infty} f_i(x) v_i \quad (\gamma_n)$$

and so for some N and all $m \ge N$,

$$R_n(x) - \sum_{i=n}^m f_i(x)v_i \in U_n,$$

and

$$x - \sum_{i=1}^{m} f_i(x) v_i \in U_n.$$

Thus $x = \sum_{i=1}^{\infty} f_i(x)v_i$ for $x \in H$, and (v_i) is a basic sequence.

If E is a minimal F-space, then E may still possess a basic sequence (see Proposition 4.1). The author does not know if every F-space must possess a basic sequence.

Theorem 4.4. Let (X, τ) be an F-space; the following are equivalent:

- (i) X contains no basic sequence.
- (ii) Every closed subspace of X with a separating dual is finite-dimensional.

Proof. Clearly (ii) \Rightarrow (i) so we have to show (i) \Rightarrow (ii). If E is a subspace of X with a separating dual, then the weak topology σ on E is weaker than τ . If E is infinite-dimensional, then by Theorem 4.2 $\sigma = \tau$. But in this case $E \cong \omega$, and so has a basis. Therefore, E is finite-dimensional.

5. Applications

We now can apply basic sequences or rather semi-basic sequences to derive many results familiar in locally convex theory.

Theorem 5.1.

- (i) Let (X, τ) be an F-space and suppose $\rho \leq \tau$ is a vector topology on X compatible with τ . Then every ρ -bounded set is τ -bounded.
- (ii) Suppose X is a vector space and $\rho \leq \tau$ are two vector topologies on X such that ρ and τ are compatible and τ is ρ -polar. Then any ρ -bounded set is τ -bounded.
- **Proof.** (i) It is enough to show that if $x_n \to 0(\rho)$ and c_n is a sequence of scalars such that $c_n \to 0$ then $c_n x_n \to 0$ (τ). Suppose $x_n \to 0$ (ρ); then choose $x_0 \neq 0$. For $c_n \to 0$, $c_n \neq 0$,

$$c_n(x_n+x_0)\rightarrow 0 \ (\rho).$$

Suppose $c_n(x_n + x_0) \rightarrow 0$ (τ); then by Corollary 3.4, there is a semi-basic sequence (z_n) with $z_1 = x_0$ and

$$z_n = c_{m_n}(x_{m_n} + x_0) \quad (n \ge 2),$$

where (m_n) is an increasing sequence of integers. Then

$$c_{m_n}^{-1}z_n \rightarrow x_0(\rho)$$

and hence x_0 is in the ρ -closure of $\lim \{z_n : n \ge 2\}$. Thus x_0 is also in the τ -closure of $\lim \{z_n : n \ge 2\}$, contradicting the fact that (z_n) is a semi-basic sequence. Thus since $c_n x_0 \to 0$, $c_n x_n \to 0$ (τ).

The proof of (ii) is somewhat similar; let η be a ρ -lower-semi-continuous τ -continuous F-semi-norm and let $N = \{x : \eta(x) = 0\}$. Then X/N is metrisable under η and may be given the quotient topology $\hat{\rho}$ of ρ (N is ρ -closed). Every η -closed subspace of X/N is $\hat{\rho}$ -closed and so an argument similar to (i) may be employed.

Corollary 5.2. Suppose (X, τ) is an F-space and $\rho \leq \tau$ is a metrisable vector topology compatible with τ . Then $\rho = \tau$.

Corollary 5.3. Let (X, τ) be an F-space with the Hahn-Banach Extension Property. Then X is locally convex.

Proof. Let σ be the weak topology on N; then $\sigma \leq \tau$ and σ and τ are compatible by the HBEP. For suppose Y is a τ -closed subspace and $x \notin Y$; then

by HBEP there is a continuous linear functional ϕ such that $\phi(Y) = 0$ and $\phi(x) = 1$. Let μ be the associated Mackey topology; then (see Shapiro (10), Proposition 3) $\sigma \le \mu \le \tau$ and μ is metrisable. Hence by Corollary 5.2 $\mu = \tau$ and τ is locally convex.

