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Abstract

Genealogical constructions of population processes provide models which simultane-
ously record the forward-in-time evolution of the population size (and distribution of
locations and types for models that include them) and the backward-in-time genealogies
of the individuals in the population at each time t . A genealogical construction for
continuous-time Markov branching processes from Kurtz and Rodrigues (2011) is
described and exploited to give the normalized limit in the supercritical case. A Seneta–
Heyde norming is identified as a solution of an ordinary differential equation. The
analogous results are given for continuous-state branching processes, including proofs
of the normalized limits of Grey (1974) in both the supercritical and critical/subcritical
cases.
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1. A genealogical construction of branching processes

To characterize a Markov process as a solution of a martingale problem, we must specify
a generator A by identifying the functions in the domain D(A) and defining Af for each
f ∈ D(A). A stochastic process X is then a solution of the corresponding martingale problem
if there is a filtration {Ft } such that X is {Ft }-adapted and

Mf (t) = f (X(t)) − f (X(0)) −
∫ t

0
Af (X(s)) ds

is an {Ft }-martingale for each f ∈ D(A).
We first consider a generator for a process whose state space is E = ⋃∞

n=0[0, r]n for some
r > 0, that is, n-tuples of points which we call particles in [0, r], with [0, r]0 denoting the state
with no particles. The value of u ∈ [0, r] corresponding to a particle is called its level.

The domain of our generator is

D(Ar) =
{
f (u, n) =

n∏
i=1

g(ui) : 0 ≤ g ≤ 1, g ∈ C1[0, r], g(r) = 1, g′(r) = 0

}
,

where, for u ∈ [0, r]n, we write f (u, n) rather than f (u) to emphasize the number of particles
in the state. The boundary conditions g(r) = 1 and g′(r) = 0 essentially correspond to the
assumption below that particles die when they hit the boundary.
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198 T. G. KURTZ

For parameters ak ≥ 0 and b ∈ R satisfying

0 ≤ r

∞∑
k=1

kak − b < ∞, (1.1)

define

Arf (u, n) = f (u, n)

n∑
i=1

∞∑
k=1

(k + 1)ak

rk−1

∫
[ui ,r)

k

[( k∏
l=1

g(vl)

)
− 1

]
dv1 · · · dvk

+ f (u, n)

n∑
i=1

( ∞∑
k=1

r2ak

[(
1 − ui

r

)k+1

− 1 + (k + 1)
ui

r

]
− bui

)
g′(ui)

g(ui)
.

This generator looks more complicated than it is. The first term says that, for each k, the particle
with level ui gives ‘birth’ to k new particles at rate (k + 1)ak(r − ui)

k/rk−1, and the levels of
the new particles are independently and uniformly distributed over the interval [ui, r). Note
that the levels of the ‘offspring’ always lie above the level of the ‘parent’.

The second term says that the level Ui of each particle alive evolves as the solution of the
differential equation

U̇i(t) =
∞∑

k=1

r2ak

[(
1 − Ui(t)

r

)k+1

− 1 + (k + 1)
Ui(t)

r

]
− bUi(t).

A particle ‘dies’ when its level hits r . Note that (1.1) ensures that particles cannot come into
the interval [0, r) from above, and if equality holds in (1.1), that no particle can hit r , that is,
no particle dies.

While the interpretation of the behavior of the process corresponding to Ar is straightforward,
the point of defining the generator is not so clear: here is the reason. Let αr(n, du) be the joint
distribution of n independent uniform [0, r] random variables, and, for f (u, n) = ∏n

i=1 g(ui) ∈
D(A), define λg so that (1/r)

∫ r

0 g(v) dv = e−λg and set

f̂ (n) =
∫

[0,r)n
f (u, n)αr(n, du) = e−λgn.

