
BULL. AUSTRAL. MATH. SOC. 65B15, 76AO5

VOL. 72 (2005) [461-470]

APPROXIMATE SOLUTIONS FOR THE
COUETTE VISCOMETRY EQUATION

F.R. DE HOOG AND R.S. ANDERSSEN

The recovery of flow curves for non-Newtonian fluids from Couette rheometry mea-
surements involves the solution of a quite simple first kind Volterra integral equation
with a discontinuous kernel for which the solution, as a summation of an infinite
series, has been known since 1953. Various methods, including an Euler-Maclaurin
sum formula, have been proposed for the estimation of the value of the summation.
They all involve the numerical differentiation of the observational data. In this paper,
the properties of Bernoulli polynomials, in conjunctions with the special structure of
the integral equation, are exploited to derive a parametric family of representations
for its solution. They yield formulas similar to, but more general than, the previ-
ously published Euler-Maclaurin sum formula representations. The parameterisation
is then utilised to derive two new classes of approximations. The first yields a family
of finite difference approximations, which avoids the direct numerical differentiation
of the observational data, while the second generates a framework for the construction
of improved power law approximations.

1. INTRODUCTION - THE COUETTE RHEOMETER EQUATION

The growing sophistication of material science is generating a demand for improved
or new instrumentation for determining the rheological characteristics of non-Newtonian
fluids [3]. In fact, improved instrumentation has stimulated, from a numerical analysis
perspective, a review of the traditional and historic algorithms for the recovery of flow
curves (see [2]). This includes algorithms specifically developed for Couette rheometer
data, because of the popularity of this device in industrial applications ([18, 14]).

A Couette (concentric cylinder) rheometer ([5, 17]) consists of the inner cylinder
(the bob) of length L and radius R^ and the outer cylinder (the cup) of radius Rc, where
the cup is rotated at an angular velocity 0 while a torque M is applied to the bob to
hold it stationary. For an ideal Couette flow, equilibrium requires that the shear stress
a(r) exerted on the fluid between the two cylinders as a radius r, R* ̂  r ^ Rc, takes the
form

. M
o{r) = 2nr2L'
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For such flows, the constitutive relationship can be formulated to take the form

(1) j(a)=af(a),

which states that, for a perfect liquid in Couette flow, the rate of shearing 7 is only a
function of the form of (a) of the local shear stress a. Here, following [15], f{o) denotes
the fluidity which is the reciprocal of the viscosity.

As first derived by [15] and rederived subsequently by various authors, the Couette
rheometer equation takes the following form

(2) 2J2(flr) = f f(n)dV,
M Rb

It corresponds to a first kind integral equation with the discontinuous kernel

where H(•) denotes the Heaviside Unit Step function which takes the value 1 for positive
arguments and is zero otherwise.

Differentiation of equation (1), with respect to a, yields the result first derived by
[15]

2 ^ = f{°) - s2f(s*o).

In [15], Mooney then applied Taylor series expansions to derive his numerical algorithm.
Krieger and Maron [13] proposed alternative methods based on this expression. The key
step, implemented independently by Krieger and Elrod [12] and Pawlowski [16], is to
iterate this result. It yields the infinite series solution

An alternative derivation has been given in [6]. It was Krieger and Elrod [12]
who made the fundamental observation that the Euler-Maclaurin sum formula could be
applied to the sum in this expression, though in a form different from that presented
here. For algebraic reasons, related to the manipulations to be performed in subsequent
section, it is convenient to invoke equation (1) to rewrite equation (2) in the form

/

" *t(r})

,.-Tn
and then introduce the substitution 77 = exp(/3) to obtain

2Q(a)= f i(exp(fi))dfi, e = -21n(s) = 21n(^) ,
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or, equivalently, as

(3) u{z) = f g{fi)dP,

where
u(z) = 2n(exp(z)), g(z) = j(exp(z)).

2. T H E BERNOULLI POLYNOMIAL SOLUTION

It is well-known that the generating function of the Bernoulli polynomials Bk(x)
takes the form ([1])

/ * texp(xt) v~^ ^ / ^tk

W 5 ^ H = £*(•%• l*l<2*-
where the Bk(-) denotes the Bernoulli polynomial of degree k. The Bernoulli numbers

Bk are given by

Bk = Bk(0), B0 = l, B ! = - i , B 2 = | , ^4 = ~ , • • • ,

with

B2k+i =0, k = 1, 2, • • • .

The relationships

B*(l) - {-l)kBk, and Bt(l/2) = - (1 - 2'~k)Bk,

allow values of Bk(\) and Bk(\/2) to be detennined when required.

