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Abstract

Precision oncology is a rapidly evolving concept that holds great promise in cancer treatment.
However, a cancer complexity attributed to genomic and acquired tumour heterogeneity limits
treatment effectiveness and increases toxicity. These limitations refer to both systemic therapies
and radiotherapy, which are two mainstays of non-invasive cancer treatment. By understanding
cancer heterogeneity and utilising advanced tools to personalise treatment strategies, precision
oncology has the potential to revolutionise cancer care. In this article, we review the current
status of precision oncology in solid tumours, specifically focusing on the impact of tumour
heterogeneity and genomic patient features on systemic therapies and radiation.We also discuss
the implementation of novel tools, such as next-generation sequencing and liquid biopsies, to
overcome this problem.

Impact statement

Precision oncology, one of the most promising applications of precision medicine, uses molecu-
lar and genetic information to customise cancer treatments, considering the individual charac-
teristics of each patient’s tumour. To further advance the field, precision oncology increasingly
incorporates knowledge of cancer heterogeneity, on both spatial and temporal levels. Addressing
these complexities with modern precision radiotherapy and systemic therapies is the key to
targeting all cancer cell subpopulations. The future vision of precision oncology involves
continuous advancements in technological and analytical methods, leading to further treatment
personalisation. This progress will ultimately contribute to a paradigm shift in cancer care to
improve patient outcomes significantly. Access to advanced tools should be improved in terms
of availability and affordability while addressing the need for routine genomic profiling across
various regions of primary and metastatic tumours to understand cancer heterogeneity com-
prehensively.

Introduction

Precision medicine is a novel approach to treatment and prevention that tailors strategies to the
unique characteristics of individual patients, including their genetics, environment and lifestyle.
It differs from conventional evidence-based medicine, which generally relies on average clinical
benefits in the studied populations (Tonelli and Shirts, 2017; Blackstone, 2019). Precision
medicine is supported by advances in technology and medical research, such as using genomic
sequencing and big data analysis to identify individualised treatment options.

The decision-making process in precision medicine is based on predictive biomarkers, which
offer insights into the underlying molecular mechanisms of tumorigenesis and allow the identi-
fication of potential therapeutic targets. In clinical settings, biomarkers can predict which patients
are most likely to benefit from specific therapies, optimise treatment efficacy and reduce toxicity.
Further, biomarkers enable early cancer detection and treatment monitoring, thereby increasing
its efficacy. In essence, biomarkers are transformative tools of personalisedmedicine, drivingmore
accurate, effective and safer cancer treatments (Slikker, 2018).

The two most commonly used markers are prognostic and predictive biomarkers. A prog-
nostic biomarker is a clinical or biological indicator that offers insights into the probable health
outcome of an individual patient, such as disease recurrence or death, regardless of the treatment
pursued. In turn, a predictive biomarker signifies the potential advantage to the patient, resulting
from a specific treatment (Sechidis et al., 2018). Other biomarkers include predisposing bio-
markers, indicating the potential for developing a disease (Califf, 2018) and pharmacogenomic
biomarkers, informing about the drug efficacy and toxicity based on the underlying genetic
composition (Lauschke et al., 2017). The United States Food and Drug Administration and the
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National Institutes of Health published the Biomarkers, EndpointS
and other Tools (BEST) resource, describing the extensive list of
biomarkers used in translational science (Cagney et al., 2018).

Precision oncology is a concept that customises oncological care
based on unique patient genomics and clinical, genetic, proteomic,
transcriptomic or phenotypic tumour features (de and Ashworth,
2010; Collins and Varmus, 2015). Precision oncology has achieved
unprecedented advancements through rigorous scientific evidence
and extensive computational analyses (Mirnezami et al., 2012).
However, challenges such as accurate data interpretation, precise
patient stratification and the development of successful targeted
therapies for specific genomic aberrations require further efforts
(Prasad et al., 2016).

To overcome these obstacles, precision oncology requires
innovative clinical trial designs that account for patient and tumour
heterogeneity and the dynamic nature of cancer evolution (Chen
and Snyder, 2013). Integrating precision oncology into clinical
practice is a key goal of the Precision Medicine Initiative, which
was launched by the US government in 2015.

In the present article, we discuss the impact of tumour and
patient heterogeneity on treatment outcomes in solid tumours
oncology and explore how precision systemic therapies and radio-
therapy can mitigate these obstacles. The analysis will focus on
scrutinising pivotal studies, such as the Molecularly Aided Strati-
fication for Tumour Eradication Research (MASTER) (Horak et al.,
2017), the National Cancer Institute Molecular Analysis for Ther-
apy Choice (NCI-MATCH) trial (Flaherty et al., 2020 and other
pertinent research, to better understand customised cancer therapy.
We also present current investigative endeavours and interdiscip-
linary collaborations to optimise cancer therapy in all patients,
regardless of their genetic makeup (Topol, 2014; Jameson and

Longo, 2015; Figure 1). The examples provided here should be
considered illustrative, as no comprehensive literature analysis on
this topic was attempted.

Systemic therapies

Systemic therapies, which involve drugs circulating throughout the
body, are fundamental to cancer treatment (Chabner and Roberts,
2005). Precision oncology has revolutionised systemic therapies by
better allocating standard chemotherapy and has paved the way for
specific targeted therapies (Schwaederle et al., 2015). However,
cancer heterogeneity, both spatial and temporal, highly impacts
the effectiveness of these therapies (Greaves andMaley, 2012). As a
result, one of the major challenges in oncology is customising
systemic therapies for each patient and tumour characteristics
(Leichsenring et al., 2019).

Tumour heterogeneity

Whereas cytotoxic chemotherapy is essential for many malignan-
cies, it is generally recognised as a one-size-fits-all approach, which
may not be optimal for patients with genetically diverse tumours.
Precision oncology considers tumour genetic heterogeneity, thus
can improve the efficacy of standard treatments, identify druggable
targets for specific tumours and select patients who are more likely
to benefit from customised treatments (Massard et al., 2017).

The relationship between specific genomic alterations, genetic
inter- and intratumour heterogeneity and the effectiveness of can-
cer treatment has been well established (Schwaederle et al., 2015;
McGranahan and Swanton, 2017). Tumours with certain genetic

Figure 1. Timeline showing the highlights of clinical precisionmedicine. ALK, anaplastic lymphoma kinase; ALL, acute lymphoblastic leukaemia; BCa, breast carcinoma; BRAF, v-Raf
murine sarcoma viral oncogene homologue B’ BRCA, BReast CAncer gene; CAR-T, chimeric antigen receptor T-cell therapy; CML, chronicmyeloid leukaemia; CR, complete response;
ER+, oestrogen receptor-positive; HER2, human epidermal growth factor receptor-2; KRAS, Kirsten rat sarcoma virus; MET, hepatocyte growth factor receptor; MMRd, mismatch
repair deficiency; MSI-H, high microsatellite instability; NGS, next generation sequencing; NSCLC, non-small cell lung cancer; PD-1, programmed death receptor-1; RET, Ret Proto-
Oncogene; VEGF, vascular endothelial growth factor.
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alterations differ in their susceptibility to classical cytotoxic chemo-
therapy. For example, mutations in the TP53, KRAS, PTEN or RB1
genes are associated with resistance to chemotherapy (Custodio
et al., 2009; Perrone et al., 2010), BRCA1 and BRCA2 mutations
denote chemosensitivity to platinum compounds (Pennington
et al., 2014), andMGMTmethylation in glioblastoma is associated
with a better response to temozolomide (Stupp et al., 2005).