Note that λg ≥ 0. A nice calculus exercise (see [14, Section 4.4]) gives
∫

[0,r)n
Arf (u, n)αr(n, du)

=
∞∑

k=1

nrak(e
−λg(n+k) − e−λgn) + n

( ∞∑
k=1

rkak − b

)
(e−λg(n−1) − e−λgn)

=
∞∑

k=1

nrak(f̂ (n + k) − f̂ (n)) + n

( ∞∑
k=1

rkak − b

)
(f̂ (n − 1) − f̂ (n))

≡ Crf̂ (n), (1.2)

where Cr is the generator for a continuous-time Markov branching process. The Markov
mapping theorem of [12] (see [14, Section A.5]) implies that every solution X of the martingale
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problem for Cr , that is, every continuous-time branching process, can be obtained from a
solution U of the martingale problem for Ar . If the initial distribution of the branching process
is μ0(dn) then the initial distribution of U is

∫
αr(n, du)μ0(dn). In fact, if the distribution

of X(t) is μt(dn) then the distribution of U(t) is
∫

αr(n, du)μt (dn). More precisely, the
conditional distribution of U(t) given F X

t is αr(X(t), du).
Writing (1.2) as αrArf (n) = Crαf (n), this identity can be interpreted as a generator version

of the semigroup identity given in [17, Theorem 2]. That observation, however, probably does
not provide any additional intuition regarding the meaning of these calculations. More insight
may be provided by seeing the Markov mapping theorem as a corollary of a more general
filtering result, as proved in [12].

Suppose that U with values in a state space E is a solution of the martingale problem
for an operator A with corresponding filtration {Ft }, and let {Gt } be another filtration with
Gt ⊂ Ft , t ≥ 0. Let πt be the conditional distribution of U(t) given Gt . Then, for f ∈ D(A),

E[f (U(t)) | Gt ]−E[f (U(0)) | G0]−
∫ t

0
E[Af (U(s)) | Gs] ds = πtf −π0f −

∫ t

0
πsAf ds

is a {Gt }-martingale. Under some technical conditions on A, most importantly, that D(A) is
closed under multiplication, there is a converse to this observation. Specifically, if {π̃t , t ≥ 0}
is a P (E)-valued process adapted to a filtration {G̃t } and, for each f ∈ D(A),

π̃tf − π̃0f −
∫ t

0
π̃sAf ds

is a {G̃t }-martingale, then there exists a solution U of the martingale problem for A and a
filtration {Gt } such that the P (E)-valued process given by the conditional distributions πt of
U(t) given Gt , t ≥ 0, has the same finite-dimensional distributions as {π̃t , t ≥ 0} (see [13,
Corollary 3.2]).

With reference to (1.2), if X is a solution of the martingale problem for Cr (that is, X is a
corresponding branching process) then setting π̃t (du) = αr(X(t), du), for f ∈ D(Ar),

αrf (X(t)) − αrf (X(0)) −
∫ t

0
Crαrf (X(s)) ds = π̃tf − π̃0f −

∫ t

0
π̃sArf ds

is a martingale with respect to {G̃t } = {F X
t }, the filtration generated by X, and the general

filtering result ensures the existence of U .
One should also note that (1.2) is not magic. Starting with Ar of the form

Arf (u, n) = f (u, n)

n∑
i=1

∞∑
k=1

(k + 1)ak

rk−1

∫
[ui ,r)

k

[( k∏
l=1

g(vl)

)
− 1

]
dv1 · · · dvk

+ f (u, n)

n∑
i=1

F(ui)
g′(ui)

g(ui)
,

to ensure that (1.2) holds, we compute

F(ui) =
∞∑

k=1

r2ak

[(
1 − ui

r

)k+1

− 1 + (k + 1)
ui

r

]
− bui.
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The motivation for the constructions in [14] actually comes from branching Markov pro-
cesses where the parameters ak and b depend on the type or location of the particle (which
evolves in time). These constructions are now known as lookdown constructions because each
offspring has the same type as its parent, that is, each offspring, which always has its level
above that of its parent, ‘looks down’ to the parent to determine its type.

Note that the path of a level does not correspond to a single particle, but rather a line of descent.
The levels of the particles contain information about the future of the process. Roughly, the
order of the levels is determined by the lengths of the lines of descent. In particular, if the line
of descent is finite, the time at which the line terminates is a deterministic function of the level.

