Canad. Math. Bull. Vol. 21 (4), 1978

IDEMPOTENTS IN THE GROUPOID OF ALL SP CLASSES OF LATTICES

BY ALAN DAY⁽¹⁾

1. Introduction. In [5], Mal'cev generalized the group theoretical results of H. Neumann (see [6] Chapter 2) to produce the notion of the product, $\mathcal{A} \cdot \mathcal{B}$, of two subclasses of a given variety of algebras, \mathcal{K} . Following the group theoretic example, members of $\mathcal{A} \cdot \mathcal{B}$ were called extensions of algebras in \mathcal{A} by algebras in \mathcal{B} . When $\mathcal{K} = \mathcal{L}$, the variety of all lattices, this product has been investigated for example by Lender [4] and at the Oberwolfach meeting in 1976, Shevrin posed the following conjecture:

Are \mathcal{L} and \mathcal{T} the only varieties of lattices idempotent under this product? (\mathcal{T} is the variety of all lattices satisfying x = y)

The purpose of this note is to answer this conjecture affirmatively.

2. **Preliminaries.** If \mathscr{A} and \mathscr{B} are abstract classes of lattices, their Mal'cev product is defined by: $C \in \mathscr{A} \cdot \mathscr{B}$ iff for some $\theta \in \text{Con}(C)$, $C/\theta \in \mathscr{B}$ and for all $x \in C$, $[x]_{\theta} \in \mathscr{A}$. $([x]_{\theta} \text{ is the congruence class of } x \mod \theta$.) A prevariety of lattices is a subclass of \mathscr{L} closed under **S** and **P**, and as shown in [5] the Mal'cev product of prevarieties is again such. We should also note that any non-trivial prevariety contains all distributive lattices.

We also need a construction in lattices defined originally in [1]. If A is a lattice and I = [u, v] is a closed interval in A, then $A[I] = (A \setminus I) \cup (I \times 2)$ is a lattice with the product order relation on $I \times 2$ and the original (and/or first projection order relation otherwise). There is a natural epimorphism $\kappa_I : A[I] \twoheadrightarrow \mathcal{A}$. We define Int $\mathcal{A} = \{A[I] : A \in \mathcal{A} \text{ and } I = [u, v] \le A\}$.

We also need some facts about free lattices. For $A \in \mathcal{L}$, $(a, b, c, d) \in A^4$ satisfies Whitman's condition iff $(W): a \land b \leq c \lor d$ implies $\{a, b, c, d\} \cap [a \land b, c \lor d] \neq \phi$. This condition comes from the well-known solution to the word problem for free lattices given in Whitman [7]. The form of this theorem needed here is in Jónsson [3].

(2.1) THEOREM. Let L be a lattice generated by a subset $X \subseteq L$; then L is freely generated by X if and only if L satisfies (W) and for all finite subsets $Y, Z \subseteq X$, $\land Y \leq \lor Z$ iff $Y \cap Z \neq \phi$.

The following result from [2] is also needed.

⁽¹⁾ This research was supported by the National Research Council.

Received by the editors July 21, 1977 and in revised form, February 13, 1978.

(2.2) THEOREM. For each lattice A in \mathcal{L} there exists a sequence of lattices $(A_n)_{n \in \mathbb{N}}$ and epimorphisms $\rho_n : A_{n+1} \twoheadrightarrow A_n$ such that

(1)
$$A_0 = A \quad and \quad A_{n+1} \in SP Int \{A_n\}$$

$$A_{\infty} = \lim (A_{n'}\rho_n)$$
 satisfies (W).

3. **The results.** While some of the results stated below obviously hold under weaker assumptions we will assume all classes of lattices considered are prevarieties.

(3.1) LEMMA. For prevarieties \mathcal{A} and \mathcal{B} with \mathcal{A} non-trivial, Int $\mathcal{B} \subseteq \mathcal{A} \cdot \mathcal{B}$.

Proof. The congruence classes of $\kappa_I : B[I] \rightarrow B$ are isomorphic to either 1 or 2 both of which belong to \mathcal{A} .

(3.2) COROLLARY. If \mathcal{A} is a non-trivial prevariety that is idempotent then Int $(\mathcal{A}) \subseteq \mathcal{A}$.

(3.3) THEOREM. Any idempotent non-trivial prevariety \mathcal{A} contains FL(X), the free lattice on X generators, for each set X.

Proofs. As \mathscr{A} is non-trivial, we have that for any set X, FD(X), the free distributive lattice on X generators, belongs to \mathscr{A} . Now using $A_0 = FD(X)$ in (2.2) we have by the lemma, $A_n \in \mathscr{A}$ for all $n \in N$ and therefore also $A_\infty \in \mathscr{A}$. Now if $\rho_\infty: A_\infty \to A_0 = FD(X)$ is the canonical epimorphism, then any set of representatives \overline{X} from $\{\rho_\infty^{-1}(x): x \in X\}$ must satisfy the second property of (2.1). Since we also have A_∞ satisfying (W), we have by (2.1), $FL(X) \simeq \langle \overline{X} \rangle \in \mathscr{A}$.

(3.4) COROLLARY. If \mathcal{V} is a variety of lattices that is idempotent then $\mathcal{V} = \mathcal{T}$ or $\mathcal{V} = \mathcal{L}$.

Proof. If $\mathcal{V} \neq \mathcal{T}$ then since \mathcal{V} is a prevariety, we have by the theorem $FL(X) \in \mathcal{V}$ for all sets X. Since \mathcal{V} is also closed under **H**, this forces $\mathcal{V} = \mathcal{L}$.

ACKNOWLEDGEMENT. The author would like to thank Professors Gratzer and Shevrin in particular and the Oberwolfach committee in general; for the discussion that led to this result.

References

1. A. Day, A Simple Solution to the Word Problem for Lattices, Can. Math. Bull. 13 (1970), 253-254.

2. A. Day, *Splitting Lattices Generate All Lattices*, Proceedings of the Conference on Universal Algebra, Szeged 1975, North-Holland (in print).

3. B. Jónsson, Relatively Free Lattices, Colloq. Math. 21 (1970), 191-196.

4. W. B. Lender, About a Groupoid of Prevarieties of Lattices, Siberian Math. J. XVI No 6 (1975), 1214–1223 (Russian).

(2)

1978]

IDEMPOTENTS

5. A. I. Mal'cev, Multiplication of Classes of Algebraic Systems, Siberian Math J. 8 (1976), 764–770 (Russian). Translation available in: A. I. Mal'cev, The Metamathematics of Algebraic Systems, Studies in Logic Vol. 66, North-Holland, Amsterdam (1971).

6. H. Neumann, Varieties of Groups, Erg. der Math, New Series Vol. 37, Springer-Verlag, Berlin 1967.

7. P. Whitman, Free Lattices, Ann. of Math. 42 (1941), 325-330.

DEPARTMENT OF MATHEMATICAL SCIENCE LAKEHEAD UNIVERSITY THUNDER BAY, ONT. P7B 5E1