Knowledge of genetic tumour heterogeneity has been exten-
sively used in targeted cancer therapies (Figure 2). If druggable,
genetic alterations are primarily used as therapeutic targets; how-
ever, many also serve as predictive markers for treatment effective-
ness. In colorectal cancer, cetuximab, which is a chimeric antibody
against the epidermal growth factor receptor (EGFR), is effective
only against wild-type rat sarcoma (RAS) family oncogenes (Van
Cutsem et al., 2009; Douillard et al., 2013). Conversely, in lung
cancer, EGFR tyrosine kinase inhibitors are less effective in patients
with coexisting TP53 (Aggarwal et al., 2018; Sun et al., 2023) or
KRAS mutations (Massarelli et al., 2007), which can activate alter-
native signalling pathways bypassing the EGFR pathway. In breast
cancer, human epidermal growth factor receptor-2 (HER2)

inhibitors are widely used to treat patients with HER2-
overexpressing or HER2-amplified tumours, but they are less
effective in patients with coexisting mutations in fibroblast growth
factor receptor-1 (FGFR1) or receptor-2 (FGFR2) genes (Hanker
et al., 2017). FGFR alterations correlate with resistance to several
targeted and standard therapies across different malignancies
(Babina and Turner, 2017), while the mechanistic and prognostic
role of FGFR1–4 protein overexpression remains equivocal
(Piasecka et al., 2019).

Some genetic alterations are druggable only in specific tumours,
whereas others can be targeted across biologically and clinically
different malignancies. The inhibitors of cyclin-dependent kinases
4 and 6 (CDK4/6) are effective and routinely administered to treat
advanced hormone receptor-positive, HER2-negative breast can-
cer, though CDK4/6 alterations are not a hallmark of these cancers
and do not predict the effectiveness of this therapy (Suski et al.,
2021; Cristofanilli et al., 2022). Furthermore, CDK4/6 inhibitors are
inefficient in liposarcomas harbouring the amplification ofCDK4/6
andmurine doubleminute 2 (MDM2) genes (Sbaraglia et al., 2021).
Other examples are ivosidenib, an isocitrate dehydrogenase-1

Figure 2. Examples of precision medicine biomarkers used in oncologic practice, together with respective targeted therapies approved in patients harbouring such lesions. CPI,
checkpoint inhibitor; CTL, cytotoxic lymphocyte; DDR, DNA damage response; MMR, mismatch repair; MSI, microsatellite instability; PD-L1, programmed death-ligand 1; TMB,
tumour mutational burden.
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(IDH1) inhibitor, and enasidenib, an IDH2 inhibitor, which effect-
ively targets relapsed or refractory acute myeloid leukaemia with
IDH1/2 mutations (Cerchione et al., 2021) but that are not effective
in gliomas bearing these mutations. In turn, some targeted therap-
ies, for example, entrectinib, which targets neurotrophic tyrosine
receptor kinase (NTRK) fusions, and ROS oncogene 1 (ROS1)
rearrangements, are effective across different solid tumour types,
including lung cancer, colorectal cancer and thyroid cancer
(Doebele et al., 2020; Drilon et al., 2020). Similarly, V-raf murine
sarcoma viral oncogene homologue B1 (BRAF) and mitogen-
activated protein kinase (MEK) inhibitors were recently approved
with a tumour-agnostic indication for unresectable or metastatic
solid tumours harbouring the BRAF V600E mutation (Gouda and
Subbiah, 2023).

Immune-oriented therapies, such as immune checkpoint inhibi-
tors (ICIs) or chimeric antigen receptor T-cells (CAR-T), have
revolutionised cancer treatment. However, correctly identifying
good responders remains challenging. Genetic heterogeneity in
tumours may elicit variable responses to ICIs. Malignancies with a
high tumour mutational burden (TMB) and neoantigen load are
more responsive to ICIs. Patients with high-TMB non-small cell
lung cancer (NSCLC) or melanoma achieve significant improve-
ments in survival with ICIs compared with those with low TMB
(Ning et al., 2022; Ricciuti et al., 2022). However, intratumour or
intersite (primary vs.metastatic foci) heterogeneity leading to spatial
neoantigen expression variability might result in the escape of
certain subclones from immune surveillance (McGranahan and
Swanton, 2017). Different tumour types (e.g., colorectal or endo-
metrial cancers) with microsatellite instability or mismatch repair
deficiency are highly responsive to ICIs (Cercek et al., 2022; O’Mal-
ley et al., 2022), whereas tumours with some mutations may be ICI
resistant. For instance, EGFR-mutant NSCLCs are less sensitive to
ICIs than wild-type EGFR (Mazieres et al., 2019). Melanomas with
overactive WNT/β-catenin signalling are less infiltrated by T-cells
and, thus, less susceptible to ICIs (Spranger et al., 2015).

Cancers with high levels of intrinsic heterogeneity, which can be
defined as the presence of different genetic clones within a single
tumour, are usually less likely to benefit from chemotherapy and
targeted therapies (McGranahan and Swanton, 2017) because of
the presence of drug-resistant subclones within the tumour that can
contribute to rapid relapse after the initial response to therapy
(Burrell et al., 2013; Almendro et al., 2014). Computational mod-
elling and in situ analyses have shown that genetic and phenotypic
heterogeneity can greatly affect tumour evolution during chemo-
therapy and treatment outcomes (Almendro et al., 2014). Recent
advances in genomics and single-cell sequencing have shed light on
the molecular mechanisms underlying tumour heterogeneity, pav-
ing the way for the development of novel personalised therapeutic
strategies (Dagogo-Jack and Shaw, 2018; Ramón et al., 2020; Labrie
et al., 2022). Further development of precision medicine for sys-
temic anticancer therapies heavily relies on better understanding
and addressing intratumour heterogeneity. However, because of
diagnostic limitations, intratumour heterogeneity cannot yet be
routinely exploited in guiding treatment options. It is expected that
circulating tumour DNA (ctDNA) and single-cell analysis tech-
niques may enable a detailed characterisation of tumour cell popu-
lations and better inform personalised treatment strategies (Nath
and Bild, 2021; Tivey et al., 2022). ctDNA dynamic profiling allows
for real-time monitoring of tumour evolution and adapting treat-
ment strategies as the tumour mutates and evolves. Recently,
ctDNA-guided therapy was shown to be beneficial in patients with
NSCLC and colorectal cancer (Jee et al., 2022; Tie et al., 2022).

Precision medicine approaches may considerably improve can-
cer treatment outcomes, provided that the complex interplay
between tumour genetics and response to systemic treatment is
better understood. Basic and translational studies are essential for
identifying next-generation predictive biomarkers. Novel clinical
trial designs, such as basket-type trials assessing the druggability of
specific targets across different tumour types, and umbrella-type
trials evaluating the efficacy of specific or various targeted therapies
in specific cancer diagnoses (Figure 3 and Table 1), may prompt the
development of new tailored therapies (Subbiah, 2023).

To compile the data presented in Tables 1 and 2 (please see
below), we employed a multi-pronged search strategy. Firstly, a
targeted search was conducted on PubMed using the following
query: ("precisionmedicine"[Title/Abstract]OR “targeted therapy”[-
Title/Abstract] OR “personalised medicine”[Title/Abstract]) AND
“clinical trial”[Publication Type] AND ("2013/01/01"[PDAT]:
“2023/12/31”[PDAT]). This query was designed to yield articles
classified as “clinical trials” focusing on “precision medicine,” “tar-
geted therapy,” or “personalised medicine,” and published between
January 1, 2013, and December 31, 2023. In addition to PubMed, we
supplemented the articles with data from the clinical trials registry
ClinicalTrials.gov and information gathered from sessions at the
European Society for Medical Oncology (ESMO) Meetings and
American Society of Clinical Oncology (ASCO) Annual Meetings
held between 2018 and 2023. These conferences are recognised
platforms that regularly feature key developments in precisionmedi-
cine trials in oncology.

Germline heterogeneity

Response and adverse reactions to systemic therapies can vary
substantially between individuals. This variability has been attrib-
uted mainly to the inherited genomic variants that inactivate
protein-coding genes (Karczewski et al., 2020). The therapy may
be impacted on several levels, including direct drug–target inter-
actions, drug metabolism (including drug activation and removal)
and downstream effects (e.g., DNA damage). Hence, considering
patient pharmacogenomics can improve treatment outcomes,
decrease toxicity and reduce costs.

