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1. We shall call a finite semigroup £ arithmetical if there exists a positive
integer N and a monomorphism \i of S into the multiplicative semigroup RN

of the ring of residue classes of the integers modulo N. In 1965 P. C. Baayen
and D. Kruyswijk [1] posed the problem' Is every finite commutative semigroup
arithmetical ? ' The purpose of this paper is to answer this question.

In section 21 obtain a necessary and sufficient condition for a finite semigroup
to be arithmetical. In section 3 I use this criterion to demonstrate that there
are finite commutative semigroups which are not arithmetical. In section 4
I use the criterion to prove that certain special classes of commutative semi-
groups are arithmetical. Finally in section 5 I give the weaker theorem that
every finite commutative semigroup is a homomorphic image of an arithmetical
semigroup.

2. Let S be a finite commutative semigroup. Let C denote the set of roots
of unity (in the field of complex numbers) and let x be an indeterminate. We
shall define / to be a character of S if there is a positive integer m such that %
is a homomorphism of 5 into the semigroup of elements

cox" (mod xm)

under multiplication, where co is in C and a is a non-negative integer. [This is
not the usual definition of a semigroup character (see A. H. Clifford and G. B.
Preston [2]), but it is a convenient notation for our investigation.] These
mappings become representations if we interpret x as a matrix satisfying

xm = 0, xm~l * 0.

If S is a group then the Abelian group characters are characters in our sense
with

m = \.
Our principal result is:

Theorem 1. A finite commutative semigroup S is arithmetical if and only if
for each pair of distinct elements a, b of S there is a character %= yab of S
for which

Xifl) * lib). (1)

Proof. Suppose that S is arithmetical. Thus S can be embedded isomorphic-
ally in some RN. We show that for each pair a, b of distinct elements of RN

there is a / of RN satisfying (1).
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Let the canonical factorisation of N be

N= f\ pf'\
i = 1

Then RN can be represented as the direct sum
r

For, by the Chinese remainder theorem, we may choose ku ..., kr such that

s fl (mod pf>)

and then the representation
r

x =. £ fc(Xi (mod N)

gives the required isomorphism, where each xt runs through the residue classes
modulo P((l). Since a and 6 are distinct there is an / for which at and bt are
distinct. Thus, by applying first the projection homomorphism of RN onto
Rpjw, it suffices to prove the result in the restricted case when N = p" is a power

of a prime p.
Now if

where (u, v) denotes the highest common factor of u and v, then the character
X defined by

where (z,/;*) = p^, satisfies (1). If alternatively

(*,/>«) = (£,/>*) = / s a y ,

let \j/ be an Abelian group character of the multiplicative group of residue classes
modulo p*~fi that are relatively prime to p for which

In this case we define the character x by

X(z) = >Mz//>V (mod JC"+1)

and again (1) is satisfied.
Next we prove the converse. Let S be a semigroup and a and b be two

distinct elements of S. Let x — Xa, b be a character of S such that

X(a) £ X(b) (mod xm = x™(O)).

Let d = daJ> be the least common multiple of the orders of the coefficients of
the non-zero monomials which belong to Im x- Choose an odd prime p = pa< h

for which
p = 1 (mod d). (2)
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Let g be a primitive dth root of unity modulo pm, and so also modulo p, and let
n be a primitive dth root of unity in C. Then the map T = TOF t given by

<f/V) = flrV (mod/>m)

is a monomorphism of Imx into Rpm = i?Oi!, say, and so the homomorphism
tX of S into ./?„_ 6 has the property

By Dirichlet's theorem we may choose all the odd primes pOt b (required only
to satisfy (2)) to be distinct. Thus there is a monomorphism

a,b

where
M — FT nm("'b)ly — llPa.b >

a,b

the component of fi in Rab being ra,bxa,b-

3. Theorem 2. 77!ere exw/J a non-arithmetical finite commutative semigroup.

Proof. We show that the semigroup S given by the multiplication table

e

a

b

c

e

e

e

e

e

a

e

e

c

e

b

e

c

e

e

c

e

e

e

e

is not arithmetical. It suffices to show that there is no character x of S with

X(e) # X(c). (3)

Since e is an idempotent and ec = e we must have
X(e) = 0 (mod xm).

Next we have
X(a)2 = x(b)2 = X(e) = 0 (modxm).

Thus
X(c)2 = xiflfxibf = 0 (modx2m)

which implies that
X(c) = 0 = x(e) (mod xm)

and so (3) is not satisfied.

4. Theorem 3. A finite direct sum of arithmetical semigroups is arithmetical.

Proof. If a, b are two distinct elements of the direct sum S we let x be the
projection homomorphisms of S onto some component T in which t(a) # t(b).
Then since T is arithmetical there is a character x of r with

so that xj is the required character of S.
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Theorem 4. If the finite commutative semigroup S can be partitioned into a
set of disjoint groups then S is arithmetical.

Proof. Let

S= (J St
i = 1

where each St is a group and has a unique idempotent et (the identity).

Now we note that the relation > defined by

St>Sj if and only if e^j = ef

is a partial ordering of the St. Also to each pair of integers i,j there corresponds
a unique integer k such that

SiSj cz Sk (4)

since each element of SiSj contains among its powers the idempotent e-fij = ek

say, and so belongs to Sk. Further we see that if (4) holds then Si<Sk for we
have

efik = efifj = e^j = ek.

Next we consider a pair of distinct elements a, b of S. Suppose that

aeSh be Sj.

If i ¥= j then at most one of Si<Sj and Sj<St can hold. We may assume
without loss of generality that Sj<St is false. We define the character / by

X(z) = x? (mod x)
where if z e St we have

„_ fOifS,<S,-

[l otherwise.

This x satisfies (1). On the other hand if i = j there is a character ^ of S{ with

Then we define x by

z ( 2 ) =fKO , i
\0 otherwise,

and again x satisfies (1).

5. Theorem 5. Any finite commutative semigroup S is a homomorphic image
of an arithmetical semigroup.

Proof. Let zu ..., zn be the elements of S. We may consider S as a com-
mutative semigroup with generators zu ...,zn and a certain set R of relations.
For each zt there is a positive integer nt such that z"< is an idempotent. Write

Then for each zt

(5)
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is a relation in R. Define T to be the commutative semigroup with generators
Zj, ..., zn and relations (5) for i = 1, ..., n. Thus S is a homomorphic image of
T. It suffices to show T is arithmetical.

By Theorem 3 it is sufficient to show that the semigroup U on one generator
z with the relation

Z2M _ ZM

is arithmetical, for T is a direct sum of n copies of U. Choose two elements
z\ z1 of U. If at least one of i,j is less than M then the character x defined by

X(z*) = x* (mod xm)
has the property

X(z') * *(*0. (6)
On the other hand if both / and j belong to the closed interval [M, 2M-1 ] then
the character / given by

X(zk) = e2"tt/M(mod x)

satisfies (6), and our proof is complete.
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