Corollary 5.4. Suppose (X, τ) is an F-space and $\rho \leq \tau$ is a vector topology compatible with τ . Then τ is ρ -polar.

Proof. Let γ be the topology induced by the ρ -closures of τ -neighbourhoods of 0; then $\rho \le \gamma \le \tau$ and γ is metrisable. Hence by 5.2, $\gamma = \tau$.

Theorem 5.5. Let (X, τ) be an F-space and let (x_n) be a basis of X in a compatible topology $\rho \leq \tau$. Then (x_n) is a basis of X.

Proof. By the previous corollary we may assume that τ is defined by a ρ -lower-semi-continuous F-norm $\|.\|$ (see Proposition 2.1). Each $x \in X$ may be expanded in the form

$$x = \sum_{i=1}^{\infty} f_i(x) x_i (\rho)$$

(the linear functionals f_n are not necessarily ρ -continuous). Now for each $x \in X$, the sequence $\left(\sum_{i=1}^{n} f_i(x)x_i\right)$ is ρ - and therefore τ -bounded (Theorem 5.1) and so we may define

$$||x||^* = \sup_{n} \left\| \sum_{i=1}^{n} f_i(x) x_i \right\|.$$

Then $\lim_{t\to 0} ||tx||^* = 0$ since $\lim_{t\to 0} ty = 0$ uniformly for y in a bounded set; hence $||.||^*$ is an F-norm on X. Clearly also $||x||^* \ge ||x||$ by the ρ -lower-semi-continuity of ||.||.

It remains to establish that $(X, \|.\|^*)$ is complete and then by the Closed-Graph Theorem it will follow that $\|.\|^*$ and $\|.\|$ are equivalent. Let (y_n) be a $\|.\|^*$ -Cauchy sequence; then since $\|y_n - y_m\| \le \|y_n - y_m\|^*$ for all $m, n, (y_n)$ is τ -convergent to y say. Furthermore, it can be seen that the sequences

$$\left(\sum_{i=1}^{m} f_i(y_n) x_i\right)$$

are τ -convergent uniformly in m; clearly $\lim_{n \to \infty} f_i(y_n) = t_i$ exists and

$$\lim_{n\to\infty} \sum_{i=1}^m f_i(y_n) x_i = \sum_{i=1}^m t_i x_i$$

uniformly in m for the topology τ . Thus working in the weaker topology ρ

$$\lim_{m\to\infty} \sum_{i=1}^m t_i x_i = \lim_{n\to\infty} \lim_{m\to\infty} \sum_{i=1}^m f_i(y_n) x_i = y.$$

(The limits are interchangeable by uniform convergence.) Therefore it follows that

$$\lim_{n \to \infty} \sum_{i=1}^{m} f_i(y_n) x_i = \sum_{i=1}^{m} f_i(y) x_i (\tau)$$

uniformly in m and that $||y-y_n||^* \to 0$. Hence ||.|| and $||.||^*$ are equivalent, and by an application of Lemma 2.4, (x_n) is a basic sequence in (X, ||.||). By the compatibility of ρ , (x_n) is a basis of X.

Shapiro (12) proves that the Weak Basis Theorem fails in any non-locally convex locally bounded F-space. With regard to this theorem we establish that a weaker version of the Weak Basis Theorem holds always.

Proposition 5.6. Let (x_n) be a weak basis of (X, τ) , where (X, τ) is an F-space with a separating dual. Then the associated linear functionals $\{f_n\}$ are continuous.

Proof. Let σ be the weak topology and μ the (metrisable) Mackey topology. Then (X, μ) is barrelled, for if C is a μ -barrel then C is τ -closed and by the Baire Category Theorem we may show C has τ -interior. It follows easily that C is a τ -neighbourhood of 0 and thus a μ -neighbourhood ((10), Proposition 3).