The drug-metabolising enzyme known as cytochrome P450 2D6
(CYP2D6) is the most thoroughly examined and variable poly-
morphic enzyme (Zhou and Lauschke, 2022). Its deficiency is
inherited through an autosomal recessive trait, and individuals
carrying this alteration are classified as poormetabolisers. However,
the remaining subjects (extensivemetabolisers) display considerable
variability in their enzymatic activity (Bertilsson et al., 2002). The
gene encoding the CYP2D6 protein is highly polymorphic, with
over 100 allelic variants described to date (Gaedigk et al., 2018).
Specific genetic variations in the CYP2D6 gene can cause altered
activity of the cytochrome P450 2D6 enzyme, which is involved in
the metabolism of tamoxifen (a selective oestrogen modulator used
to treat breast cancer). Individuals with reduced CYP2D6 activity
(e.g., *4, *5 and *6 alleles) account for up to 10% of patients
(Ingelman-Sundberg, 2004; Crews et al., 2014). These individuals
have a lower efficacy of tamoxifen than those with normal activity
(Lim et al., 2007; Schroth et al., 2007; Goetz et al., 2013). Likewise,
the ultrarapidmetabolisers (e.g., with *1xN or *2xN alleles, about 1–
2% of patients) show lower endoxifen (a tamoxifen metabolite)
concentrations and worse outcomes compared with patients with
normal CYP2D6 activity (Wegman et al., 2005; Schroth et al., 2007;
Crews et al., 2014).
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Similarly, variations in the DPYD gene (e.g., *2A or *13), which
encodes the dihydropyrimidine dehydrogenase, an enzyme
involved in the metabolism of fluoropyrimidines, such as
5-fluorouracil and capecitabine, can lead to reduced enzyme activ-
ity and an increased risk of severe toxicity (Amstutz et al., 2009;
Offer et al., 2014; Henricks et al., 2018).

Finally, theUGT1A1gene, which encodes for the uridine diphos-
phate glucuronosyltransferase 1A1 enzyme, is involved in the
metabolism of irinotecan (a topoisomerase I inhibitor); variations
reducing its activity (including *6, *27 and *28) may cause severe
toxicity, including neutropenia, diarrhoea or infection (Iyer et al.,
2002; Innocenti et al., 2004; Marcuello et al., 2004; Xu et al., 2016).

Genomic polymorphisms in drug targets may also affect inter-
actions with drugs. Several HER2 gene variants have been shown to
impact the effectiveness of trastuzumab (a monoclonal antibody
targeting HER2) in HER2-positive breast cancer patients. The
F117L variant, which is located in the extracellular domain of the
HER2 protein, impairs trastuzumab binding by approximately
threefold compared with wild-typeHER2. Decreased binding affin-
ity is attributed to the introduction of a leucine residue, which
causes a steric hindrance and disrupts the protein conformation
at the binding site (Gaborit et al., 2011). In turn, a variant within the
HER2 intracellular kinase domain (T798I) leads to increased kinase
activity, conferring resistance to lapatinib (Bose et al., 2013).
Another example of EGFR polymorphism is R521K (rs2227983),

which may decrease the response to cetuximab in patients with
metastatic colorectal cancer (Graziano et al., 2008). As a result,
patients who carry this allele experience a lower incidence of skin
toxicity during cetuximab treatment (Klinghammer et al., 2010;
Fernández-Mateos et al., 2016).

Finally, variants affecting the efficiency of DNA damage repair
may affect the response and toxicity of numerous drugs, including
platinum agents, alkylating agents, topoisomerase II inhibitors,
antimetabolites and poly-ADP ribose polymerase inhibitors. The
rs3212986 variant (C8092A) of the ERCC1 gene, which is a com-
ponent of the nucleotide excision repair pathway, is associated with
a poor response to platinum agents in NSCLC and ovarian cancer
(Zhou et al., 2004; Krivak et al., 2008). Similarly, the rs13181
(L751G) single nucleotide variant (SNV) in the XPD gene is asso-
ciated with the poor efficacy of platinum agents in NSCLC (Park
et al., 2001).

Radiotherapy

Radiotherapy is a vital component of cancer treatment, applicable
in around 60% of patients (Citrin, 2017). Until recently, radiother-
apy was prescribed on the empirical basis of a one-fits-all approach,
assuming a similar response to the same radiation dose. Recent
advances in precision medicine have enabled the use of more

Figure 3. Types of precision medicine clinical trials. BRAF, v-Raf murine sarcoma viral oncogene homologue B; SOC, standard of care.
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Table 1. Selected clinical trials investigating personalised cancer therapies

Trial ID/Name Patient population Intervention
Precision
technologies Study design Primary endpoint N Results

MASTER
(Molecularly
Aided
Stratification for
Tumour
Eradication
Research)
(Horak et al.,
2021)

Adults with advanced solid
tumours (age < 51 years)
and patients with rare
tumours, including rare
subtypes of more common
entities, regardless of age
(221 different ICD-O-3
codes), who exhausted
curative treatment options

Evaluation of biomarkers’
clinical actionability and
assignment of molecularly
informed therapies in
semiweekly, multicentre
MTB conferences

WES, WGS, RNA-
seq

Multicentre, prospective
observational study –
master observational trial
(Dickson et al., 2020)

PFSr 1,310 Of 300 patients evaluable for PFSr, 107 (35.7%)
had a PFSr >1.3

NCI-MATCH
(Molecular
Analysis for
Therapy Choice)
(NCT02465060)
(Flaherty et al.,
2020)

Adults (age ≥ 18 years) with
advanced solid tumours,
lymphomas or myelomas
that have progressed after
standard treatments or for
whom no standard
treatment is available

Targeted therapies matched
to specific genetic tumour
abnormalities. Patients are
assigned to different
treatment arms based on the
genetic alterations found in
their tumours

Oncomine Cancer
Panel (Lih et al.,
2017) based on
FFPE-extracted
DNA and RNA,
IHC (Khoury et al.,
2018)

Phase 2, non-randomised,
open-label, multicentre
clinical trial

ORR 1,201 Arms:
• Z1B (palbociclib in BCa with amp CCND1/2/3:
ORR 0% (Clark et al., 2023)

• B (afatinib in pts. with EGFR2-activating
mutations): ORR 2.7% (Bedard et al., 2022)

• F (crizotinib in ALK-rearranged ca): ORR 50%
• G (crizotinib in ROS1-rearranged ca): ORR 25%
(Mansfield et al., 2022)

• I (taselisib in PIK3CA-mutated ca other than
BCa and SCC): ORR 0% (Krop et al., 2022)

• Z1F (copanlisib in PIK3CA-mut ca): ORR 16%
(Damodaran et al., 2022)

• Z1A (binimetinib in NRAS-mut ca excluding
melanoma): ORR 2.1% (Cleary et al., 2021)

• Y (capivasertib in AKT1 E17K-mut ca):ORR 29%
(Kalinsky et al., 2021)

• H (dabrafenib and trametiib in BRAFV600E-
mut ca): ORR 38% (Salama et al., 2020)

• W (AZD4547 in FGFR amp/mut/tx ca): ORR 8%
(Chae et al., 2020)

• R (trametinib in non-V600 BRAF mut ca): ORR
3% (Johnson et al., 2020)

• Z1D (nivolumab in MMRd ca): ORR 36% (Azad
et al., 2020)

• Q (Ado-trastuzumab emtansine in HER2-amp
ca excluding BCa andGEJ adenoCa):ORR 5.6%

TAPUR (Targeted
Agent and
Profiling
Utilisation
Registry)
(NCT02693535)
(Mangat et al.,
2018)

Patients (age ≥ 12 years)
with histologically-proven
locally advanced or
metastatic solid tumours,
multiple myeloma or B cell
non-Hodgkin lymphoma
who are no longer
benefiting from standard
anticancer treatment or no
such treatment is available
or indicated

FDA-approved targeted
therapies (usually used for
other cancer types) matched
to the specific genomic
alterations in a patient’s
tumour

NGS Phase 2, non-randomised,
open-label, multicentre
clinical trial

ORR 3,581
(planned)

Two arms closed at stage I because of a lack of
responses; 12 arms expanded to stage II
• ALK, ROS1, MET – crizotinib
• CDKN2A, CDK4, CDK6 – palbociclib or abema-
ciclib

