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1. Introduction. Throughout this note all rings considered will be commutative and
noetherian and will have non-zero identity elements. A will always denote such a ring and
the category of all A-modules and all A-homomorphisms will be denoted by ^A.

Let a be an ideal of A. By the local cohomology functor w.r.t. a [9, §2], denoted by Lo,
we mean the functor from C€A to %A whose object function is given by the formula:

La(M) = {x € M | there exists an integer N > 0 such that aNx = 0},

where M is an A-module. Also, when M and N are A-modules and f:M—>N is an
A-homomorphism, Lo(/) is the restriction of / to the submodule La(M) of M It is easy to
see that Lo is an additive, covariant, A-linear, and left exact functor. For each i>0 , the
ith right derived functor of La is denoted by RlLa.

The following generalization of local cohomology theory is given in [2]. Let <J> be a
non-empty set of ideals of A. We call $ a system of ideals (of A) if, whenever a, be<&,
there is an ideal c in <I> such that c £ab. Now suppose $ is a system of ideals of A. For
every A-module M we define

LQ,(M) = {x e M | ax = 0 for some a e <&}.

It is clear that L<t>(M) is a submodule of M Also for any homomorphism of A-modules
f:M^N, we define L^if): L&(M) —»• L&(N) to be the restriction of / to the submodule
L<j,(M) of M Then L<j,: C€A —> <€A is an additive, covariant, A-linear, and left exact
functor. Moreover when <I> consists of only the powers of an ideal a, L* is just the usual
local cohomology functor w.r.t. a, La. The functor L^, is called the general local cohomol-
ogy functor w.r.t. $ . For each i > 0, the ith right derived functor of Lo is denoted by R'L^.
In [2] it is shown that the study of torsion theories over A is equivalent to studying this
general local cohomology theory.

Another generalization of local cohomology functors has been recently given by J.
Herzog in [6]. For the moment let A be local with unique maximal ideal m. For each
i >0, HU , ): «A

 x ^A -* ^A is the functor defined by H'm(W N) =Jim ExtA(M/maM, N),

A. Of course, for any ring A and every ideal a of A we can define Hl{ , ):
^ A X ^ A - ^ ^ A by the analogous formula. Then, by [9, (2.3)], Hi(A, ) and R'L0( )
are naturally equivalent functors (from %A to ^A)-

The purpose of this note is to introduce a common generalization of these three
theories. Let <& be a system of ideals (of A) in the above sense. For each integer i>0 , we
define the functor HU , ): %A x <#A -+ <gA by Hi(M, N) = HmExt A(M/aM, N), M, Ne

ae*'
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^A. Then H^( , ) is an additive, A-linear functor which is contravariant in the first
variable and covariant in the second variable. These functors do indeed generalize all the
functors described above. We shall see that most of the properties of general local
cohomology functors given in [6] and [9] extend to these functors even under weaker
conditions.

I wish to thank my supervisor, Dr. R. Y. Sharp, who suggested these ideas to me, and
assisted me at all stages.

This work was supported financially by the University for Teacher Education of Iran.

2. Preliminaries. Throughout this section <I> will denote a system of ideals of A.
The functors H'&( , ) defined in Section 1 generalize functors studied in [1], [2], [6]

and [9]:
(i) when 3> is taken as the powers of an ideal a say, then H^( , ) is naturally

equivalent to the functor Ha ( , ) as defined in [6];
(ii) when $ is taken as the powers of an ideal a say and M = A, then, by [9, (2,3)],

H'^M, ) and R'La( ) are naturally equivalent functors (from %A to ̂ A ) ;
(iii) when M = A, then H'$,(M, ) is naturally equivalent with R'L4>( ) defined in [2];

we shall denote H'^,(A, ) simply by H^( );
(iv) when M = A and $ = {a| a is an ideal of A, dim A/a <d) for some integer d >0,

then H&iM, ) is naturally equivalent with the functor Hl
d( ) studied in [1]. (It is to be

understood that the dimension of the zero A-module is -1.) We shall use these natural
equivalences in future without any further comment.

We shall need the following lemma.

(2.1) LEMMA. Let M' be a fixed A-module. Then, for each i >0, the functors

HUM', ) and lim Hi, (M\ )
ae<t>

(from <#A to <£A) are naturally equivalent.

