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Abstract

In this paper, it is proved that the complement of the zero-divisor graph of a partially ordered set is
weakly perfect if it has finite clique number, completely answering the question raised by Joshi and
Khiste [‘Complement of the zero divisor graph of a lattice’, Bull. Aust. Math. Soc. 89 (2014), 177–190].
As a consequence, the intersection graph of an intersection-closed family of nonempty subsets of a set is
weakly perfect if it has finite clique number. These results are applied to annihilating-ideal graphs and
intersection graphs of submodules.

2010 Mathematics subject classification: primary 05C25; secondary 06A07, 05C17.

Keywords and phrases: zero-divisor graph, intersection graph, annihilating-ideal graph, weakly perfect
graph.

1. Introduction

The notion of a zero-divisor graph was introduced by Beck in 1988 to study colourings
of commutative rings [4]. It has received considerable attention since 1999 when
Anderson and Livingston highlighted its potential to illuminate algebraic structure
[3]. The zero-divisor graph concept has since been extended to noncommutative
rings [24], semigroups [12], and partially ordered sets [15]. By affording a graph-
theoretic approach to the exploration of ideas in algebra, zero-divisor graphs expand
the tools to explain algebraic phenomena. Similarly, the complement of a zero-divisor
graph provides information that can be considered dual to that given by the zero-
divisor graph. The complement of the zero-divisor graph is an appropriate tool to
study intersection graphs of algebraic structures. The present investigation follows
this approach by considering complements of zero-divisor graphs of partially ordered
sets.

Given a commutative (multiplicative) semigroup S with 0, let Z(S ) be the set of
zero-divisors of S . As in [12], the zero-divisor graph of S is the graph Γ(S ) whose
vertices are the elements of Z(S )\{0}, and distinct vertices x and y are adjacent if and
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only if xy = 0. If S is a commutative ring then this definition of Γ(S ) coincides with
the definition in [3], and if S is the (multiplicative) monoid of ideals of a commutative
ring R then Γ(S ) is the annihilating-ideal graph of R, denoted by AG(R), which was
introduced in [5]. The complement of AG(R) will be denoted by AGc(R) and, more
generally, the complement of Γ(S ) will be denoted by Γc(S ).

Let P be a partially ordered set (sometimes referred to as a poset) with the least
element 0. Given any set X ⊆ P with X , ∅, let X∨ = {y ∈ P | y ≥ x for every x ∈ X} and
X∧ = {y ∈ P | y ≤ x for every x ∈ X}. If x ∈ P, the sets {x}∨ and {x}∧ will be denoted by
x∨ and x∧, respectively.

A zero-divisor of P is any element of the set

Z(P) = {x ∈ P | there exists y ∈ P\{0} such that {x, y}∧ = {0}}.

As in [21], the zero-divisor graph of P is the graph G(P) whose vertices are the
elements of Z(P)\{0}, such that two vertices x and y are adjacent if and only if
{x, y}∧ = {0}. If Z(P) , {0} then clearly G(P) has at least two vertices and G(P)
is connected with diameter at most three [21, Proposition 2.1]. Throughout, the
complement of G(P) is denoted by Gc(P).

In [4], it was conjectured that zero-divisor graphs of commutative rings R with unity
(where every element of R was permitted to be a vertex) are weakly perfect, that is,
the chromatic number and clique number are equal. This conjecture was shown to
be false in [2, Theorem 2.1]. Nevertheless, the conjecture (frequently referred to as
Beck’s conjecture) has been confirmed in other contexts. For example, it was shown
in [21, Corollary 2.4] that the zero-divisor graph G(P) of a poset P is weakly perfect if
its clique number ω(G(P)) is finite (see also [15, Theorem 2.9]), and in [17, Theorem
3.3] it was proved that G(P) is weakly perfect if P is a 0-distributive lattice such that
ω(Gc(P)) <∞.

Let F be a collection of nonempty subsets of a set S . The intersection graph of F
is the graph I(F) whose vertices are the elements of F, and distinct vertices x and y are
adjacent if and only if x ∩ y , ∅. The concept of an intersection graph was introduced
by Bosak in 1964 [8]. Later, Csákány and Pollák studied the intersection graphs of
proper nontrivial subgroups of finite groups in [10] and Zelinka continued the work on
intersection graphs of proper nontrivial subgroups of finite abelian groups in [26].