• CSF1R, PDGFR, VEGFR – sunitinib
• mTOR, TSC – temsirolimus
• BRAF V600E/D/K/R – vemurafenib and cobi-
metinib

• RET, VEGFR1/2/3, KIT, PDGFRβ, RAF-1, BRAF -
regorafenib

• BRCA1/2, ATM – olaparib
• NRG1 Afatinib

(Continued)
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Table 1. (Continued)

Trial ID/Name Patient population Intervention
Precision
technologies Study design Primary endpoint N Results

• BRCA1/2, PALB2 – talazoparib
• ROS1 fusion – entrectinib
• NTRK amplification – larotrectinib

I-PREDICT
(Profile Related
Evidence
Determining
Individualised
Cancer Therapy)
(NCT02534675)
(Sicklick et al.,
2019)

Adults (age ≥ 18 years) with
advanced or metastatic
solid tumours that have
progressed after standard
treatments or for which no
standard treatment is
available

Personalised targeted
therapies and combination
treatments based on
genomic tumour profiling;
the treatment plan designed
by amolecular tumour board
using DNA sequencing and
other molecular analysis
techniques to identify
actionable genomic
alterations

Tissue genomic
profiling using NGS
(Foundation
Medicine; 236–405
genes), PD-L1 IHC,
TMB, MSI status,
ctDNA

Phase 2, single-arm, open-
label, prospective clinical
trial

ORR 149 ORR 11.4%
A High Matching Score was an independent
predictor of higher DCR (OR 3.6; 95% CI 1.1–11.8;
p = 0.033)

MyPathway
(NCT02091141)

Adults (age ≥ 18 years) with
advanced solid tumours
that have progressed after
standard treatments or for
which no standard
treatment is available

Targeted therapies that are
matched to specific
molecular tumour
alterations. The trial
investigates the off-label use
of targeted therapies which
are FDA-approved for other
cancer indications

IHC, FISH, NGS,
FoundationOne
CDx

Tissue-agnostic, non-
randomised, phase 2a
multiple basket trial

ORR 357
13
70
37
21
43

Arms:
• HER2 (trastuzumab + pertuzumab in HER2-
altered ca): ORR 23.3%

• EGFR (erlotinib in EGFR-mut. ca): ORR 7.7%
• BRAF (vemurafenib ± cobimetinib in BRAF-
mut. ca): ORR 24.3%

• Hh (vismodegib in PTCH1/SMO-mut. ca): ORR
10.8%

• ALK (alectinib in ALK-driven ca.): ORR 30%
• TMB (atezolizumab in TMB-high ca): ORR
39.5% (Friedman et al., 2022)

LUNG-MAP (Lung
Cancer Master
Protocol)
(NCT02154490)
(Redman et al.,
2020)

Adults (age ≥ 18 years) with
advanced or metastatic
squamous or non-
squamous NSCLC who
have progressed after first-
line standard therapy

Targeted therapies and
immunotherapies matched
to specific tumour molecular
alterations. The trial
investigates the use of these
therapies in patients with
advanced NSCLC who have
progressed after first-line
standard therapy

NGS
(FoundationOne)
IHC

Phase 2/3, randomised,
open-label, multicentre
clinical trial

ORR; OS in phase 3
substudies

1864 Substudies:
• S1400A (durvalumab vs. docetaxel)
• S1400B (taselisib vs. docetaxel in PI3KCA-mut.
ca)

• S1400C (palbociclib vs. docetaxel in CDK4/6,
CCND1/2/3-positive ca)

• S1400D (AZD4547 vs. docetaxel in pts. positive
for FGFR1/2/3)

• S1400E (rilotumumab + erlotinib vs. erlotinib
in HGF/c-MET-pos. ca)

• S1400F (durvalumab + tremelimumab)
• S1400G (talazoparib in HHR-deficient ca)
• S1400I (nivolumab + ipilimumab vs. nivolu-
mab)

BATTLE
(Biomarker-
integrated
Approaches of
Targeted
Therapy for Lung
Cancer
Elimination) (E.

Adults (age ≥ 18 years) with
advanced NSCLC who have
progressed after first-line
platinum-based
chemotherapy

Erlotinib (an EGFR inhibitor),
vandetanib (a VEGFR
inhibitor), erlotinib plus
bexarotene (a retinoid X
receptor agonist) and
sorafenib (a multikinase
inhibitor). Patients assigned
to one of these treatments
based on the molecular

FISH, IHC, Sanger
sequencing

Phase 2, adaptive,
randomised, open-label
clinical trial

8-week DCR 255 The 8-week 46% DCR for the entire study
population, with the following rates for each
treatment arm:
• erlotinib: 43%
• vandetanib: 39%
• erlotinib plus bexarotene: 50%
• sorafenib: 53%

(Continued)
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Table 1. (Continued)

Trial ID/Name Patient population Intervention
Precision
technologies Study design Primary endpoint N Results

S. Kim et al.,
2011)

tumour profile, assessed
using biomarkers, such as
EGFR, KRAS, VEGF and
cyclin D1

SHIVA
(NCT01771458)
(Le Tourneau et
al., 2015)

Adults (age ≥ 18 years) with
advanced solid tumours
that have progressed after
standard treatments or for
which no standard
treatment is available

Patients randomised into
two groups: the
experimental group
receiving molecularly
targeted agents based on
tumour molecular profiling,
and the control group
receiving treatment
according to the physician’s
choice

Targeted NGS,
Cytoscan copy
number analysis

Phase 2, open-label,
randomised, controlled
clinical trial

PFS 293 Median PFSl 2.3 months (95% CI 1.7–3.8) in the
experimental group vs. 2.0 months (1.8–2.1) in
the control group (hazard ratio 0�88, 95% CI
0.65–1.19, p = 0.41)

WINTHER
(Worldwide
Innovative
Networking in
Personalised
Cancer
Medicine)
(NCT01856296)

Adults (age ≥ 18 years) with
advanced solid tumours
that have progressed after
standard treatments or for
which no standard
treatment is available

Personalised targeted
therapies and
chemotherapies that are
matched to specific genomic
alterations or gene
expression patterns in the
patient’s tumour

Fresh biopsy:
DNA + RNA NGS
testing

Phase 2, non-randomised,
open-label, multicentre
clinical trial

PFSr 107 The trial did not meet its primary endpoint, as
the PFS ratio of ≥1.5 was observed in only 22% of
patients in Arm A (DNA-seq-based drug
matching) and 26% in Arm B (RNA-seq-based
drug matching)

GBM AGILE
(Glioblastoma
Adaptive Global
Innovative
Learning
Environment)
(NCT03970447)
(Alexander et al.,
2018)

Adults (age ≥ 18 years) with
newly diagnosed or
recurrent glioblastoma

Targeted therapies and
immunotherapies, which are
compared to standard
treatment options. The
specific agents tested in the
trial may change over time as
new treatments become
available or others are
dropped based on their
performance in the study

NR Phase 2/3, adaptive,
randomised, open-label,
multicentre clinical trial

PFS/OS NR NR

FOCUS4 (Brown
et al., 2022)

Adults (age ≥ 18 years) with
advanced colorectal
cancer who have
completed 16 weeks of
first-line chemotherapy

Patients are first treated with
standard chemotherapy and
then, based on their
molecular subtyping, are
randomised into different
treatment arms; the trial
tests these targeted
therapies against a control
group receiving standard
treatment or a placebo, and
the specific agents tested in
the trial may change over
time as new treatments
become available or others
are dropped based on their
performance in the study

Pyrosequencing,
NGS, IHC (Richman
et al., 2022)

Phase 2/3, randomised,
open-label, multicentre
clinical trial

PFS/OS 361 FOCUS4-D (sapitinib in BRAF-PIK3CA-RAS wt ca)
closed
FOCUS4-B (aspirin in PIK3CA-mut. ca) closed
FOCUS4-C (adavosertib in RAS + TP53 double
mutant) (Seligmann et al., 2021)
FOCUS4-N (nonstratified). Median PFS in the
capecitabine arm 3.9 months (95% CI 3.7–4.4)
and 1.9 months (95% CI 1.8–2.1) in the AM
arm/Unadjusted and adjusted HRs 0.44 (95% CI
0.33–0.57), p < 0.0001 and 0.40 (95% CI 0.21–
0.75), p < 0.0001, respectively
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Table 1. (Continued)