Using Taylor's theorem, the following formal equivalence, which is central to the
subsequent deliberations, can be constructed

9(* + £) = H yW(x) = { E -IT-

Formally, because the actions of the operators D and exp(—eaD) commute, and DD~l

= /, the identity operator, it follows that

sexp(-eaD) = eDexp(-eaD)(l - expi-eD))'1 (l - exp(-eD))D~l

= eDexp(e(l - a)D)(exp(eD) - l) - 1(l - exp(-eD))D-x
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Combining these two results then yields the following identity

eg{x — ea) = {e exp(-eaD)} g(x)

Substitution from equation (3) into this result thereby yields the following family of
parameterised representations for the solution of equation (3)

eg(x - ea) =
k^O

••L,(X)
(5) =u,(x) +

k-}\

More details about, including a more rigorous derivation of, Euler-Maclaurin sum
formulas and related mathematical results can be found in [8]. Through the judicious
choice of the values of the parameter a, one is able to derive new approximations for
the solution of the Couette rheometer equation. Finite difference formulas are derived
in Section 3, while a new correction procedure for the power law approximation of
[9], along the lines investigated by Code and Raal [4] and Krieger [11], is derived in
Section 4.

3. T H E FINITE DIFFERENCE APPROXIMATIONS

Because it corresponds to a local analysis, the derivation below is quite different from
that of Krieger and Elrod [12], which took as its starting point the full series solution.
On setting a = 0 in equation (5) and invoking the appropriate values of the Bernoulli
numbers Bk, one obtains the following counterpart of the Euler-Maclaurin sum formula
solution proposed by Krieger and Elrod [12].

On setting a = 1/2 in equation (5), which corresponds to the mid-point form of the Euler-
Maclaurin sum formula, one obtains the following more accurate and simpler formula,
because the first derivative term has been eliminated,

(6) eg(x - - ) «
e2k 0

24 dx2

k^2
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For the finite difference approximation of the second derivative of a function on an
even-grid, Taylor's theorem yields

r-2k Jlk, .(~\

Substitution of this result for the second derivative term on the right hand side of equation
(6) then yields

4
Equations (6) and (7) can be rearranged to yield, respectively, the following two finite
difference approximations for LJ(X)

and

In terms of the original variables, allowing for the fact that ln(s) will be negative, these
two finite difference approximations become

and

Proceeding in a similar manner, one can derive the following higher order approximation

7(CTj * (-1920 ln(s))

The major advantage of these finite difference approximations is that they can be
applied directly without the need to perform an explicit numerical differentiation of the
measured data. Clearly, the underlying improperly posedness, in terms of the implicit
differentiation associated with the recovery of -y(a)-values from measured values of fi (see
[6]), is hidden in the oscillating positive and negative signs in the second two formulas.
Equally importantly, these formulas define the grid on which the values of Q can be mea-
sured so that they can be applied directly without the need to interpolate the measured
values onto an appropriate grid. Nevertheless, it is more than likely that measurements
will be performed with error on some other, possibly finer, grid generating the need to
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smooth the data before applying one of the finite difference formulas. In order to cope

with only having a small number of data, Ancey [2] used the optimised Gasser-Miiller

kernel method ([10]) to perform the smoothing before applying his wavelet-vaguelette

procedure. In that paper, methods based on the wavelet-vaguelette decomposition of [7]

are proposed and analysed for the inversion of Couette rheometry data.

4 . A MODIFIED POWER LAW APPROXIMATION

As noted by Krieger [11] and Farrow, Lowe and Neale [9] were the first to propose

and analyse a power law model of the form

7(CT)= aax

for the flow in a Couette rheometer from which it follows that

In [4], Code and Rail in terms of their concept of a power law factor, conceptualised the
idea that, for general non-Newtonian fluids, the exponent A could be assumed to be a
function of a. By exploiting the properties of the Euler-Maclaurin sum formula solution
in [12, 11], noted that the power law factor could be determined as a correction factor
added to the [9] result. In terms of the notation of equation (3) and the power law
approximation with A = A(CT), it follows that

g(x) = cexp(X(x)x).

For A(i) = A =constant, it follows that

w(x) = cexp(Xx)-

and, hence,

TA =
. ) ' dx

Furthermore, one obtains from equation (3) that

v k)- r
h>wx £ ~ *-°

and, hence,

g(x) = £ > ' ( * - ke) = A ^ C J ( I - ke) = A^_Ju;(x)exp(-fc£) = 1 _ ^ 7 _ £ ) -
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It is therefore natural to assume that X(a) adjusts to the changing value of a such
that

(8) X(x) = £ M .

Using the Bernoulli polynomial solution of Section 2, these ideas can be formalised in the
following manner. On rewriting equation (8) in the form

UJ'(X) - X(X)UJ(X),

differentiation, with respect to x, and the application of equation (8) to remove the
derivative LJ'(X) yields

w(2)(x) = X2(x)u(x) + X'(x)u{x),

and hence
o / 3 ) ( z ) = X3(x)u>{x) + 3X(x)X'{x)u(x) + ••• .