Recently, ‘intersection graphs of ideals’ of rings were considered in [9]. Given a
(not necessarily commutative) ring R, the intersection graph of ideals IG(R) of R is
the graph whose vertices are the proper nonzero left ideals of R, and distinct vertices
I and J are adjacent if and only if I ∩ J , {0}. More generally, the intersection graph
of submodules IG(M) of an R-module M is the graph whose vertices are the proper
nonzero submodules of M and distinct vertices I and J are adjacent if and only if
I ∩ J , {0}. Observe that if F = {I\{0} | I is a proper nonzero submodule of M}, then
IG(M) � I(F). The complement of IG(M) (respectively, I(F)) will be denoted by
IGc(M) (respectively, Ic(F)).

There are a number of contributions to the problem of determining whether
annihilating-ideal graphs and intersection graphs are weakly perfect. It was proved
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in [6, Corollary 2.12] that if R is a reduced commutative ring (that is, if R is a
commutative ring without nonzero nilpotent elements) such that ω(AG(R)) < ∞ then
the annihilating-ideal graph AG(R) is weakly perfect. Moreover, [25, Proposition 3.7]
gives some special cases under which the complement AGc(R) of the annihilating-
ideal graph is weakly perfect, and conditions were given in [1, Theorem 2.13] that
guarantee that the complement IGc(M) of the intersection graph is weakly perfect for
an R-module M.

In this paper we completely settle this problem in terms of complements of zero-
divisor graphs of partially ordered sets. In fact, we prove the following result.

Theorem 1.1. Let P be a (not necessarily finite) partially ordered set with 0 such that
Z(P) , {0} and ω(Gc(P)) <∞. Then G(P) and Gc(P) are weakly perfect.

This extends [15, Theorem 2.9], generalises [17, Theorem 3.3], and completely
answers the question raised in [17, Section 3]. As an application, it is shown that
if F is a collection of nonempty subsets of a set S such that F ∪ {∅} is closed under
intersection and ω(I(F)) < ∞ then I(F) and Ic(F) are weakly perfect (Corollary 4.3).
Moreover, IG(M) and IGc(M) are weakly perfect for every R-module M such that
ω(IG(M)) < ∞, which generalises [1, Theorem 2.13]. Also, if R is a reduced
commutative ring such that Z(R) , {0} and ω(AGc(R)) < ∞ then AG(R) and AGc(R)
are weakly perfect (Corollary 4.2). This extends [6, Corollary 2.12] and generalises
[25, Proposition 3.7].

2. Preliminary concepts and definitions

A clique in G is any complete subgraph of G. The clique number of G, denoted by
ω(G), is the maximum order of any clique in G. The chromatic number of G, denoted
by χ(G), is the minimum cardinality of colours required to colour every vertex of G
so that no two adjacent vertices are assigned the same colour. If ω(G) = χ(G) then G
is called weakly perfect. Clearly ω(G) ≤ χ(G). Thus, given a clique K in G of order
n such that ω(G) = n, it follows that G is weakly perfect if and only if there exists a
function f from the vertices of G into the vertices of K such that vertices x and y of G
are not adjacent in G whenever f (x) = f (y).

Let P be a partially ordered set with zero. An element a ∈ P is an atom if a > 0 and,
for every x ∈ P, the inequalities 0 ≤ x ≤ a imply that either 0 = x or x = a. Also, P is
called atomic if for every x with 0 , x ∈ P, there exists an atom a ∈ P such that a ≤ x.

Throughout, N, KD (whereD is a set), Kn and Zn (n ∈ N) denote the set of positive
integers, the complete graph with vertex-set D, the complete graph of order n and the
ring of integers modulo n, respectively. All graphs G are simple and undirected with
vertex-set denoted by V(G). If x ∈ V(G) then N(x) denotes the set of vertices of G that
are adjacent to x. More generally, if ∅ , X ⊆ V(G) then N(X) =

⋃
x∈X N(x).

For references on rings and modules, partially ordered sets, and graph theory, see
[19], [11] and [7], respectively.
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3. Weakly perfect zero-divisor graphs of partially ordered sets

In this section it is assumed that P is a partially ordered set with zero such that
Z(P) , {0} and ω(Gc(P)) <∞. The following lemma, which shows that such partially
ordered sets are atomic, will be used freely throughout this section.

Lemma 3.1. Let P be a partially ordered set with zero such that Z(P) , {0} and
ω(Gc(P)) <∞. Then |x∨ ∩ V(Gc(P))| <∞ for every x ∈ P\{0}. Moreover, P is atomic.