The process of levels records the genealogy of the branching process, at least if one marks
a level each time the particle at that level gives birth. Now the levels at time t conditioned on
F X

t are independent and identically distributed (i.i.d.) uniform, so, for k < X(t), the particles
with the k lowest levels give a random sample of size k from the population. Tracing the levels
backward in time, we can identify the levels of the ancestors of these k particles at each time
s < t , that is, we can identify the genealogical tree corresponding to the k ‘randomly’ selected
particles. Note, however, that conditioned on F X

T for some T > t , the families of particles alive
at time T that descend from each of the k particles with lowest levels at time t are not a random
sample from the families at time T that have a common ancestor at time t . In particular, the
particle at the lowest level at time t will have the stochastically largest family of descendants
at time T . Consequently, it is more precise to say that the particles with the k lowest levels at
a fixed time t have the statistical properties of a uniform random sample from the population
at time t as far as the information in F X

t is concerned. See [5] for similar constructions for a
large variety of stochastic population models.

Our goal in the next section is to show how to obtain the asymptotic behavior of a supercritical
branching process from the asymptotic behavior of the particle levels. Kurtz and Rodrigues
[14] treated the case ak = 0 for k > 1 and promised to treat the general case ‘elsewhere’, which
in fact is this paper. In particular, we treat the general case with

∑
k kak < ∞.

There is a long history of theorems of this type. For Galton–Watson processes (i.e. discrete-
time Markov branching processes), convergence of the branching process scaled by its mean
goes back to Harris [8]. For the discrete-time analogue of Theorem 3.1 considered in Section 3,
the sufficiency of the X log X condition was proved in [16] and the necessity in [11]. The
continuous-time case discussed here is given in [1, Theorem III.7.2] and is a special case of
results in [4]. The existence of a scaling giving a nontrivial limit for Galton–Watson processes
with finite mean but for which the X log X condition fails was shown in [19] (convergence in
distribution) and [9] (almost-sure convergence). The existence of a corresponding scaling in the
continuous-time setting follows from results in [3] on more general Bellman–Harris processes.
Here, the scaling is obtained as a solution of an ordinary differential equation.

In Section 4, we let r → ∞ to obtain a genealogical construction for continuous-state
branching processes. These processes were introduced in [10]. Results analogous to the
Galton–Watson results described above were given by Grey [7]. Grey also proved scaling limits
in the critical and subcritical cases under assumptions that the unscaled process converges to 0
but does not reach 0 in finite time. Here we rederive Grey’s results by analyzing the behavior
of the levels in the genealogical construction.

To simplify notation, in the next section we assume that r = 1. The significance of r will
be clear in the last section, but note that, under additional assumptions on the ak , Cr is scaled
in such a way that, as r → ∞, the corresponding branching process, normalized by r , should
converge to a Feller diffusion process or a more general continuous-state branching process.
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2. Asymptotic behavior of supercritical branching processes

The branching process is supercritical if

0 < b ≤
∞∑

k=1

kak.

Since particles are continuously being born and dying, it is not convenient to index them by
integers; however, with probability 1, no two particles have the same initial level, so we index
the particles by their initial level υ: βυ denotes the birth time of particle υ (βυ = 0 for particles
in the initial population) and τυ is the time that Uυ hits 1, with τυ = ∞ if the particle never
hits 1.

Each level evolves according to

U̇υ(t) =
∞∑

k=1

ak[(1 − Uυ(t))k+1 − 1 + (k + 1)Uυ(t)] − bUυ(t)

≡ F(Uυ(t))

=
∫ Uυ(t)

0
�(v) dv − bUυ(t)

for βυ ≤ t < τυ , and Uυ(βυ) = υ. Differentiating, we see that

�(v) =
∞∑

k=1

(1 + k)ak(1 − (1 − v)k) > 0, 0 < v ≤ 1. (2.1)

Note that
∫ 1

0 �(v) dv = ∑∞
k=1 kak ≥ b, and �(v) ↓ 0 as v ↓ 0. Consequently, there exists

0 < p ≤ 1 satisfying p−1
∫ p

0 �(v) dv = b, that is,

F(p) =
∞∑

k=1

ak((1 − p)k+1 − 1 + (k + 1)p) − bp = 0.