Now let $\|\cdot\|_n$ be a sequence of semi-norms defining μ and let

$$\|x\|_{n}^{*} = \sup_{m} \left\| \sum_{i=1}^{m} f_{i}(x)x_{i} \right\|_{n}$$

(finite, since μ and σ have the same bounded sets). Let μ^* be the topology induced by the sequence $\|\cdot\|_n^*$ and let \hat{X} be the μ^* -completion of X. Consider the identity map $i: (X, \mu) \to (\hat{X}, \mu^*)$. Suppose $z_n \in X$, $z_n \to z$ (μ) and $z_n \to z'$ (μ^*).

Then $\left\{\sum_{i=1}^{m} f_i(z_n)x_i\right\}_{n=1}^{\infty}$ is uniformly μ -Cauchy for m=1, 2, ...; thus in the topology $\sigma \leq \mu$

$$\lim_{n\to\infty} \lim_{m\to\infty} \sum_{i=1}^m f_i(z_n) x_i = \lim_{m\to\infty} \lim_{n\to\infty} \sum_{i=1}^m f_i(z_n) x_i$$

and we conclude

$$\lim_{n\to\infty} f_i(z_n) = t_i \text{ exists for each } i$$

and

$$\lim_{n\to\infty} z_n = z = \sum_{i=1}^{\infty} t_i x_i \text{ in } \sigma.$$

Thus $f_i(z) = t_i$ and therefore

$$\lim_{n\to\infty} \sum_{i=1}^{m} f_i(z_n - z) x_i = 0 \text{ μ-uniformly in } m.$$

Hence $z_n \to z$ in (X, μ^*) and *i* has Closed Graph. By the Closed Graph Theorem ((9), p. 116), since (\hat{X}, μ^*) is complete and metric, $\mu \ge \mu^*$ and it follows easily that each f_n is μ and hence τ -continuous.

The idea of the next theorem is due to Pelczynski (7).

Theorem 5.7. Let (X, τ) be an F-space and suppose $\rho \leq \tau$ is a compatible vector topology. Let K be a subset of X; then the following are equivalent

- (i) K is ρ -compact,
- (ii) K is ρ -sequentially compact,
- (iii) K is ρ -countably compact.

Proof. (i) \Rightarrow (iii) and (ii) \Rightarrow (iii) are well known. Let $\|.\|$ be an *F*-norm determining τ ; by Corollary 5.4 we may suppose $\|.\|$ is ρ -lower-semi-continuous.

(iii) \Rightarrow (i). It is easy to see that K is ρ -precompact; we show that K is also ρ -complete. Let $(\hat{X}, \hat{\rho})$ be the ρ -completion of X and let $Y \subset \hat{X}$ be the vector space of all $y \in \hat{X}$ such that there is a ρ -bounded net $x_{\alpha} \in X$ such that $x_{\alpha} \to y$. By Theorem 5.1 a ρ -bounded net is τ -bounded. Let $B_{\lambda} = \{x \in X : \|x\| \ge \lambda\}$; then for $y \in Y$ we define

$$||y||^* = \inf \{ \lambda \colon y \in \overline{B}_{\lambda}, \text{ closure in } \hat{\rho} \}.$$

Let $y \in Y$ and suppose x_{α} is a τ -bounded net converging to y in $\hat{\rho}$; then

$$\parallel y \parallel^* \leq \sup_{\alpha} \parallel x_{\alpha} \parallel < \infty$$

and

$$\lim_{t \to 0} \| ty \|^* \le \lim_{t \to 0} \sup_{\alpha} \| tx_{\alpha} \|$$
$$= 0$$