Proof. Observe that x∨ ∩ V(Gc(P)) is a clique in Gc(P) for every x ∈ Z(P)\{0}, which
verifies the first statement (it is clear that x∨ ∩ V(Gc(P)) = ∅ if x ∈ P\Z(P)). If
x ∈ Z(P)\{0} is not bounded below by an atom then x∧ contains an infinite chain,
which contradicts ω(Gc(P)) < ∞. Furthermore, for every x ∈ P, if a ∈ P is an atom
then either a ≤ x or x ∧ a = 0, and hence every element of P\Z(P) is bounded below
by an atom (in fact, by every atom) of P. Therefore, P is atomic. �

For an atomic partially ordered set P with a finite numbers of atoms, it was proved
in [16, Corollary 2.11] that G(P) is weakly perfect by showing that the clique and
the chromatic numbers of G(P) are equal to the number of atoms in P. The following
theorem extends this result by relaxing the ‘finite’ condition on the set of atoms. Recall
that if P is atomic and Z(P) , {0} then the set of atoms of P induces a maximal clique
K of G(P) such that any two vertices x and y of G(P) are adjacent if and only if
V(K) ⊆ N(x) ∪ N(y) [18, Theorem 4.4]. This observation is easily checked by noting
that an atom a is not adjacent to a vertex x in G(P) if and only if a ≤ x, and two vertices
x and y of G(P) are not adjacent in G(P) if and only if the set {x, y}∧ contains an atom.

Theorem 3.2. Let P be a partially ordered set with zero such that Z(P) , {0}. If P is
atomic and A is the set of all atoms of P then ω(G(P)) = χ(G(P)) = |A |.

Proof. As noted above, A induces a maximal clique K of G(P) such that any two
vertices x and y of G(P) are adjacent if and only if V(K) ⊆ N(x) ∪ N(y). Consider a
function f : V(G(P))→ V(K) that satisfies f (x) ∈ V(K)\N(x) for every x ∈ V(G(P))
(note that V(K)\N(x) , ∅ by the maximality of K, and so the existence of such
a function f is guaranteed by the Axiom of Choice). If x, y ∈ V(G(P)) such that
f (x) = f (y) then (V(K)\N(x)) ∩ (V(K)\N(y)) , ∅ (because it contains the element
f (x) = f (y)), that is, V(K)\(N(x) ∪ N(y)) , ∅. Hence, x < N(y) by the choice of the
clique K. Thus, f is a colouring of G(P). �

It follows from [15, Theorem 2.9] that if ω(G(P)) <∞ then G(P) is weakly perfect.
In [17, Theorem 3.3] it was shown that, for a 0-distributive lattice P, the graph G(P) is
weakly perfect if ω(Gc(P)) <∞. This result is generalised in the next corollary, which
follows immediately from Lemma 3.1 and Theorem 3.2.

Corollary 3.3. Let P be a partially ordered set with zero such that Z(P) , {0}. If
ω(Gc(P)) <∞ then G(P) is weakly perfect.
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Let P be a partially ordered set. The comparability graph of P is the graph
whose vertices are the elements of P, and distinct vertices x and y are adjacent if
and only if either x ≤ y or y ≤ x. Hence, for P with zero, Gc(P) can be regarded as
a generalisation of the comparability graph of P (more precisely, the subgraph of the
comparability graph of P induced by the nonzero zero-divisors of P is a subgraph of
Gc(P)). Similarly, there is a sense in which the complement of the comparability graph
of P generalises the zero-divisor graph of P.

Recall that a graph G is perfect if every induced subgraph of G is weakly perfect
(in particular, perfect graphs are weakly perfect). Recently, perfect zero-divisor graphs
of 0-distributive lattices and reduced rings have been characterised [23, Theorem 1.4].
The next two results (whose original statements were given in the purely partially
ordered set-theoretic terms of chains and antichains) are well known. It was shown
later in [20, perfect graph theorem] that a finite graph G is perfect if and only if Gc

is perfect.

Theorem 3.4 [22, Theorem 2]. Let P be a finite partially ordered set. Then the
comparability graph of P is perfect.

Theorem 3.5 [13, Theorem 1.1]. Let P be a finite partially ordered set. Then the
complement of the comparability graph of P is perfect.