Let X be a branching Markov process with generator C, and assume that X(0) = 1. Let Uυ0

be the level corresponding to the initial particle. Then υ0 = Uυ0(0) is uniformly distributed
over [0, 1]. If Uυ0(0) > p then Uυ0(t) hits 1 in finite time, and since all descendants of Uυ0

have higher levels, the population goes to extinction. In particular, the probability of extinction
is q = 1 − p. If Uυ0(0) < p then Uυ0(t) → 0. In particular, Uυ0 survives for all time and
has infinitely many offspring, or, more precisely, the particle at time 0 has infinitely many
descendants.

Theorem 2.1. Let m(t) satisfy m(0) = 1
2p and ṁ(t) = F(m(t)). Then m(t) → 0, and, for

every level with Uυ(βυ) < p,

ζυ = lim
t→∞

Uυ(t)

m(t)

exists and satisfies 0 < ζυ < ∞. Furthermore, W ≡ limt→∞ m(t)X(t) exists almost surely,
and W > 0 if and only if Uυ0(0) < p, that is, if and only if X(t) → ∞.

Let Mv be the solution of Ṁ(t) = F(M(t)) with Mv(0) = v, 0 < v < p, and define

H(v) = lim
t→∞

Mv(t)

m(t)
.
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202 T. G. KURTZ

Then
E[e−Wz | W > 0] = 1 − p−1H−1(z),

giving the Laplace transform of the distribution of W conditioned on W > 0.

Proof. Note that
ṁ(t)

m(t)
= 1

m(t)

∫ m(t)

0
�(v) dv − b

and, for t ≥ βυ ,
U̇υ(t)

Uυ(t)
= 1

Uυ(t)

∫ Uυ(t)

0
�(v) dv − b,

so, for t ≥ 0,

m(t) = m(0) exp

{∫ t

0

1

m(s)

∫ m(s)

0
�(v) dv ds − bt

}

and, for t ≥ βυ ,

Uυ(t) = υ exp

{∫ t

βυ

1

Uυ(s)

∫ Uυ(s)

0
�(v) dv ds − b(t − βυ)

}
.

Suppose that 1
2p < υ < p, and define γ +

υ = inf{t : Uυ(t) ≤ 1
2p}. Then, for t > γ +

υ ,

∫ t

γ +
υ

1

Uυ(s)

∫ Uυ(s)

0
�(v) dv ds =

∫ t−γ +
υ

0

1

m(s)

∫ m(s)

0
�(v) dv ds

and

Uυ(t)

m(t)
= Uυ(βυ)

m(0)
exp

{∫ t

βυ

1

Uυ(s)

∫ Uυ(s)

0
�(v) dv ds −

∫ t

0

1

m(s)

∫ m(s)

0
�(v) dv ds + bβυ

}

= υ

m(0)
exp

{∫ γ +
υ

βυ

1

Uυ(s)

∫ Uυ(s)

0
�(v) dv ds −

∫ t

t−γ +
υ

1

m(s)

∫ m(s)

0
�(v) dv ds + bβυ

}

→ υ

m(0)
exp

{∫ γ +
υ

βυ

1

Uυ(s)

∫ Uυ(s)

0
�(v) dv ds + bβυ

}
.

Similarly, suppose that 0 < υ < 1
2p, and define γ −

υ = inf{t : m(t) ≤ υ}. Then, as before, for
t > γ −

υ ,

Uυ(t)

m(t)
= Uυ(βυ)

m(0)
exp

{∫ t

βυ

1

Uυ(s)

∫ Uυ(s)

0
�(v) dv ds −

∫ t

0

1

m(s)

∫ m(s)

0
�(v) dv ds + bβυ

}

= υ

m(0)
exp

{∫ t

t−γ −
υ

1

Uυ(s)

∫ Uυ(s)

0
�(v) dv ds −

∫ γ −
υ

0

1

m(s)

∫ m(s)

0
�(v) dv ds + bβυ

}

→ υ

m(0)
exp

{
−

∫ γ −
υ

0

1

m(s)

∫ m(s)

0
�(v) dv ds + bβυ

}
.