Trial ID/Name Patient population Intervention
Precision
technologies Study design Primary endpoint N Results

NCI-COG
Paediatric
MATCH
NCT03155620

Children and adolescents
(aged 1–21 years old) with
recurrent, refractory or
progressive solid tumours,
lymphomas and histiocytic
disorders

Molecularly targeted
therapies matched to
specific tumour genetic
alterations

DNA and RNA
sequencing, IHC
(Parsons et al.,
2022)

Phase 2, open-label,
multicentre clinical trial

ORR 2,316
(planned)

20
20
20

Subprotocols:
• A (larotrectinib in ca with NTRK fusions)
• B (erdafitinib in cawith FGFR1/2/3/4mutation)
• C (patients with an EZH2, SMARCB1 or
SMARCA4 mutation receive tazemetostat)
ORR: 1 response (Chi et al., 2022)

• D (samotolisib in patients with TSC1, TSC2 or
PI3K/mTOR mutations)

• E (selumetnib in MAPK-mut. ca) ORR 0%
(Eckstein et al., 2022)

• F (ensartinib in ca with ALK or ROS1 alter-
ations)

• G (vemurafenib in BRAF V600E-pos. ca)
• H (olaparib in pts. with ATM, BRCA1, BRCA2,
RAD51C or RAD51D mut.)

• I (palbociclib in pts. with Rb-positive ca)
• J (ulixertinib in pts. with MAPK-mut. ca) (Vo et
al., 2022): ORR 0%

• K (ivosidenib in ca with IDH1 mutations)
• M (tipifarnib in ca with HRAS alterations)
• N (selpercatinib in ca with RET alterations)

SAFIR02-BREAST
(NCT02299999)
(Mosele et al.,
2020; Andre et
al., 2022)

Adult women
(age ≥ 18 years) with
metastatic breast cancer
who have progressed after
standard treatments or for
whom no standard
treatment is available

Molecularly targeted
therapies matched to
specific genomic alterations
in the patient’s tumour

NGS, CGH array Phase 2, open-label,
multicentre clinical trial

PFS 436
157
50
40
20
17
17
7
3
3
131
148

Arms:
Arm A1 (targeted arm): Patients in this arm
received targeted maintenance therapy guided
by genomic analysis. The therapy used eight
targeted drugs. ORR: 26/157
• Capivasertib in PI3K/AKT-altered ca
• Olaparib in BRCA/DDR-altered ca
• Alpelisib in PI3KCa-mut ca
• Selumetinib in MAPK-altered ca
• AZD4547 in FGFR-mut. ca
• Vistusertib in mTOR-altered ca
• Sapitinib in HER2/3-altered ca
• Vandetanib
Arm A2 (immunotherapy arm): Patients in this
arm received durvalumab
Arm B (standard maintenance chemotherapy):
Patients in this arm received standard
maintenance chemotherapy. ORR 9/81
(Bachelot et al., 2021)
After amedian follow-up of 21.4months (90%CI:
17.9–27.6), patients with ESCAT I/II showed a
significantly longer PFS in the targeted therapy
arm than in the control arm, with a median PFS
of 9.1 months (90% CI 7.1–9.8) and 2.8 months
(90% CI 2.1–4.8), respectively (adjusted
HR = 0.41, 90% CI 0.27–0.61; p < 0.001)

(Continued)

Cam
bridge

Prism
s:Precision

M
edicine

9

https://doi.org/10.1017/pcm
.2023.23 Published online by Cam

bridge U
niversity Press

https://doi.org/10.1017/pcm.2023.23


Table 1. (Continued)

Trial ID/Name Patient population Intervention
Precision
technologies Study design Primary endpoint N Results

IMPACT
(Integrated
Molecular
Profiling in
Advanced
Cancers Trial)
NCT01505400)
(Stockley et al.,
2016)
COMPACT
(Community
Molecular
Profiling in
Advanced
Cancers Trial)

Adults (age ≥ 18 years) with
histological confirmation
of advanced breast, non-
small cell lung, colorectal,
genitourinary,
pancreatobiliary
gastrointestinal, upper
aerodigestive tract,
gynaecological,
melanoma, unknown
primary, and rare
carcinomas who are
candidates for systemic
therapy, as well as patients
who are phase 1 trial
candidates

Twoparallel trials that aim to
identify molecular
alterations in patients’
tumours and match them to
targeted therapies, with
IMPACT being conducted at
academic centres and
COMPACT in community
settings

Targeted NGS
panel and MALDI-
TOF-based
multiplex
genotyping panel

Retrospective cohort study NR 1893 ORR higher in patients treated on genotype-
matched (19%) than in genotype-unmatched
trials (9%; p = 0.026). In multivariate analysis,
trial matching according to genotype (p = 0.021)
and female gender (p = 0.034) were the only
statistically significant factors associated with
response. Genotype-matched trial patients
were more likely to achieve the best response of
any shrinkage in the sum of their target lesions
(62%) comparedwith genotype-unmatched trial
patients (32%; p < 0.001)

MOSCATO 01
(Massard et al.,
2017)

Adults (age ≥ 18 years) with
advanced solid tumours
that have progressed after
standard treatments or for
whom no standard
treatment is available

Molecularly targeted
therapies that are matched
to specific genomic
alterations in the patient’s
tumour

aCGH, WES, RNA-
seq

Phase 2, non-randomised,
open-label, multicentre
clinical trial

PFSr 843 Molecular profiling and matching patients to
targeted therapies led to an improvement in the
ORR (11% vs. 5%) and PFS. Progression-Free
Survival Ratio (PFS2/PFS1) >1.3 in 33% of
patients. Following targeted therapy, of the
evaluable patients, two had CR and 20 PR

INFORM
(individualised
Therapy FOr
Relapsed
Malignancies in
Childhood) (van
Tilburg et al.,
2021)

Children and adolescents
(age ≤ 21) with relapsed or
refractory malignancies,
including solid tumours,
lymphomas and central
nervous system tumours

Molecularly targeted
therapies and
immunotherapies matched
to specific genomic
alterations and
immunological tumour
features

WES, lcWGS, RNA
sequencing, RNA-
based gene
expression array
and DNA-
methylation

Prospective,
noninterventional,
multicentre, multinational
and feasibility registry

NR 519 No significant differences in PFS and OS in all
patients who did and did not receive a matched
targeted drug

MINDACT
(Microarray in
Node-Negative
and 1 to 3
Positive Lymph
Node Disease
May Avoid
Chemotherapy)

Women (age ≥ 18 years)
with histologically proven,
operable, invasive, early-
stage breast cancer who
have node-negative or 1 to
3 positive lymph nodes

Use of a 70-gene signature
(MammaPrint) to determine
the likelihood of distant
recurrence in women with
early-stage breast cancer.
The trial compared the
outcomes of patients
assigned to adjuvant
chemotherapy based on the
traditional clinical-
pathological assessment and
the MammaPrint assay

MammaPrint Phase 3, randomised,
controlled, multicentre
clinical trial

5-year DMFS rate 6,693 The primary endpoint was met; the inferior
margin of 92.5% for DMFS at 60 months in the
targeted subjects exceeded the 92% pre-
specified threshold

ALCHEMIST
(Adjuvant Lung
Cancer
Enrichment
Marker
Identification

Adults (age ≥ 18 years) with
surgically resected stage
IB, II or IIIA NSCLC

Three separate subtrials,
each using a specific
targeted therapy based on
the presence of particular
tumour genomic alterations.
Investigated targeted

EGFR sequencing,
ALK FISH, PD-L1
IHC

Three integrated, phase 3,
randomised, double-blind,
placebo-controlled clinical
trials

OS 4,405 NR

(Continued)
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Table 1. (Continued)

Trial ID/Name Patient population Intervention
Precision
technologies Study design Primary endpoint N Results

and Sequencing
Trial)

therapies: erlotinib (for
patients with EGFR
mutations), crizotinib (for
patients with ALK
rearrangements) and
nivolumab (for patients with
high PD-L1 expression)