since the net $\{x_{\alpha}\}$ is bounded (cf. Theorem 5.5). It follows without difficulty that $\|\cdot\|^*$ is an F-semi-norm on Y, and that $\|\cdot\|^*$ is $\hat{\rho}$ -lower-semi-continuous; also from the definition, $\|x\| = \|x\|^*$ for $x \in X$, since each B_{λ} is ρ -closed. Next if $y \in Y$ and $\|y\|^* = 0$ then for each $\lambda > 0$ and V a neighbourhood of 0 in $(\hat{X}, \hat{\rho})$ we may find $x_{\lambda, V} \in X$ such that $x_{\lambda, V} - y \in V$ and $\|x_{\lambda, V}\| \le \lambda$. The set $\{(\lambda, V): \lambda > 0, V \text{ a } \hat{\rho}$ -neighbourhood of 0} is directed in the obvious way $[(\lambda, V) \ge (\lambda', V')$ if and only if $\lambda \le \lambda'$ and $V \subset V'$]; then the net $x_{\lambda, V}$ converges to 0 in (X, τ) and $x_{\lambda, V} \to 0$ in (X, ρ) . However $x_{\lambda, V} \to y$ in $(\hat{X}, \hat{\rho})$ and so y = 0. Thus Y is a metrisable vector space under $\|\cdot\|^*$ and $\|\cdot\|^*$ is $\hat{\rho}$ -lower-semi-continuous.

Now suppose $x_{\alpha} \in K$ is a ρ -Cauchy net; then $x_{\alpha} \to y$ in $(\hat{X}, \hat{\rho})$ and $y \in Y$. Suppose at first $||x_{\alpha} - y||^* \to 0$; then by the completeness of (X, τ) $y \in X$, and there is a sequence $(\alpha(n))$ such that $x_{\alpha(n)} \to y(\tau)$. Thus y is the sole ρ -cluster point of $\{x_{\alpha(n)}\}$ in X; since K is countably compact, $y \in K$, and $x_{\alpha} \to y$ in (K, ρ) .

Now suppose $||x_{\alpha} - y||^* + 0$ and that $y \notin X$; since $y \neq 0$ we may suppose $x_{\alpha} \notin V$ for all α , where V is a ρ -neighbourhood of 0. Then by Theorem 3.2 there is a basic sequence (z_n) in $(Y, ||.||^*)$ such that:

- (i) $z_1 = y$.
- (ii) $z_n = w_n y$, $n \ge 2$ where $w_n = x_{\alpha(n)}$ for some increasing sequence.
- (iii) inf $||z_n||^* > 0$.

Let Z be the closed linear span of $\{z_n\}_{n=1}^{\infty}$ and let W be the closed linear span of $\{w_n\}_{n=2}^{\infty}$. Since $z_1 \notin X$ and $W \subset X$, W is a closed subspace of co-dimension one in Z. Let ϕ be the continuous linear functional on $(Z, \|.\|^*)$ such that $\phi(z_1) = 1$ and $\phi(W) = 0$; we define $A: Z \to Z$ by $Az = z - \phi(z)z_1$. Then for $n \ge 2$

$$Az_n = Aw_n - Az_1$$

= w.

Similarly define $B: Z \rightarrow Z$ by

 $B\left(\sum_{i=1}^{\infty}t_{i}z_{i}\right)=\sum_{i=2}^{\infty}t_{i}z_{i}.$

Then

$$Bw_n = B(z_1 + z_n)$$
$$- z$$

It follows that $BAz_n = z_n$, $n \ge 2$ and hence that A is an isomorphism of $\overline{\lim} \{z_n : n \ge 2\}$ on to its image. In particular $(w_n : n \ge 2)$ is a basic sequence in $(X, \|.\|)$. However $w_n \in K$ for $n \ge 2$, and so (w_n) possesses a ρ -cluster point. Now suppose w_0 is a ρ -cluster point; then w_0 is in the τ -closed linear span of (w_n) by compatibility. It follows that

$$w_0 = \sum_{i=2}^{\infty} \psi_i(w_0) w_i,$$

where ψ_i is the dual sequence of τ -continuous linear functionals on W. Each ψ_i is also ρ -continuous by compatibility and hence

$$\psi_i(w_0)=0 \quad i \ge 2.$$

Therefore $w_0 = 0$. This contradicts the original choice of $x_\alpha \notin V$, where V is a ρ -neighbourhood of 0. Thus we have a contradiction.