Let P be a partially ordered set with zero. Then G(P) need not be perfect (and
hence, by [20, perfect graph theorem], Gc(P) need not be perfect) even if P is a
Boolean algebra. In fact, the subgraph of G(Z6

2) induced by the set {(0, 0, 1, 1, 1, 0),
(1, 1, 0, 0, 0, 0), (0, 0, 0, 1, 1, 1), (0, 1, 1, 0, 0, 0), (1, 0, 0, 0, 0, 1)} is a cycle of length five.
Moreover, in contrast to the perfect graph theorem, a weakly perfect graph need not
have a weakly perfect complement. For example, the graph constructed by introducing
a new vertex to a cycle of length five that is adjacent to precisely two nonadjacent
vertices of the cycle is not weakly perfect, but its complement is weakly perfect. On
the other hand, the goal in this section is to establish Theorem 1.1, which augments
Theorems 3.4 and 3.5.

The hypotheses of Theorem 1.1 imply that G(P) is weakly perfect by Corollary 3.3.
The following three lemmas will complete most of the work in proving that these
conditions also imply Gc(P) is weakly perfect. It is sufficient (and will be more
convenient) to verify that the result holds for a partially ordered set QP having an
atom α with |α∨ ∩ V(Gc(QP))| = ω(Gc(QP)), provided that Gc(P) is a subgraph of
Gc(QP) and ω(Gc(QP)) = ω(Gc(P)). The next lemma guarantees the existence of such
a partially ordered set. Recall that every subset S of a partially ordered set P induces
a subposet of P whose elements are the members of S with order inherited from P.

Lemma 3.6. Let P be a partially ordered set with zero such that Z(P) , {0} and
ω(Gc(P)) <∞. There exists a partially ordered set QP such that Gc(P) is a subgraph of
Gc(QP), and QP contains an atom α with |α∨ ∩ V(Gc(QP))| = ω(Gc(QP)) = ω(Gc(P)).

Proof. Let K be a clique in Gc(P) of maximum cardinality. As |V(K)| = ω(Gc(P)) is
finite, the subposet of P induced by V(K) contains a minimal element v. Let α be
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an element (not in P) and set QP = P ∪ {α} (as sets). Extend the partial order on P
to QP by α∧ = {0, α} and α∨ = {α} ∪ (

⋃
{x∨ | x ∈ V(K)\{v}}) ∪ (P\Z(P)). As any two

elements of V(K)\{v} have a nonzero lower bound in common, it is easy to check that
any two distinct elements of α∨ ∩ V(Gc(P)) are adjacent in Gc(P). In fact, the equality
α∨ ∩ V(Gc(P)) = V(K)\{v} holds by the maximality of |V(K)|. Moreover, since α is an
atom of QP, if y ∈ V(Gc(P))\α∨ then {α, y}∧ = {0} (in QP). It follows that Gc(QP) is the
graph obtained from Gc(P) by introducing a new vertex α such that N(α) = V(K)\{v}.
Now it is straightforward to check that QP satisfies the statements of the lemma. �

Henceforth, let A be the set of atoms of P. For every A with ∅ , A ⊆ A , there
will be no harm in abusing notation by letting Gc(A) denote the subgraph of Gc(P)
such that V(Gc(A)) = (

⋃
{a∨ | a ∈ A}) ∩ V(Gc(P)) and distinct vertices x, y ∈ V(Gc(A))

are adjacent in Gc(A) if and only if the set {x, y} has a nonzero lower bound in the
subposet of P induced by {0} ∪ (

⋃
{a∨ | a ∈ A}) (Gc(A) may not be the complement of

the zero-divisor graph of the induced subposet since its vertices need not be the set of
nonzero zero-divisors of the subposet). In particular, Gc(P) = Gc(A ) by Lemma 3.1,
and Lemma 3.6 shows that generality is not lost by proving the ‘Gc(P) is weakly
perfect’ portion of Theorem 1.1 only in the special case when there exists an α ∈ A
such that the clique K = Gc({α}) in Gc(P) satisfies |V(K)| = ω(Gc(P)).

Denote the restriction of a function f : X → Y to a subset U ⊆ X by f |U . For any
α ∈ A such that the clique K = Gc({α}) in Gc(P) satisfies |V(K)| = ω(Gc(P)), define
an order � on the set

Wα = {(A, f ) | α ∈ A ⊆A and f : V(Gc(A))→ V(K) is a colouring of Gc(A)}

by (A, f ) � (B, g) if and only if A ⊆ B and g|V(Gc(A)) = f . Since Gc(P) = Gc(A ), the
proof of Theorem 1.1 will be complete once it is shown that there exists a function
f : V(Gc(A ))→ V(K) such that (A , f ) ∈ Wα.