DRUP (The Drug
Rediscovery
Protocol)
(NCT02925234)
(Hoes et al.,
2022)

Adults (age > 18 years) with
a histologically-proven
locally advanced or
metastatic solid tumour,
multiplemyeloma, or B cell
non-Hodgkin lymphoma
who are no longer
benefitting from standard
anti-cancer treatment or
for whom no such
treatment is available or
indicated

The molecular profiling test
results are used to determine
appropriate drugs from
those available in the
protocol. The choice of the
drug is supported by a list of
potential profiles, a
molecular tumour board, a
knowledge library, and study
coordinators for review and
approval of the match

Fresh biopsy: WGS;
off-label use

Phase II, prospective, non-
randomised basket trial

ORR 1,550
(planned)

NR

TARGET (Tumour
Characterisation
to Guide
Experimental
Targeted
Therapy)
(NCT04723316)
(Rothwell et al.,
2019)

Patients aged 16 years or
over with confirmed
diagnosis of advanced
solid cancer

The primary aim of TARGET
National is to establish a
national framework to offer
molecular profiling of
circulating tumour DNA
and/or tumour tissue
(optional) to patients with
advanced solid cancers

ctDNA testing Prospective observational
trial

Number of patients
matched to a trial
of an experimental
therapeutic agent
based on
molecular findings
from ctDNA or
tumour

6,000
(planned)

NR

TAPISTRY
(Tumour-
Agnostic
Precision
Immuno-
Oncology and
Somatic
Targeting
Rational for You)
(NCT04589845)

Patients with confirmed
diagnosis of advanced and
unresectable or metastatic
solid malignancy

Study evaluating the efficacy
and safety of targeted
therapy or immunotherapy,
as single agents or
in combination, in patients
with unresectable, locally
advanced or metastatic solid
tumours divided into cohorts
based on biomarkers

NGS,
FoundationOne
CDx /
FoundationOne
Liquid CDx-based
assays

Phase II, global,
multicenter, open-label,
multi-cohort trial

ORR 770
(planned)

NR

ALK, anaplastic lymphoma kinase; CBR, clinical benefit rate; CI, confidence interval; ctDNA, circulating tumour DNA; DCR, disease control rate; DMFS, distantmetastasis-free survival; DNA, deoxyribonucleic acid; EGFR, epidermal growth factor receptor; FDA,
Food andDrug Administration; FFPE, formalin-fixed, paraffin-embedded; ICD –O, International Classification of Diseases for Oncology; IHC, immunohistochemistry; KRAS, Kirsten Rat Sarcoma Viral oncogene homologue; MSI,microsatellite instability; MTB,
molecular tumour board; NGS, next-generation sequencing; NR, not reported; NSCLC, non-small cell lung cancer; OR, odds ratio; ORR, objective response rate; OS, overall survival; PD-L1, programmed death-ligand 1; PFS, progression-free survival; PFSr,
PFS interval associated with molecularly informed therapy (PFS2) divided by the PFS interval associated with the last prior systemic therapy (PFS1); RNA, ribonucleic acid; RNA-seq, RNA sequencing; TMB, tumour mutational burden; VEGF, vascular
endothelial growth factor; VEGFR, vascular endothelial growth factor receptor; WES, whole exome sequencing; WGS, whole genome sequencing.
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targeted and personalised radiotherapy regimens tailored to the
specific characteristics of individual patients and their tumours.
Cancer heterogeneity poses a significant challenge for radiotherapy,
as it can cause variable tumour responses and the emergence of
radioresistant cell populations. Precision radiotherapy, by consid-
ering the comprehensive molecular and genetic tumour makeup,
may overcome these challenges and allow for the development of
tailored treatment plans. By integrating genomic data and other
biomarkers, precision radiotherapy has the potential to maximise
tumour control while minimising toxicity to surrounding healthy
tissues.

Tumour response

Technological advancements in radiotherapy have increased the
potential of physical radiation tailoring to personalise treatment.
However, the optimisation process typically focuses on dose con-
formality, ignoring biological factors and assuming that all tumours
react similarly to radiation (Price et al., 2023). Unlike medical
oncology, where genomic signatures have become part of routine
practice (e.g., MammaPrint tests, Oncotype DX or PAM50), their
use in radiotherapy has been limited (Parker et al., 2023). Mean-
while, radiation impacts several molecular pathways, such as DNA
damage, hypoxia or proliferation (Reisz et al., 2014; Wang et al.,
2018; Huang and Zhou, 2020).

Several somatic mutations have already been established as con-
ferring radioresistance. Numerous studies, including breast (Jameel
et al., 2004), colorectal (Munro et al., 2005) and head and neck
cancers (Hutchinson et al., 2020), gliomas (Werbrouck et al., 2019)
and sarcomas (Casey et al., 2021) have shown that TP53 mutations
might impair radiotherapy response. Other notable examples are
KEAP1 andNFE2L2/NRF2mutations in NSCLC and head and neck
cancers (Binkley et al., 2020; Guan et al., 2023). In addition, the
coexistence ofKRAS and SMAD4mutations is an indicator of radio-
resistance in cervical cancer (Oike et al., 2021).

To date, there has been scarce data on molecular predictive
signatures in radiotherapy. These examples comprise the PORTOS
classifier encompassing 24 genes to predict the efficacy of post-
operative radiotherapy in prostate cancer (Zhao et al., 2016) and the
Adjuvant Radiotherapy Intensification Classifier (ARTIC) and
POLAR classifiers, which incorporate 27 and 16 genes, respectively,
to predict outcomes of postoperative radiotherapy in breast cancer
(Sjöström et al., 2019, 2023).

Unlike PORTOS or POLAR, which relate to specific cancers and
clinical situations, a radiosensitivity index (RSI) has also been
proposed as a pan-cancer and specific marker of cellular radio-
sensitivity. This index is based on the expression of 10 genes (AR,
c-JUN, STAT1, PKC, Rel A, cABL, SUMO1, CDK1, HDAC1 and
IRF1) related to DNA damage response, cell cycle, apoptosis and
proliferation (Eschrich et al., 2009). Based on RSI, a quantitative
metric for the biological effect of RT, the genomic-adjusted radi-
ation dose (GARD) has been developed. GARD was initially valid-
ated in patients with breast cancer, lung cancer, pancreatic cancer
and glioblastoma (Scott et al., 2017). This signature was further
tested in a pooled, retrospective, pan-cancer cohort and reported as
a continuous variable associated with time to first recurrence and
overall survival (Scott et al., 2021). Recently, GARD has been
employed in a provocative in silico analysis to explain the unex-
pected results of the seminal RTOG 0617 trial (unsuccessful radio-
therapy dose escalation in locally advanced NSCLC) (Scott et al.,
2021). The authors assumed that this model allows for deriving an
optimal radiation dose in each patient. Another study employing

prospectively collected tissues showed that low RSI values (denot-
ing higher radiosensitivity) are associated with increased immune
infiltration and activation (Grass et al., 2022). Recently, based on
the reanalysis of the publicly available datasets – Merged
Microarray-Acquired Dataset (Bin Lim et al., 2019) and the Cancer
Genome Atlas (Weinstein et al., 2013) – RSI was shown to be
associated with immune-related features and predicted response
to PD-1 blockade (Dai et al., 2021). However, a recent analysis
showed that RSI is not associated with survival and should not be
used for radiation dose adjustments (Mistry, 2023). It was also
suggested that the RSI of tumour clones remaining after RT, instead
of the initial tumour population, should be evaluated to better
predict the RT outcome (Alfonso and Berk, 2019).

Incorporating genomic signatures in radiotherapy decision-
making has shown significant advancement through recent
research, such as the GARD-based trial, to optimise radiotherapy
for triple-negative breast cancer (NCT05528133). The European
Organisation for Research and Treatment of Cancer has appraised
the evidence from RSI/GARD studies as a priority for phase 3 clin-
ical trials in radiotherapy (Thomas et al., 2020). However, the
clinical utility of these approaches warrants an evaluation that
integrates molecular data into prospective clinical trials and routine
clinical practice (Table 2).

