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IDEMPOTENTS IN THE GROUPOID OF ALL SP 
CLASSES OF LATTICES 

BY 

ALAN DAY(1) 

1. Introduction. In [5], Mal'cev generalized the group theoretical results of 
H. Neumann (see [6] Chapter 2) to produce the notion of the product, & • 3&, of 
two subclasses of a given variety of algebras, X. Following the group theorectic 
example, members of si • 38 were called extensions of algebras in si by algebras 
in 3ft. When 3fc = ££, the variety of all lattices, this product has been investigated 
for example by Lender [4] and at the Oberwolfach meeting in 1976, Shevrin 
posed the following conjecture: 

Are ££ and ST the only varieties of lattices idempotent under this product? {ST 
is the variety of all lattices satisfying x = y) 

The purpose of this note is to answer this conjecture affirmatively. 

2. Preliminaries. If si and 38 are abstract classes of lattices, their Mal'cev 
product is defined by: Ce si- 3ft iff for some 0eCon(C) , C/0GÔ8 and for all 
x e C, [x]0 e si. ([x]e is the congruence class of x modulo 6.) A prevariety of 
lattices is a subclass of !£ closed under S and P, and as shown in [5] the Mal'cev 
product of prevarieties is again such. We should also note that any non-trivial 
prevariety contains all distributive lattices. 

We also need a construction in lattices defined originally in [1]. If A is a 
lattice and J = [w, v] is a closed interval in A, then A[I] = ( A \ J ) U ( I x 2 ) is a 
lattice with the product order relation on 1x2 and the original (and/or first 
projection order relation otherwise). There is a natural epimorphism 
KT : A[T]-^si. We define Int si = {A [J] : A e si and I = [u, v] < A}. 

We also need some facts about free lattices. For A e i ? , (a,b,c,d)eA4 

satisfies Whitman's condition iff ( W) : a A b < c v d implies {a, b, c, d} H 
[aAb, cvd]=£<p. This condition comes from the well-known solution to the 
word problem for free lattices given in Whitman [7]. The form of this theorem 
needed here is in Jônsson [3]. 

(2.1) THEOREM. Let Lbe a lattice generated by a subset X ^ L; then L is freely 
generated by X if and only if L satisfies (W) and for all finite subsets Y^Z^X, 
AY<vZijfYnZ*<f>. 
The following result from [2] is also needed. 
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(2.2) THEOREM. For each lattice A in =2? there exists a sequence of lattices 
(Ai)neN flwd epimorphisms pn : An+1--»An such that 

(1) A0 = A and A n + 1 eSPIn t{A n } 

(2) 
Aoo = l im(Anpn) satisfies (W). 

3. The results. While some of the results stated below obviously hold under 
weaker assumptions we will assume all classes of lattices considered are 
pre varie ties. 

(3.1) LEMMA. For prevarieties si and 3ft with si non-trivial, Int Sft ç si- 38. 

Proof. The congruence classes of KX : B[I]-»B are isomorphic to either 1 or 
2 both of which belong to si. 

(3.2) COROLLARY. / / si is a non-trivial prevariety that is idempotent then 
Int (si) ç si. 

(3.3) THEOREM. Any idempotent non-trivial prevariety si contains FL(X), the 
free lattice on X generators, for each set X. 

Proofs. As si is non-trivial, we have that for any set X, FD(X), the free 
distributive lattice on X generators, belongs to si. Now using A0 = FD(X) in 
(2.2) we have by the lemma, An es£ for all neN and therefore also A^esi. 
Now if p00:A^-^A0 = FD(X) is the canonical epimorphism, then any set of 
representatives X from {p~1(x):xeX} must satisfy the second property of 
(2.1). Since we also have A^ satisfying (W), we have by (2.1), FL(X)^{X)esi. 

(3.4) COROLLARY. / / V is a variety of lattices that is idempotent then V= ST or 

Proof. If TV ZT then since V is a prevariety, we have by the theorem 
FL(X) e Y for all sets X. Since y is also closed under H, this forces y = 5E. 
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