Lemma 3.7. Let P be a partially ordered set with zero and Z(P) , {0}. Suppose α ∈A
is such that the clique K = Gc({α}) in Gc(P) satisfies |V(K)| = ω(Gc(P)) <∞. Then Wα

contains a maximal element.

Proof. Note that Wα , ∅ since, for example, ({α}, ι) ∈ Wα (where ι is the identity
function). Suppose that C = {(Ai, fAi ) | i ∈ I} (I an indexing set) is a chain in Wα.
Then (

⋃
i∈I Ai, f ) ∈ Wα, where the function f : V(Gc(

⋃
i∈I Ai))→ V(K) is given by

f (v) = fAi (v) for every i ∈ I with v ∈ V(Gc(Ai)). The element (
⋃

i∈I Ai, f ) is clearly
an upper bound of C , so the result holds by Zorn’s lemma. �

The next lemma is the final result prior to the proof of Theorem 1.1. The inequalities
in the remainder of this section are between finite cardinalities by the assumption
ω(Gc(P)) <∞ together with Lemma 3.1.

Lemma 3.8. Let P be a partially ordered set with zero and Z(P) , {0}. Suppose α ∈A
is such that the clique K = Gc({α}) in Gc(P) satisfies |V(K)| = ω(Gc(P)) < ∞. Let
(A, f ) ∈ Wα and a ∈ A \A. If |(a∨\V(Gc(A))) ∩ V(Gc(P))| ≤ |V(K)\ f (a∨ ∩ V(Gc(A)))|
then there is a function F : V(Gc(A ∪ {a}))→ V(K) such that (A ∪ {a}, F) ∈ Wα and
(A, f ) ≺ (A ∪ {a}, F).
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Proof. Observe that if v ∈ (a∨\V(Gc(A))) ∩ V(Gc(P)) then v is not adjacent to any
element of V(Gc(A))\a∨ (in the graph Gc(A ∪ {a})) since, otherwise, v ∈ b∨ for some
b ∈ A, which contradicts v < V(Gc(A)). Hence, intuitively, after colouring the vertices
of Gc(A) by f , any vertex v ∈ a∨\V(Gc(A)) of Gc(A ∪ {a}) can be coloured by any
element of V(K) that has not already been used to colour an element of a∨ ∩ V(Gc(A)).
That is, more precisely, since |(a∨\V(Gc(A))) ∩ V(Gc(P))| ≤ |V(K)\ f (a∨ ∩ V(Gc(A)))|,
the inequality (A, f ) � (A ∪ {a}, F) holds. Here, (A ∪ {a}, F) is the element of Wα with
F : V(Gc(A ∪ {a}))→ V(K) defined such that F|V(Gc(A)) = f and F|(a∨\V(Gc(A)))∩V(Gc(P)) is
any injection into V(K)\ f (a∨ ∩ V(Gc(A))). �

Proof of Theorem 1.1. As noted in the discussion following the proof of Lemma 3.6,
it can be assumed that there exists α ∈ A such that the clique K = Gc({α}) in Gc(P)
satisfies |V(K)| = ω(Gc(P)) < ∞. By Lemma 3.7, there exists a maximal element
(A, f ) of Wα. If A , A then pick a ∈ A \A. By Lemma 3.8, it remains to prove
that |(a∨\V(Gc(A))) ∩ V(Gc(P))| ≤ |V(K)\ f (a∨ ∩ V(Gc(A)))|. This will contradict the
maximality of (A, f ) so that A = A , that is, so that f : V(Gc(A )) = V(Gc(P))→ V(K)
is a colouring of Gc(P). But

|V(K)\ f (a∨ ∩ V(Gc(A)))| = |V(K)| − | f (a∨ ∩ V(Gc(A)))|

since f (a∨ ∩ V(Gc(A)) ⊆ V(K), and | f (a∨ ∩ V(Gc(A)))| ≤ |a∨ ∩ V(Gc(A))| holds in
general, so if |(a∨\V(Gc(A))) ∩ V(Gc(P))| > |V(K)\ f (a∨ ∩ V(Gc(A)))| then

|a∨ ∩ V(Gc(P))|= |(a∨\V(Gc(A))) ∩ V(Gc(P))| + |a∨ ∩ V(Gc(A))|
> |V(K)\ f (a∨ ∩ V(Gc(A)))| + |a∨ ∩ V(Gc(A))|
= |V(K)| − | f (a∨ ∩ V(Gc(A)))| + |a∨ ∩ V(Gc(A))|
≥ |V(K)|.