Conditioned on X(t), the counting measure

ξ(t) =
∑

{υ : βυ≤t<τυ }
δUυ (t)

m(t)
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has the distribution of a counting measure given by X(t) i.i.d. uniform [0, m(t)−1] random
variables. If Uυ0 < p then X(t) → ∞, and conditioned on m(t)X(t), ξ(t) is approximately
a Poisson process with parameter m(t)X(t), and Uυ0(t)/m(t) is approximately exponentially
distributed with parameter m(t)X(t). If we consider ξ(t) restricted to an interval [0, d], the
locations of the ξ(t, [0, d]) points in the interval are distributed as ξ(t, [0, d]) i.i.d. uniform
[0, d] random variables. If lim supt→∞ ξ(t, [0, d]) = ∞ then

lim inf
t→∞ min{x < d : δx an atom of ξ(t)} = 0.

But Uυ0(t)/m(t) = min{x : δx an atom of ξ(t)}, and ζυ0 = limt→∞[Uυ0(t)/m(t)] exists and
is positive, so lim supt→∞ ξ(t, [0, d]) < ∞. Since, for all υ < p, ζυ = limt→∞[Uυ(t)/m(t)]
exists, on the event {Uυ0 < p}, ξ(t) converges almost surely in the sense that, for each ϕ ∈
Cc[0, ∞), ϕ ≥ 0,

lim
t→∞

∫ 1/m(t)

0
ϕ(v)ξ(t, dv) =

∑
{υ : υ<p}

ϕ

(
lim

t→∞
Uυ(t)

m(t)

)
≡

∫ ∞

0
ϕ(v)ξ(∞, dv).

(Observe that, for sufficiently large t , the only points Uυ(t)/m(t) in the support of ϕ must have
υ < p.)

The conditional i.i.d. uniform property implies that

E

[
exp

{
−

∫ 1/m(t)

0
ϕ(v)ξ(t, dv)

} ∣∣∣∣ F X(t)
t

]

=
[
m(t)

∫ 1/m(t)

0
e−ϕ(v) dv

]X(t)

=
[

1 − m(t)

∫ 1/m(t)

0
(1 − e−ϕ(v)) dv

][1/m(t)]m(t)X(t)

.

Letting t → ∞, the left-hand side converges almost surely, so too does the right-hand side.
Because

[
1 − m(t)

∫ 1/m(t)

0
(1 − e−ϕ(v)) dv

]1/m(t)

→ exp

{
−

∫ ∞

0
(1 − e−ϕ(v)) dv

}
,

the limit W ≡ limt→∞ m(t)X(t) must exist, and we conclude that

E

[
exp

{
−

∫ ∞

0
ϕ(v)ξ(∞, dv)

} ∣∣∣∣ ∨tF
X
t

]
= exp

{
−W

∫ ∞

0
(1 − e−ϕ(v)) dv

}
.

Thus, conditioned on W , ξ(∞) is a Poisson point process on [0, ∞) with intensity W . If
υ0 > p, ξ(∞, [0, ∞)) = 0, so W = 0. If υ0 < p, the left-hand side is almost surely less
than 1 for any ϕ that is strictly positive on some interval, so W > 0.

Furthermore, conditioned on {υ0 < p} = {W > 0}, H(υ0) = limt→∞[Uυ0(t)/m(t)] must
be exponentially distributed with parameter W . Then

P{H(υ0) > z | 0 < υ0 < p} = E[e−Wz | W > 0] = 1 − p−1H−1(z). �
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3. The X log X condition

Since E[X(t)] = ebt , the natural scaling of X should be e−btX(t). Observing that

lim
t→∞ e−btX(t) = lim

t→∞
e−btW

m(t)
,

to understand the behavior of e−btX(t), we must understand the behavior of e−btW/m(t), or,
equivalently,

ebtm(t) = 1

2
p exp

{∫ t

0

1

m(s)

∫ m(s)

0
�(v) dv ds

}
. (3.1)

Since the right-hand side of (3.1) is increasing, the problem reduces to whether or not the
integral in the exponent is bounded.