Radiotherapy tolerance

The impact of genetic heterogeneity on normal tissue toxicity
following radiotherapy is a significant concern in cancer treatment.
Individual genetic variations can influence the severity of radiation-
induced side effects (Barnett et al., 2009). Normal tissue complica-
tions can range frommild to severe andmay include skin reactions,
inflammation, fibrosis and organ dysfunction (Bentzen, 2006).
However, except for several radiosensitivity syndromes related to
biallelic pathogenic mutations in DNA repair genes and deleterious
heterozygous ATM mutations in young patients, no genomics-
guided radiotherapy is currently used (Bergom et al., 2019).

Since the beginning of the twenty-first century, more than
100 articles analysing the impact of DNA sequence changes on
the frequency and severity of radiation-induced complications have
been published (Andreassen et al., 2016). Most of these studies have
addressed SNVs, which typically affect the genes responsible for
processes such as DNA break or inflammation. However, these
studies were usually small (median of approximately 150 patients),
hence lowering the statistical power for comparisons (Andreassen
et al., 2016).

To reduce the bias associated with the publication of numerous
low-quality studies, the Radiogenomics Consortium (https://epi.
grants.cancer.gov/radiogenomics/) was created in 2009 (West et al.,
2010). This initiative allowed for assembling adequate groups of
patients with diverse clinical characteristics and validating pre-
sumed associations of SNVs with radiation toxicity. However, the
results of the prospective study published in 2012 were a huge
disappointment because none of the reported relationships
(98 SNVs in 46 genes) were confirmed (Barnett et al., 2012).
However, this experience prompted the development of research
employing large-scale techniques such as genome-wide association
studies (GWAS). As a result, potentially interesting SNV associ-
ations with radiation reactions were found, such as variants at the
locus of the TANC1 gene that was found to be encoding a protein
responsible for muscle cell regeneration (Fachal et al., 2014). The
strength of these associations is much higher, with odds ratios of
1.3–1.5, compared with 1.1–1.2 observed in typical GWAS studies
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(Zhong and Prentice, 2010). The Radiogenomics Consortium
remains active, and a significant increase in sample size has led to
the discovery of several potentially relevant relationships. An ana-
lysis of breast and prostate cancer patients from 17 cohorts indi-
cated that the ATM rs1801516 SNP is associated with an increased
risk of radiation toxicity (Andreassen et al., 2016). A recent study
has revealed a strong association between radiation-induced

mucositis and the rs1131769*C locus in the STING1 gene on
chromosome 5 (Schack et al., 2022).

A definitive answer to the SNVs’ role in healthy tissues’ response
to radiation may come from the international, multicentre
REQUITE project (www.requite.eu) funded by the European
Union through its 7th Framework Programme (West et al.,
2014). The project, performed in collaboration with the

Table 2. Summary of selected clinical studies investigating radiosensitivity-predicting genomic signatures

Study Cancer type Sample size Main findings

Zhao et al., 2016 Prostate cancer 526 patients (196 and 330
in training and validation
cohorts, respectively)

24-gene predictor of response to postoperative RT. High PORTOS score predicted a
lower incidence of distant metastases in both training (HR 0.12; 95%CI: 0.03–0.41;
p < 0.0001) and validation (HR 0.15; 95% CI 0.04–0.60; p = 0.002) cohorts

Tang et al., 2017 Sarcomas 253 patients from The
Cancer Genome Atlas

26-gene radiosensitivity signature. Predicted radiosensitive patients had better overall
survival than predicted nonradiosensitive patients (HR 0.07, p < 0.001)

Cui et al., 2018 Breast cancer 948 and 1,439 patients in
the training and validation
cohorts, respectively
(METABRIC)

34-gene radiosensitivity signature. Patients administered RT had better disease-
specific survival than those who did not in the radiation-sensitive group (HR 0.68,
p = 0.059); a reverse effect was observed in the radiation-resistant group (HR 1.53,
p = 0.059)
4-gene immune signature predictive of RT benefit. Patients who were administered RT
had significantly better disease-specific survival in the immune-effective group (HR
0.46, p = 0.0076), with no difference in disease-specific survival in the immune-defective
group (HR 1.27, p = 0.16)

Sjöström et al.,
2019

Breast cancer 748 patients from the
SweBCG91-RT trial

Adjuvant Radiotherapy Intensification Classifier (ARTIC) comprising 27 genes and
patient age was prognostic for locoregional recurrence in breast cancer patients
administered RT (HR 3.4; 95% CI: 2.0 to 5.9; p < 0.001) and was predictive of RT benefit
(p = 0.005). Patients with low ARTIC scores had a larger benefit from RT (HR 0.33; 95% CI:
0.21 to 0.52, p < 0.001) than those with high ARTIC scores (HR 0.73; 95% CI: 0.44 to 1.2,
p = 0.23)

Kim et al., 2020 HPV-negative head
and neck squamous
cell carcinomas

203 patients from The
Cancer Genome Atlas
(TCGA) cohort

41-gene radiation sensitivity signature (RSS). RSS predicted reduced 5-year recurrence-
fee survival in the radioresistant group versus the radiosensitive group (57.8% vs. 80.1%;
p = 0.035)

Scott et al., 2021 Various types (breast,
head and neck, NSCLC,
pancreatic,
endometrial,
melanoma and glioma)

1,615 patients, of whom
1,298 (982 and 316 with
and without RT,
respectively) assessed for
time to first recurrence and
677 (424 and 253 with and
without RT, respectively)
for overall survival

Genomic-adjusted radiation dose (GARD) was associated with time to first recurrence
(HR 0.98, 95% CI 0.97–0.99; p = 0.0017) and overall survival (HR 0.97, 0.95–0.99;
p = 0.0007). The effect on overall survival was dependent on radiotherapy use (p = 0.011)

Feng et al., 2021 Prostate cancer 486 of 760 patients
randomised in NRG/RTOG
9601 trial

22-gene genomic classifier Decipher (Decipher Biosciences Inc) was associated with
distant metastases (HR 1.17; 95%CI: 1.05–1.32; p = 0.006), prostate cancer–specific
mortality (HR 1.39; 95%CI: 1.20–1.63; p < 0.001) and overall survival (HR 1.17; 95%CI:
1.06–1.29; p = 0.002)

Dal Pra et al.,
2022

Prostate cancer 226 of 350 patients
randomised in Swiss Group
for Clinical Cancer
Research (SAKK) 09/10 trial

22-gene genomic classifier Decipher (Decipher Biosciences Inc) was associated with
biochemical progression (HR 2.26; 95%CI: 1.42–3.60; p < 0.001), clinical progression (HR
2.29, 95%CI: 1.32–3.98; p = 0.003) and use of hormone therapy (sHR 2.99, 95% CI 1.55–
5.76; p = 0.001). Patients with high and low Decipher scores had 45% and 71% 5-year
freedom from biochemical progression, respectively

Wu et al., 2022 Gliomas 1,395 from Chinese Glioma
Genome Atlas and Cancer
Genome Atlas

12-gene radiosensitivity predictive index (PI12) had better predictive capacity than the
traditional WHO classification system (concordance index: 0.842 vs. 0.787;
p ≤ 2.2 × 10�16)

Sjöström et al.,
2023

Breast cancer 729 patients from the
SweBCG91-RT trial and
Princess Margaret Hospital

A 16-gene signature named Profile for the Omission of Local Adjuvant Radiation
(POLAR). POLAR low-risk patients did not benefit from adjuvant RT (HR 1.1; 95%CI 0.39–
3.40; p = 0.81; HR 1.5; 95% CI 0.14–16, p = 0.74). POLAR high-risk patients had a
significantly lower risk of locoregional recurrence with RT (HR 0.43; 95% CI 0.24–0.78;
p = 0.006; HR 0.25; 95%CI 0.07–0.92; p = 0.038)