Since a∨ ∩ V(Gc(P)) induces a clique in Gc(P), this contradicts the maximality of K.
Therefore, |(a∨\V(Gc(A))) ∩ V(Gc(P))| ≤ |V(K)\ f (a∨ ∩ V(Gc(A)))|.

4. Applications

Let R be a reduced commutative ring such that Z(R) , {0}. In this section,
Theorem 1.1 is applied to Γ(R), Γc(R), AG(R) and AGc(R) and to the intersection
graphs of the intersection-closed families of nonempty subsets. As a consequence,
it is proved that if R is a (not necessarily reduced or commutative) ring and M is an
R-module such that ω(IGc(M)) < ∞ then IG(M) and IGc(M) are weakly perfect. In
particular, this result applies to the intersection graphs of ideals of rings.

Let R be a reduced commutative ring. It was observed in [18, Remark 3.4] that
there exists a partially ordered set P with zero such that Γ(R) � G(P). Therefore, the
following corollary holds by Theorem 1.1.

Corollary 4.1. Let R be a reduced commutative ring such that Z(R) , {0}. If
ω(Γc(R)) <∞ then Γ(R) and Γc(R) are weakly perfect.
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Let I and J be ideals of a commutative ring R. If R is reduced then IJ = {0} if and
only if I ∩ J = {0}. In this case, AG(R) is the zero-divisor graph of the lattice P (under
inclusion) of ideals of R; that is, AG(R) = G(P). Hence, Corollary 4.2, which extends
[6, Corollary 2.12] and generalises [25, Proposition 3.7], is an immediate consequence
of Theorem 1.1.

Corollary 4.2. Let R be a reduced commutative ring such that Z(R) , {0}. If
ω(AGc(R)) <∞ then AG(R) and AGc(R) are weakly perfect.

If F is a collection of nonempty subsets of a set S such that F ∪ {∅} is closed under
intersection (in which case F ∪ {∅} is a meet-semilattice under inclusion), then the
subgraph of I(F) induced by the nonzero zero-divisors of F ∪ {∅} is Gc(F ∪ {∅}). In
fact, I(F) is the join Gc(F ∪ {∅}) + KD of the graphs Gc(F ∪ {∅}) and KD (that is, the
graph obtained from the union Gc(F ∪ {∅}) ∪ KD by letting every vertex of Gc(F ∪ {∅})
be adjacent to every vertex of KD), where D is the set of nonzero-divisors of F ∪ {∅}.
In particular, ω(I(F)) = ω(Gc(F ∪ {∅})) + |D|. Therefore, it is straightforward to check
that ifω(I(F)) <∞ (so thatω(Gc(F ∪ {∅})) <∞, and hence G(F ∪ {∅}) and Gc(F ∪ {∅})
are weakly perfect by Theorem 1.1) then I(F) and Ic(F) are weakly perfect.

Let R be a (not necessarily commutative) ring, and suppose that M is an R-module.
Recall that IG(M) � I(F), where F = {I\{0} | I is a proper nonzero submodule of M}.
In this case, F ∪ {∅} is closed under intersection, and hence the above discussion shows
that if ω(IG(M)) <∞ then IG(M) and IGc(M) are weakly perfect. These remarks are
summarised in the next corollary, which generalises [1, Theorem 2.13].

Corollary 4.3. Let F be a collection of nonempty subsets of a set S . If F ∪ {∅} is
closed under intersection and ω(I(F)) <∞, then I(F) and Ic(F) are weakly perfect. In
particular, if R is a (not necessarily commutative) ring and M is an R-module such
that ω(IG(M)) <∞, then IG(M) and IGc(M) are weakly perfect.

Remark 4.4. Note that the hypothesis ‘F ∪ {∅} is closed under intersection’ of
Corollary 4.3 cannot be omitted. For example, it is well known that, for any graph
G of order n < ∞, there exists a set S of cardinality at most n2/4 containing subsets
S 1, . . . , S n such that I({S 1, . . . , S n}) � G [14, Theorem 1].
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