Note that m(·) is bounded above and below by functions of the form Ce−cs , where we can
always take 0 < C < p. Then

∫ t

0 (1/m(s))
∫ m(s)

0 �(v) dv ds is bounded above and below by
functions of the form

∫ t

0

ecs

C

∫ Ce−cs

0
�(v) dv ds =

∫ C

Ce−ct

1

cz2

∫ z

0
�(v) dv dz

= 1

cCe−ct

∫ Ce−ct

0
�(v) dv − 1

cC

∫ C

0
�(v) dv +

∫ C

Ce−ct

�(z)

cz
dz,

where the first equality follows by substitution and the second by integration by parts. On the
right-hand side, as t → ∞, the first term tends to 0 (recall (2.1)), the second is constant, and
the third converges to

∫ C

0

∑∞
k=1(k + 1)ak[1 − (1 − z)k]

cz
dz =

∞∑
k=1

(k + 1)ak

∫ C

0

1 − (1 − z)k

cz
dz.

Applying l’Hôpital’s rule,

lim
k→∞

∫ C

0 z−1(1 − (1 − z)k) dz

log k
= 1.

Thus,

lim
t→∞ ebtm(t) = 1

2
p exp

{∫ ∞

0

1

m(s)

∫ m(s)

0
�(v) dv

}
< ∞

if and only if
∑

k(k log k)ak < ∞, and we have the following result.

Theorem 3.1. The limit

Ŵ = lim
t→∞ e−btX(t)

exists almost surely and P{Ŵ > 0} = p if and only if
∑∞

k=1(k log k)ak < ∞. Otherwise,
P{Ŵ = 0} = 1.
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4. Asymptotic behavior of continuous-state branching processes

We obtain the genealogical construction for continuous-state branching processes by taking
the limit of Ar as r → ∞. To obtain the most general such process (satisfying a moment
condition discussed below), we must let the ak = a

(r)
k depend on r . Let

�(r)(u) =
∞∑

k=1

r(k + 1)a
(r)
k

[
1 −

(
1 − u

r

)k]
,

and assume that

lim
r→∞ �(r)(u) = lim

r→∞

∞∑
k=1

r(k + 1)a
(r)
k

[ k∑
l=1

(
k

l

)
(−1)l+1

(
u

r

)l]
≡ �(u) (4.1)

exists uniformly for u in bounded intervals. This condition is essentially [6, Equation (9.4.36)].
Any limit of the form (4.1) has a completely monotone derivative, and by Bernstein’s theorem

[18, Theorem 3.2], � can be written as

�(v) = 2a0v +
∫ ∞

0
(1 − e−vy)μ(dy) (4.2)

for a0 ≥ 0 and μ a σ -finite measure satisfying
∫ ∞

0 (1 ∧ y) μ(dy) < ∞. (Note that the
corresponding statement in [14] does not characterize precisely the measure, denoted here
by μ, which is related to the measure ν there by μ(dy) = y−1ν(dy).)

The limiting generator obtained in [14] has state space E = [0, ∞)∞ ∪ ⋃∞
k=0[0, ∞)k , and

D(A) =
{
f (u) =

∏
g(ui) : g ∈ C1[0, ∞), 0 ≤ g ≤ 1,

there exists vg such that g(v) = 1 (v ≥ vg)
}
.

Then, if r > vg ,

Arf (u, n) = f (u, n)

n∑
i=1

∞∑
k=1

(k + 1) ak

rk−1

∫
[ui ,r)

k

[( k∏
l=1

g(vl)

)
− 1

]
dv1 · · · dvk

+ f (u, n)

n∑
i=1

[ ∞∑
k=1

r2ak

((
1 − ui

r

)k+1

− 1 + (k + 1)
ui

r

)
− bui

]
g′(ui)

g(ui)

= f (u, n)

n∑
i=1

[
�(r)(ui) − �(r)

(
ui +

∫ ∞

ui

[1 − g(v)] dv

)]

+ f (u, n)

n∑
i=1

[∫ ui

0
�(r)(v) dv − bui

]
g′(ui)

g(ui)
.

