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How a rare species might

become a pest

Phil Diamond

A model is proposed for. the population growth of a rare species

after predation pressure is lifted. A geometric probability

argument is used to suggest that, as population density increases,

breeding encounters become more frequent and the consequent rate

of increase is much steeper than the exponential. This may explain

the population explosion of crown-of-thorns starfish recorded

recently.

The importance of key predators for the maintenance of diversity and

stability of marine communities has been conclusively shown [8]. Little

attention has been given to the effects of reducing such predator pressure

on a species which is normally rare. Scarcity (and the concomitant lower

probability of breeding encounters between adults [I], p. 337) results in a

lower per capita rate of population increase than would occur at higher

population densities. A model is constructed below for the increase of a

rare species. It is shown that the consequent growth of numbers is far

greater than the exponential growth expected in the early part of a

logistic curve.

The equation that is used to describe prey dynamics is:

dV/dt = aV[l-f(V)-Cg(V, C)) ,

where V is the density of the prey, C that of the predator, and a is

a reproductive rate. The subtracted terms pertain to density-dependent

negative feedback and the toll taken of the prey through predation (see for
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example Pielou [ 9 ] ) . If the predator i s removed from the system,

(1) dV/dt = aV[l-f(V)) .

Suppose that each mature adult moves in a circular region of area r

and that these are scattered at random over a large expanse A , and

r « A . When two such circles overlap, the adults are assumed to

encounter one another. If these encounters are infrequent, as would be

probable with low population density, the expected number of spawnings will

be directly proportional to the expected number of encounters per unit

area, E . So the rate of increase will depend linearly on the number of

encounters, a = bE .

It is known that

(2) ->.. E = v(l-exp(-krV)) ,

to a very good approximation if r « A [Z]. Note that at rare density,

the rate of increase a is proportional not merely to V , but to v .

This produces a very powerful effect.

Major simplifications included in this model are:

(a) the area r of the circles is a deterministic constant

rather than a random variable, and the area is circular;

(b) individuals of the species are not attracted to each other

over large distances by some pheromone.

If (a) is taken into account, the results are very much the same and

the expression (2) has much the same form at low densities V , and is

still proportional to the square of V [2], [6]. The factor (b) can only

accelerate the population explosion as V increases.

As the density and the number of encounters increases, the rate a

will no longer depend linearly on E . It will approach a limiting value

L which is a measure of the greatest possible breeding capacity; at which

the infrequency of contact between individuals is no longer a factor. One

such rate has been chosen for illustration [3]:

(3) a = LE/{K+E) .

The equations (l)-(3) can be combined and the solution of the

resulting differential equation is expressible in the form g(V) = t .
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Figure 1. The curve labelled "explosive" is a numerical solution of

equation (l) with L = 5 , K = 0.25 , r = 0.1 and an initial density of

one individual per unit area. The function f{V) = f/200 . The lower,

exponential rate is calculated at the initial rate of the explosive

increase; V = exp(l.73t) .

Perhaps more insight into the nature of the solution is gained by numerical

solution for given values of the constants. This was done using a fourth

order Runge-Kutta method [7], and a typical example is shown in the figure.
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The growth curve is much steeper, in i ts init ial stages, than

Malthusian growth (where a is constant). The constants chosen are not

crucial and do not affect the qualitative phenomenon of an explosive growth

which is much steeper than the exponential growth to be expected from

equation ( l ) .

The crown-of-thorns starfish, Acanthaster planoi is normally-

distributed on coral reefs at a low density of six per square kilometre

[4] . There 'is some evidence that the giant triton, Charonia tritonis, is a

key predator which has been removed by intensive shell collection [5]. It

is suggested,that the mating mechanism described above is a possible

explanation of the suddenness of the starfish population explosion on the

Barrier Reef and elsewhere.
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