Proof. We must first explain the construction of the functor lim Hi (M', ). Let a, be4>

with a < b , i.e. b e a. Also let a > l be an integer. Then the natural homomorphism
M'lhaM' -» M'laTM' induces the homomorphism ExtA(M'/aaM', N) -* ExtA(M'/baM\ N)
for any integer i>0 and any A-module N. Also, if a^j3, then the diagram

ExtA(M7a"M\ N) -* ExtA(M'/baM', N)

ExtA(M'/apM', N) -> ExtA(M'/bpM', N)

commutes. Thus we have a homomorphism

TTS : lim ExtA(M'/aaM', N) -* lim ExtA(M7baM', N),
a a *

that is
ir»:Hi(Af,N)->Hi(M',N).
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It is easy to see that these homomorphisms together with the modules Hi (M', N) form a
direct system of A-modules and A-homomorphisms over the directed set <t>. Hence we
may form the direct limit lirn Hj(M', N).

ae<t>

Using the fact that for each integer a > 1 and any ideal b E <I> there is an ideal t e 4>
with ccb", it is straightforward to see that, for each integer i>0 , the functors Hi(M', )
and lim H'a (M

1, ) are naturally equivalent.

3. Ring extension. Throughout this section <& will denote a system of ideals of A.
Suppose that B is a second ring and that / : A -*• B is a ring homomorphism. For an ideal
a of A we denote its extension to B by ac. Our main aim in this section is to prove a
version of [6, (1.1.8)] in terms of systems of ideals. Then as a result of this we shall obtain
[6, (1.1.8)] even under weaker conditions.

In what follows ( )A : %B —* %A is the functor induced by restriction of scalars.

(3.1) PROPOSITION. Let the situation be as above. Then

is a system of ideals of B. Suppose that M is an A-module. Then there is a homomorphism
of connected right sequences of covariant functors (from C€B to ^B)

which is an isomorphism if f is flat or M is a f.g. projective A-module.

Proof. Let S denote the (A, B)-bimodule M <g)A B and let a be an ideal in <I>. By [3,
Ch. II, §6]

S/a'S = (B/ae)<8)AM. (3.1.1)

Also, it is easy to see that B/ae = B® A (A/a). Hence, by [3, Ch. II, §6] again, for any
B-module N,

HomB(S/aeS, N)sHomA((A/a)®AM, NA). (3.1.2)

Moreover, by [3, Ch. II, §6], both (3.1.1) and (3.1.2) are functorial. Hence we deduce that
HomB (S/aeS, ) and HomA ((A/a) <E>A M, A) are naturally equivalent functors (from ^B to
<<oB). This in turn yields the natural equivalence of functors

^°:H^(M(8)AB, )-*H%(M, A).

Since for any injective B-module Q and each integer i>0 , H'^(M®A B, Q) = 0, by
Theorem 10 of Chapter 6 of [7], ip° can be extended to a homomorphism of connected
right sequences of covariant functors

Now suppose B is flat as an A-module. Then, since [11, (3.5)] any injective
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B-module remains injective when considered as an A-module, it follows by the corollary
to Theorem 10 of Chapter 6 of [7] that the homomorphism ¥ is an isomorphism of
connected sequences of functors.

Finally suppose M is a f.g. projective A-module. Hence M is a direct summand of a
f.g. free A-module. Since [2, (2.5)(i)] i?'L0(NA) = O for any injective B-module N and
each i > 0 and the functor H^ , NA): <€A -» <<?A is additive, it follows that H^M, NA) = 0
for all i>0 . The result follows.

(3.2) COROLLARY. Suppose A and B are local rings with maximal ideals m and r
respectively. Letf:A—*B be a ring homomorphism such that me is r-primary. Also, let M
be an A-module. Then there is a homomorphism of connected right sequences of covariant
functors {from <€B to <#B)

Moreover the homomorphism ty is an isomorphism whenever f is flat or M is a f.g. projective
A-module.

Proof. Take * = {nV | i > 1}. Then <& = {(me)' | i> 1}. Hence, by Proposition (3.1),
there is a homomorphism

of connected sequences of covariant functors (from %B to ^ B ) . But since rad(mc) = r, it is
easy to see that there is an isomorphism of connected sequences of functors

Hence there is a homomorphism of connected sequences of functors

Moreover by Proposition (3.1), ^ ' is an isomorphism whenever / is flat or M is a f.g.
projective A-module. Hence ^ is an isomorphism whenever / is flat or M is a f.g.
projective A-module.

NOTATION. Let A and B be local rings with maximal ideals m and r, respectively.
Also, let k = A/m and l = B/x be their residue fields. As in [6], for each i^O, let
EA( , ) = HomA(Hi( , ),EA(k)) and El

B{ , ) = HomB(Hr
i( , ),EB(/)) be the functors

obtained from H'm( , ) and H't( , ) by composing with the appropriate Matlis duality
functors.