Define ξn = ∑n
i=1 δui

, and assume that, as n → ∞, ξn → ξ = ∑∞
i=1 δui

such that ξ([0, d]) <

∞ for all d > 0. Then, as r and n → ∞, Arf (u, n) converges to

Af (u) = f (u)

∞∑
i=1

[
�(ui) − �

(
ui +

∫ ∞

ui

[1 − g(v)] dv

)]

+ f (u)

∞∑
i=1

[∫ ui

0
�(v) dv − bui

]
g′(ui)

g(ui)
.
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By (4.2),

Af (u) = f (u)
∑

i

2a0

∫ ∞

ui

[g(v) − 1] dv

+ f (u)
∑

i

∫ ∞

0

[
exp

{
y

∫ ∞

ui

[g(v) − 1] dv

}
− 1

]
e−yui μ(dy)

+ f (u)
∑

i

(∫ ui

0
�(v) dv − bui

)
∂ui

g(ui)

g(ui)
.

For v1 < v2, the first term on the right-hand side states that a particle with level ui produces
particles with levels in [ui + v1, ui + v2] at rate 2a0(v2 − v1). The second term states that
a particle with level ui produces bursts of particles where the levels of the new particles are
given by a Poisson point process with intensity y on [ui, ∞). The rate at which such a burst is
produced with y ∈ [y1, y2] is

∫ y2
y1

e−yui μ(dy). As in the case of finite r , the third term states
that each level evolves according to

U̇i(t) =
∫ Ui(t)

0
�(v) dv − bUi(t) ≡ F(Ui(t)).

For x ∈ [0, ∞), let α(x, du) be the distribution of a Poisson point process on [0, ∞) with
intensity x. For f (u) =∏

i g(ui), define λg =∫ ∞
0 [1 − g(v)] dv. Then f̂ (x) ≡ αf (x) = e−λgx

and Cf̂ (x) equals

αAf (x) = x

(∫ λg

0
�(v) dv − bλg

)
e−λgx

= x

(
a0λ

2
g − bλg +

∫ ∞

0

(
λg − 1

y
[1 − e−λgy]

)
μ(dy)

)
e−λgx

= x

(
a0f̂

′′(x) + bf̂ ′(x) +
∫ ∞

0
(f̂ (x + y) − f̂ (x) − f̂ ′(x)y)

1

y
μ(dy)

)
,

which is the generator of a Markov process obtained by solving the time-change equation

X(t) = X(0) + Y

(∫ t

0
X(s) ds

)
,

where Y is a Lévy process with generator

Gf (x) = a0f
′′(x) + bf ′(x) +

∫ ∞

0
(f (x + y) − f (x) − f ′(x)y)

1

y
μ(dy). (4.3)

This time-change representation of a continuous-state branching process was first given in [15].
The Lévy measure for Y is γ (dy) = (1/y)μ(dy), which, by the conditions on μ, clearly satisfies

∫ ∞

0
(1 ∧ y2)γ (dy) < ∞.

Note that G given by (4.3) is not the most general Lévy process with only positive jumps.
The restriction given by the properties of μ implies that E[|Y (u)|] < ∞ and E[Y (u)] = bu;
hence, E[X(t)] = E[X(0)]ebt . If we try to extend the genealogical construction to measures μ
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which would give the most general Lévy process with only positive jumps, � given by (4.2)
would blow up. We can obtain a genealogical construction for the general case by adding birth
events of the form considered in [5, Section 3.3]. Using that construction, the levels would take
random jumps. We have not attempted to study the asymptotic behavior of that construction.

As in Section 2, index the lines of descent by their levels at the times of their birth, and let υ0
denote the lowest level at time 0. As before, all particles alive at time t satisfy Uυ(t) ≥ Uυ0(t).

Assume that at least one of a0 and μ is nonzero. Then, if b = 0 (critical case) or b < 0
(subcritical case), limt→∞ Uυ0(t) = ∞. A line of descent ends if Uυ hits ∞, but, in general,
that may not occur in finite time. In particular,

∫ Uυ(t2)

Uυ(t1)

1

F(v)
dv = t2 − t1,

so Uυ hits ∞ in finite time if and only if
∫ ∞

Uυ(βυ)

1

F(v)
dv < ∞

(cf. [2, p. 167]), as holds, for example, when a0 > 0.
In the supercritical case, b > 0 as in the ordinary branching process case, and there exists a

solution of ∫ κ

0
�(v) dv − bκ = 0,

unless limv→∞ �(v) ≤ b; this last statement holds if and only if a0 = 0 and μ([0, ∞)) ≤ b, in
which case, define κ = ∞. Then limt→∞ X(t) = ∞ if and only if υ0 < κ . If X(0) = x > 0
then

P{υ0 < κ} = 1 − e−κx = P

{
lim

t→∞ X(t) = ∞
}
.