Continuing the process inductively yields

Jk)(x) = Xk{x)uj(x) •

Incorporation of these results into equation (5) gives

£g(x — ecu) -

t-2

+

X(x) exp{-aX(x)e)
1 — exp(-A(i)e)

Rewriting the generating function (4) for the Bernoulli polynomials in the form
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it follows that

-l)t k-2

= 2 (P / texpjpt) \
dt2\exp{t)-l)

2t exp(tp + 2t) exp(tp + t) r

- 1)3 + (expft) - I)2 [~tP ~ t{

2texp(2t) (t + Itp + 2) exp(t)) f r

- 1 ) l L (~ (exp(t) - 1) lL(exp(<) - I)2 (exp(«) - 1)

Combining this last result with equation (9), one obtains

exp(—aX(x)e)
eg(x — ea) = u{x)e\{x)

1 — exp(—X(x)e)
k(k - l)(X(x)e)k-2

' k\

where

t r 2t exp(2t) (2 + 2tp + t) expjt)
2 I (exp(t) — I)2 (exp(t) — 1)

In order to exploit the parametric structure of equation (10) for the generation of
more efficient approximations than those derived in [11], it is first necessary to derive an
appropriate approximation for h{t). It follows from its definition that

t f 2t exp{t)(exp(t) - 1 4-1) (2 + 2tp +1) exp{t)
I ) 2 ( o p W - 1 )

t( 2texp(t) (2 + 2tp-t)((exp(t)-l) +
2i(exp(t)-l)2 (exp(t)-l)
f f2«((exp(i) - 1 ) + 1) (2 + 2tp-f

t f 21 (2 + 2lp-3t)
i l ) ' - (expW-1)
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Substitution of this result into equation (10) yields

(ID

The construction of new approximations is thereby reduced to determining the value
of a that simplify this last expression in one way or another. One obvious strategy is to
choose a such that 6p2 — 6p +1 = 0, p = 1 - a; namely, choose a* = 1/2 — ^/l/12, since
it is closest to the power law result first derived by [9]. This leads naturally to the new
approximation

1 _ 2a _ n'(a)

Compared with the finite difference formulas derived in Section 3, this new approximation
involves just a single differentiation of the measured values of f2(cr).

REFERENCES

[1] M. Abramowitz and LA. Stegun, Handbook of mathematical functions (Dover Publica-
tions, New York, 1965).

[2] C. Ancey, 'Solving the Couette inverse problem by using a wavelet-vaguelette decompo-
sition', J. Rheol. 49 (2005), 441-460.

[3] J.C. Baudez and P. Coussot, 'Abrupt transition from viscoelastic solidlike to liquidlike
behaviour in jammed materials', Phys. Review Let. 93 (2004), #128302(4).

[4] R.K. Code and J.D. Raal, 'Rates of shear in coaxial cylinder viscometers', Rheol. Ada
12 (1973), 578-587.

[5] M. Couette, 'Etudes sur le frottement des liquides', Ann. Chim. Phys. 21 (1890), 433-510.
[6] F.R. de Hoog and R.S. Anderssen, 'Regularization of first kind integral equations with

application to Couette viscometry', J. Integral Eqations Appl. (to appear).
[7] D. Donoho, 'Nonlinear solution of linear inverse problems by wavelet-vaguelette decom-

position', Appl. Comput. Harmon. Anal. 2 (1995), 101-1126.
[8] D. Elliott, 'The Euler-Maclaurin formula revisited', J. Austral. Math. Soc. Ser. B 40

(1998), E27-E76.
[9] F.D. Farrow, G.M. Lowe and S.M. Neale, 'The flow of starch pastes flow at high and low

rates of shear', J. Textile Inst. 19 (1928), T18-T31.
[10] J. Hart, Nonparametric smoothing and lack-of-fit tests (Springer, New York, 1999).
[11] I.M. Krieger, 'Shear rate in the Couette viscometer', Trans. Soc. Rheol. 12 (1968), 5-11.

https://doi.org/10.1017/S0004972700035280 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700035280


470 F.R. de Hoog and R.S. Anderssen [10]

[12] I.M. Krieger and H. Elrod, 'Direct determination of the flow curves of non-Newtonian
fluids. II. Shearing rate in the concentric cylinder viscometer', J. Appl. Phys. 24 (1953),
134-136.

[13] I.M. Krieger and S.H. Maron, 'Direct determination of the flow curves of non-Newtonian
fluids,', J. Appl. Phys. 23 (1952), 147-149.

[14] Y.K. Leong and Y.L. Yeow, 'Obtaining the shear stress shear rate relationship and yield
stress of liquid foods from Couette viscometry data', Rheol. Ada 42 (2003), 365-371.

[15] M. Mooney, 'Explicit formulas for slip and fluidity', J. Rheol. 2 (1931), 210-222.
[16] J. Pawlowski, 'Bestimmung des Reibungsgesetzes der nicht-Newtonschen Fliissigkeiten

aus den Viskositatsmessungen mit Hilfe eines Rotationsviskosimeters', Kolloid Zeit. 10
(1953), 129-131.

[17] J.M. Piau, M. Bremond, J.M. Couette and M. Piau, 'Maurice Couette, one of the founders
of rheology', Rheol. Ada 33 (1994), 357-368.

[18] C. Picart, J.M. Piau, H. Galliard and P. Carpenter, 'Human blood yield stress and its
hematorit dependence', J. Rheol. 42 (1998), 1-12.

CSIRO Mathematical and Information Sciences
GPO Box 664
Canberra ACT 2601
Australia

https://doi.org/10.1017/S0004972700035280 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700035280