Spratt et al.,
2023

Prostate cancer 215 patients from NRG
Oncology/RTOG 0126

22-gene genomic classifier Decipher (Decipher Biosciences Inc) was independently
prognostic for disease progression (sHR 1.12; 95%CI 1.00–1.26, p = 0.04), biochemical
failure (sHR 1.22; 95%CI 1.10–1.37, p < 0.001), distant metastasis (sHR 1.28; 95%CI 1.06–
1.55, p = 0.01) and prostate cancer-specific mortality (sHR 1.45; 95%CI 1.20–1.76,
p < 0.001)

95%CI, 95% confidence interval; HR, hazard ratio; sHR, subdistribution hazard ratio.
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Radiogenomics Consortium, aimed at predicting and reducing the
risk of long-term side effects of radiotherapy and completed patient
recruitment (Seibold et al., 2019). REQUITE reported that poly-
genic risk scores (PRS) may be clinically useful and that incorpor-
ation of SNP-SNP interactions improves patient classification and
prediction of radiotherapy-related toxicity (Franco et al., 2021).
This project significantly advanced the collaborations among stake-
holders, including healthcare professionals, researchers and indus-
try partners, highlighting the importance of personalised
radiotherapy. Other collaborative genetic association studies at
both the national and global levels include Gene-PARE (Ho et al.,
2006), RadGenomics (Iwakawa et al., 2002) and RAPPER (Burnet
et al., 2013). Understanding the impact of radiogenomic hetero-
geneity on normal tissue radiation toxicity is essential for develop-
ing more effective and safe personalised strategies.

In summary, for a long time, radiotherapy optimisation was
focused on dosage conformity rather than biological factors. It is
critical to factor in tumour heterogeneity when considering radio-
therapy outcomes; hence, developing and verifying molecular sig-
natures such as PORTOS, ARTIC and POLAR, together with pan-
cancer RSI, constitute the base for resolving this predicament.

Other factors

Circadian heterogeneity

The efficacy of anticancer treatment may also be affected by circa-
dian rhythm, a biological phenomenon displaying endogenous,
untrainable 24-h oscillation (Lee, 2021). The circadian clock regu-
lates several key processes in the human body, includingmetabolism
and cell division, with 40% of the transcriptome under circadian
control in at least some tissues (Ruben et al., 2018). Recently, a
comprehensive analysis of clock genes across different human can-
cers was performed using primary solid tumour data from The
Cancer Genome Atlas (Ye et al., 2018). Based on the available
evidence, the InternationalAgency forResearch onCancer classified
shift work that involves circadian disruption as potentially carcino-
genic to humans (IARC Monographs Vol 124 group, 2019).

Chronotherapy involves administering treatment at specific
times of day to optimise its effectiveness and minimise side effects
(Zhou et al., 2021). This approach has been tested in several clinical
trials with conflicting results: some showed improved efficacy and
reduced toxicity (Lévi et al., 1997; Giacchetti et al., 2006), whereas
others did not demonstrate significant differences (Garufi et al.,
2006; Qvortrup et al., 2010). Some data indicate that chronomo-
dulation might be relevant in the context of immunotherapy. For
instance, a recent provocative study reported inferior overall sur-
vival in patients who received more than 20% of immunotherapy
infusions after 4:30 PM (Qian et al., 2021). However, these obser-
vations warrant verification in prospective randomised clinical
trials. Data pertinent to radiotherapy comes from the REQUITE
project, which disclosed novel serendipitous associations, for
example, the interaction between time, circadian rhythm-related
genes (CLOCK, PER3 and RASD1) and late radiation toxicity in
breast cancer patients (Webb et al., 2022).

Microbiome heterogeneity

The human microbiome, comprising trillions of diverse microbial
organisms, plays a significant role in modulating health and disease
states, including cancer (Hou et al., 2022). Recent research indicates

that microbiome heterogeneity can greatly influence response to
anticancer treatment via drug-microbiota interactions.

Bacteria-derived enzymes target chemical compounds, includ-
ing drugs used in systemic treatment. For example, approximately
40% of patients treated with irinotecan experience severemucositis,
sometimes leading to treatment cessation. Irinotecan is converted
into its active form, SN38, which is later reverted back to an inactive
form, SN38G, in the liver. Bacterial β-glucuronidases can then
convert SN38G in the gastrointestinal tract back to its toxic form
(Wallace et al., 2010). Additionally, Bifidobacterium longum, Col-
linsella aerofaciens and Enterococcus faecium abundancy in stool
was found to be associated with increased response to anti–PD-1
treatment in patients with melanoma (Matson et al., 2018).

Additionally, the gut microbiome generates numerous metab-
olites, with short-chain fatty acids (SCFAs) being among the most
prevalent and crucial. Significantly, SCFAs act as secondary mes-
sengers that facilitate signal transmission and influence the onset
and progression of various diseases. Radiotherapy can modify the
populations of bacteria that produce SCFAs, leading to changes in
SCFA levels, which are linked to several conditions, including
radiation-induced intestinal injury (Li et al., 2021).

Themicrobiome studies shape oncologic outcomes and are now
being leveraged for the development of novel personalised thera-
peutic approaches in anticancer treatment. However, this topic
exceeds the scope of this paper and has been addressed elsewhere
(Chrysostomou et al., 2023; Yi et al., 2023).

Conclusions

Precision medicine has made remarkable progress in oncology by
promising to administer therapy to “the right patient at the right
time” (Abrahams, 2008). This review has discussed the impact of
cancer heterogeneity as amajor challenge facing precision oncology
development. Apart from affecting treatment outcomes, hetero-
geneity can also be employed in the context of prevention and early
detection. The results of the first large-scale observational cohort
study evaluating methylation-based multicancer early detection
diagnostic test (SIMPLIFY) have demonstrated the feasibility of
this approach (Rebbeck et al., 2018; Nicholson et al., 2023; Tie,
2023).

Genomic makeup has been shown to impact the effectiveness
and toxicity of systemic treatments and radiotherapy. Thus, gen-
omic testing can identify pathogenic gene variants and polymorph-
isms affecting drug metabolism or mechanism of action, thus
increasing the risk of treatment failure or toxicity. Spatial and
temporal tumoural heterogeneity is a complex phenomenon linked
to resistance to therapy, disease progression and adverse prognosis.
There are substantial genetic and molecular differences across
various tumour regions and between primary and metastatic foci.
A better understanding of this phenomenon allowed for the devel-
opment of novel strategies, for example, targeting with systemic
therapies or radiation-specific tumour regions or populations of
cancer cells.

Implementing advanced technologies, such as NGS, liquid biop-
sies and imaging modalities, has fostered precision oncology,
accounting for both genomic and tumoural heterogeneity. NGS is
routinely used to examine mutations in, for example, EGFR, BRAF
and ALK, which are molecular targets for modern therapies. Liquid
biopsies, which involve analysing circulating tumour cells or cir-
culating tumour DNA, offer a noninvasive way to identify genetic
alterations and monitor tumour progression. Several clinical trials,
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including the ongoing NCI-MATCH and MASTER trials and the
previously completed MyPathway and MPACT trials, have been
designed to identify genetic mutations associated with specific
targeted therapies and develop novel treatment strategies for over-
coming therapy resistance. These trials are expected to prompt
further development of precision oncology.

As precision oncology continues to evolve, the future holds great
promise for overcoming current challenges. Advanced tools should
bemore accessible and affordable. There is a need for routine, more
comprehensive genomic profiling of different regions of primary
and metastatic tumours to fully understand cancer heterogeneity.
In addition, integrating machine learning algorithms and artificial
intelligence would allow better identification of new therapeutic
targets and the development of even more personalised treatment
strategies. An exciting area of future research in precision oncology
is the use of combination therapies that simultaneously target
multiple pathways and molecular targets; this approach has the
potential to overcome heterogeneity-led resistance to single-agent
targeted therapies. Another area for improvement is integrating
precision oncology into clinical practice and expanding access to
new technologies for community oncologists and patients. This will
require the development of user-friendly platforms and tools that
are easily integrable into clinical workflows.

Overall, precision oncology holds great promise for improving
cancer treatment efficacy by enabling personalised treatment strat-
egies based on unique cancer and patient characteristics. Although
challenges remain to be addressed, ongoing research and emerging
developments create real hope for breath-taking therapeutic
approaches and improved patient outcomes.
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