The proof of the following result is essentially the same as that of Theorem 2.1. Only the
definition of � has changed.

Theorem 4.1. Assume that b > 0, and let κ be defined as above and X(0) = x > 0. Let m(t)

satisfy m(0) = 1
2κ for finite κ , else m(0) = 1 if κ = ∞, and let

ṁ(t) = F(m(t)).

Then m(t) → 0 (t → ∞), and for every level υ with Uυ(βυ) < κ ,

ζυ = lim
t→∞

Uυ(t)

m(t)

exists and satisfies 0 < ζυ < ∞. Furthermore,

W ≡ lim
t→∞ m(t)X(t)

exists almost surely, and W > 0 if and only if Uυ0(0) < κ , that is, if and only if X(t) → ∞.
Let Mv be the solution of Ṁv(t) = F(Mv(t)), where Mv(0) = v, 0 < v < κ , and define

H(v) = lim
t→∞

Mv(t)

m(t)
.
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Then

E[e−Wz | W > 0] = P{υ0 > H−1(z) | υ0 < κ} = e−xH−1(z) − e−xκ

1 − e−xκ

is the Laplace transform of the distribution of W conditioned on W > 0.

The analog of the X log X condition is given by the following result.

Theorem 4.2. Under the assumptions of Theorem 4.1, the limit

Ŵ = lim
t→∞ e−btX(t)

exists almost surely and P{Ŵ > 0} = 1 − e−xκ if and only if∫ ∞

0
log(1 + z)μ(dz) < ∞, (4.4)

or, equivalently, ∫ ∞

0
z log(1 + z)γ (dz) < ∞.

Proof. As in the proof of Theorem 3.1, we must show that (4.4) is equivalent to
∫ C

0

�(v)

v
dv =

∫ C

0

[
2a0 +

∫ ∞

0

1 − e−vy

v
μ(dy)

]
dv < ∞, (4.5)

which holds if and only if
∫ ∞

0

∫ C

0

1 − e−vy

v
dvμ(dy) < ∞.

Observing that

R(y) =
∫ C

0

1 − e−vy

v
dv =

∫ Cy

0

1 − e−w

w
dw,

we have

lim
y→∞

R(y)

log(1 + y)
= lim

y→∞(1 + y)R′(y) = 1

and

lim
y→0

R(y)

log(1 + y)
= C,

and it follows that (4.5) holds if and only if (4.4) holds. �
In addition, by similar arguments, we have the following result.

Theorem 4.3. Suppose that b ≤ 0 or b > 0 and 0 < κ < ∞. Let m(0) = 1 (b ≤ 0) or
m(0) = 2κ (b > 0), and let ṁ(t) = F(m(t)). Assume that

∫ ∞
m(0)

(1/F (v)) dv = ∞. Then
m(t) < ∞ for all t > 0 and limt→∞ m(t) = ∞.

Assume that X(0) = x > 0, and if b > 0, assume that υ0 > κ . Then, for each line of
descent,

ζυ = lim
t→∞

Uυ(t)

m(t)

exists and satisfies 0 < ζυ < ∞. Furthermore,

W ≡ lim
t→∞ m(t)X(t)
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exists almost surely and is positive. Let Mv satisfy Ṁv(t) = F(Mv(t)), and define H(v) =
limt→∞ Mv(t)/m(t).

For b ≤ 0, P{W > 0} = 1, and conditioned on W , H(υ0) is exponentially distributed with
parameter W . The distribution of W is determined by

E[e−Wz] = P{H(υ0) > z} = P{υ0 > H−1(z)} = e−xH−1(z), z ≥ 0.

For b > 0, conditioned on W and υ0 > κ , H(υ0) − κ is exponentially distributed with
parameter W . The distribution of W is determined by

E[e−Wz | W > 0] = P{H(υ0) − κ > z | υ0 > κ}
= P{υ0 > H−1(z + κ) | υ0 > κ}
= e−x[H−1(z+κ)−κ].
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