(3.3) COROLLARY. With the above, notation suppose that f:A—*B is a local
homomorphism (i.e. /(m) c r) such that B is a f.g. A-module by means of f. Also, let M be a
fixed A-module. Then there are natural transformations of functors

{from <#B to ^ B ) such that ip' is an equivalence whenever f is flat or M is a f.g. free
A-module.
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(This corollary should be compared with Theorem (1.1.8) of [6].)

Proof. Since B is f.g. as an A-module it is easy to see that me is r-primary. Also it
can be shown, by an argument similar to the proof of Theorem (4.2) of [11], that
HomA(B, £A(k))s£B(/) . The corollary now follows easily from Corollary (3.2).

4. Connections with Koszul complexes. In this section our aim is to state a general
version of [6, (1.1.6)] which we shall need to use in the sequel. As we shall see, the
condition that the module N in [6, (1.1.6)] be finitely generated is superfluous. First of all
we need to give some explanations.

Suppose that 7,, y2,.. •, ys generate the ideal a, and that M and N are A-modules.
Also, let a < /3 be positive integers. Then we can define the homomorphism

T,2 :HomA(M/(7?,..., y?)M, N)^HomA(M/(y?, . . . , yf)M, N)

in a natural way so that the modules HomA(M/(y°,..., y°)M, N) together with the maps
T) form a direct system of A -modules and A-homomorphisms over /, the directed set of
positive integers. In particular, the direct limit Urn HomA(M/(y°,..., y°)M, N) can be

a

formed. With this notation we have the following lemma.

(4.1) LEMMA. The functors lim HomA(M/a°M, ) and lim HomA(M/(y?,..., y")M, )
a a

are naturally equivalent (functors from <€A to ^ A ) .

Proof. The proof is straightforward and is therefore left to the reader.

Suppose that M is a f.g. A-module and that P. is a projective resolution for M. Also,
let Q = (7,, y 2 , . . . , ys) be an ideal of A and a > 1 an integer. Let K" denote the Koszul
complex of A w.r.t. the elements 7", 7 ? , . . . , 7" of A. Here we use the notation and
terminology about Koszul complexes of [8, Chapter 8]. In particular, every element of K"
(0<fx,<s) is uniquely expressible as a sum of elements of the form eTkTk... T, , where
e e A, 1 < i, < . . . < ^ < s and Tu T2,... ,TS are new symbols. Next let C" denote the
single complex associated with the double complex K <8>AP- Now let a £ /3 in /, and N be
an A-module. It is straightforward to see that the homomorphisms

form a translation of (Koszul) complexes

This in turn induces a translation of double complexes

K.p(g)AP.-»lC<g>AP..

This induces a translation of single complexes
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But then we have the translation

HomA(C?, N) -* HomA(Cf, N).

Hence we have the homomorphism of A-modules

itl:H'iUom^a, N)) -» tfOfom^Cf, N)) (i 20).

It is easy to see that < = id and if a</3<Tj in J, TT2 = T r ^ . Thus the modules
H'(HomA(C?, N)) (a 61) together with the homomorphisms IT form a direct system over
I so that the direct limit lim H ' t H o m ^ O , N)) may be formed.

a

One can generalize [6, (1.1.6)] to obtain the following theorem.

(4.2) THEOREM. Let the situation be as above. Then for any A-module N,

Hj.(M,N)slim Hj(HomA(a,N)) (i>0).

5. Vanishing theorems. Throughout this section, $ will denote a system of ideals of
A. The following lemma will be needed later.

(5.1) LEMMA. (See [12, (3.1)].) Suppose that a is an ideal of A, M a non-zero, f.g.
A-module of finite projective dimension, and N an A-module of finite Krull dimension.
Then H[ (M, N) = 0 for all i > PdAM + dim N.