Finally suppose $||x_{\alpha}-y||^* \mapsto 0$ and $y \in X$; determine the basic sequence $(z_n: n \ge 2)$ satisfying (ii)-(iii). In this case if w_0 is a ρ -cluster point of $(w_n: n \ge 2)$ then w_0-y is a ρ -cluster point of $(z_n: n \ge 2)$. Since $w_0-y \in X$ and $z_n \in X$ we conclude that w_0-y is in the τ -closed linear span of $\{z_n: n \ge 2\}$ by compatibility and it follows as usual that $w_0-y=0$. Hence $y \in K$. We conclude that any ρ -Cauchy net converges in K and so K is complete and therefore compact.

(iii) \Rightarrow (ii). Let (x_n) be a sequence in K and let x_0 be a ρ -cluster point. Then there is a net (z_α) in K such that each z_α is some x_n and $z_\alpha \to x_0$ (ρ). If $z_\alpha \to x_0$ in τ then there is nothing to prove, as it will follow that some subsequence of (x_n) converges to x_0 . Otherwise we may find a basic sequence (u_n) of the form $u_n = z_{\alpha(n)} - x_0$. Let w be a ρ -cluster point of $(z_{\alpha(n)})$ in K; then clearly $w - x_0 \in \overline{\lim} \{u_n\}$ and since τ and ρ are compatible it follows as in (iii) \Rightarrow (i) that $w - x_0 = 0$. Hence x_0 is the sole cluster point of $(z_{\alpha(n)})$ and so $z_{\alpha(n)} \to x_0$. However $z_{\alpha(n)}$ is simply a subsequence of (x_n) ($\alpha(n) \to \infty$ since the $z_{\alpha(n)}$ are distinct).

[ADDED IN PROOF: The problem of determining conditions under which the Hahn-Banach Extension Property is equivalent to local convexity was originally posed by Duren, Romberg and Shields (14) p.59.]

REFERENCES

- (1) C. Bessaga and A. Pelczynski, Wlansosci baz w przestrzeniach typu B_0 , *Prace Mat.* 3 (1959), 123-142.
- (2) C. BESSAGA and A. PELCZYNSKI, On bases and unconditional convergence of series in Banach spaces, *Studia Math.* 17 (1958), 151-164.
- (3) M. M. Day, On the basis problem in normed linear spaces, *Proc. Amer. Math. Soc.* 13 (1962), 655-658.
- (4) B. Gelbaum, Notes on Banach spaces with bases, An. Acad. Brasil. Ci. 30 (1958), 29-36.
 - (5) J. L. Kelley, General topology (New York, 1955).
- (6) A. Pelczynski, A note on the paper of I. Singer, "Basic sequences and reflexivity of Banach spaces", Studia Math. 21 (1962), 371-374.
- (7) A. PELCZYNSKI, A proof of the Eberlein-Smulian Theorem by an application of basic sequences, *Bull. Acad. Polon. Sci. Sér. Math. Astronom. Phys.* 12 (1964), 543-548.
- (8) M. Ribe, Necessary convexity conditions for the Hahn-Banach theorem in metrizable spaces, *Pacific J. Math.* 44 (1973), 715-732.
- (9) A. P. Robertson and W. Robertson, *Topological vector spaces* (Cambridge, 1964).
- (10) J. H. Shapiro, Extension of linear functionals on F-spaces with bases, Duke Math. J. 37 (1970), 639-645.
- (11) J. H. SHAPIRO, On convexity and compactness in F-spaces with bases, *Indiana Univ. Math. J.* 21 (1972), 1073-1090.
 - (12) J. H. Shapiro, On the weak basis theorem in F-spaces (to appear).
- (13) L. J. Weill, Stability of bases in complete barrelled space, *Proc. Amer. Math. Soc.* 18 (1967), 1045-1050.
- (14) P. L. DUREN, B. W. ROMBURG and A. L. SHEIDLS, Linear functionals on H^P -spaces with 0 , J. Reine Angew. Math. 238 (1969), 32-60.

University College Singleton Park Swansea SA2 8PP