Proof. This can be established by induction on PdAM. The case in which PdAM = 0 is
an immediate consequence of [9, (6.1)] and the additivity of the functor H'a( , ). Suppose,
inductively, that s > l and the assertion is true for every f.g. A-module of projective
dimension less than s and M is a f.g. A-module of projective dimension equal to s. Hence
there is an exact sequence of A-modules

where each Pt (OrSirSs) is projective. Let M' = Im ex so that the sequence

0^M'^Po-XM^0 (5.1.1)

is exact. But then PdAM' = s - l . Let X.' be a projective resolution for M' and X". be a
projective resolution over M. Then [7, Chapter 5, Theorem 16] there is a projective
resolution, X. say, for Po which can be included in a split exact sequence

o^x:->x.->x:'-*o (5.1.2)
which is over (5.1.1). Let K? denote the Koszul complex for A w.r.t. the elements
a", a^,. . . , a", where au a2 , . . . , a, generate the ideal a and a > 1 is any integer. Since
both the tensor product and HomA( ,N) are additive functors and (5.1.2) splits we get, for

https://doi.org/10.1017/S001708950000433X Published online by Cambridge University Press

https://doi.org/10.1017/S001708950000433X


LOCAL COHOMOLOGY THEORIES 179

| 3 2 « , a commutative diagram

0 -» HomA (K? <8iA X , N) -» HomA (KT <g>A X., N) -» HomA (K? <g>A XI, N) -»• 0

0 -* HomA (K? ®A X:, N) -* HomA (Jf? (g)A X., N) -+ HomA(K? ® A X:, N) ^> 0

in which the rows are exact. The inductive step can now be completed with the aid of
Theorem (4.2).

This completes the proof of the lemma.

(5.2) PROPOSITION. Suppose that M is a non-zero f.g. A-module of finite projective
dimension and N is an A-module of finite Krull dimension. Then H^(M, N) = 0 for all
i > P d M + dimN.

Proof. By (2.1),
Hi(M, N) = lim Hi (M, N).

de<t>

Now the proposition follows easily from Lemma (5.1).

REMARK. Suppose that M and N are f.g. A-modules and that M<S>AN^0. Recall
that the N-grade of M, written gradeNM, is the length of any maximal N-sequence
contained in (0:M)A. Then gradeNM is equal to the least integer r such that
ExtA(M, N)^0. For any ideal a of A for which a Nj= N we define the N-grade of a as
gradeNA/a. For more details see [10, §1].

Also, we put grade NM = °c if M<8>AN = 0. We generalize this notion as follows.

(5.3) DEFINITION. Let <£> be a system of ideals (of A), M and N f.g. A-modules. We
define the <&-grade of M w.r.t. N, denoted by <3>-gradeNM, as

<J>-grade NM = inf {grade N(M/aM)}.

Note: If, for every a e. $ , (M/oM) <8>A N = 0, then $-gradeNM = oo; otherwise we have
<l>-gradeNM<°°.

(5.4) LEMMA. Let M and N be f.g. A-modules and <J> = {a' | i 3= 1} for some ideal a of
A. Then

<J>-gradeNM = gradeN(M/oM).

In particular, when A is local with maximal ideal m, M and N non-zero and 4> consists of
only the powers of m, then 4>-gradeNM = depthAAT.

Proof. It is enough to prove that for any integer a 3= 1,

grade N(M/aM) = grade N(M/aaM).

But for any f.g. A-module P, the N-grade of P is equal to the N-grade of the ideal
(0: P)A. Hence it is enough to show that

gradeN(0: M/aM)A = grade N (0 : M/aaM)A for all a ^ 1.
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This follows easily by a straightforward argument and using the fact that for any ideal b of
A,

gradeNb = gradeNr(b).

(5.5) PROPOSITION. Let the situation be as in Definition (5.3) above. Also, suppose that
3>-gradeNM = t<°°. Then H^M, N) = 0 for alli<t and H'JM,

(Note that this generalizes [12, (2.3)].)

Proof. We know that H^(M, N) = UrnJEx4(M/aM, N). Let i<t. Then we have
Q S *

i <gradeN(M/aM) for all a e $ . This implies that H'^M, N) = 0.
Next there is an ideal, b say, in <J> for which gradeN(M/6M) = t. Let o e <& be such that

b=£a, i.e. a g b . Since gradeN (M/aM) 5s r, there is an N-sequence x1,x2,...,x, which is
contained in annA(M/oM). Consider the natural epimorphism

M : M/aM -* M/bM.

Let H = ker(u) so that the sequence

0 -^ H -> M/aM -* M/bM -» 0

is exact. This induces the long exact sequence

t ^ H , N) -^ Ext'A(M/bM, N) - * E x ^ M / a M , N) -* ....

Since annA(M/oM)c annA(H) and xlt x2, • • •, x, is an N-sequence contained in annA(H),
E x t ^ ^ H , N) = 0. Thus for every a in <& with b=£a, the map

ExtA(M/bM, JV) -* ExtA(M/aM, N)

is a monomorphism. Since ExtA(M/bM, N) f 0, it follows that Urn ExtA(M/aM, N) f 0, as
required. o e*
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