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Abstract. A natural class of ideals, almost isometric ideals, of Banach spaces
is defined and studied. The motivation for working with this class of subspaces is
our observation that they inherit diameter 2 properties and the Daugavet property.
Lindenstrauss spaces are known to be the class of Banach spaces that are ideals in
every superspace; we show that being an almost isometric ideal in every superspace
characterizes the class of Gurariy spaces.
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1. Introduction. Let Y be a real Banach space and X a subspace. Recall that X is
an ideal in Y if X⊥, the annihilator of X in Y∗, is the kernel of a norm one projection
on Y∗. A linear operator ϕ : X∗ → Y∗ is called a Hahn–Banach extension operator
if ϕ(x∗)(x) = x∗(x) and ‖ϕ(x∗)‖ = ‖x∗‖ for all x ∈ X and x∗ ∈ X∗. If for every finite-
dimensional subspace E of Y and every ε > 0 there exists a linear operator T : E → X
such that Te = e for all e ∈ E ∩ X and ‖T‖ ≤ 1 + ε, then X is said to be locally 1-
complemented in Y . That these three concepts are just the same thing looked at in
three different ways dates back to a 1972 paper by Fakhoury [5]. We will mainly use
the locally 1-complemented viewpoint, but following the paper [7] we will use the term
ideal. The next theorem can be found in [5, Théorème 2.14] (see also [14, Theorem 3.5]).

THEOREM 1.1. Let X be a subspace of a Banach space Y. The following statements
are equivalent.

(i) X is an ideal in Y.
(ii) There exists a Hahn–Banach extension operator ϕ : X∗ → Y∗.

(iii) X is locally 1-complemented in Y.

The connection between the extension operators and the locally complemented
subspaces was further explored in [20]. There the following theorem can be found.

THEOREM 1.2. Let X be a subspace of a Banach space Y. X is an ideal in Y if and
only if there exists a Hahn–Banach extension operator ϕ : X∗ → Y∗ such that for every
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ε > 0, every finite-dimensional subspace E ⊂ Y and every finite-dimensional subspace
F ⊂ X∗ there exists T : E → X such that

(i1) Te = e for all e ∈ X ∩ E,
(i2) ‖Te‖ ≤ (1 + ε)‖e‖ for all e ∈ E and
(i3) ϕf ∗(e) = f ∗(Te) for all e ∈ E, f ∗ ∈ F.

Let us now describe the content of our paper. In searching for a natural condition
ensuring that X inherits the property from its superspace Y that every non-void
relatively weakly open subset of BY has diameter 2, we observed that if T in Theorem
1.2 can be assumed to be an ε-isometry, then this diameter 2 property passes down to
X from Y . This observation is presented in Proposition 3.2. Also, we observed that
the same condition works for the problem of inheriting the Daugavet property. The
presentation of this result could be found in Proposition 3.8. Precise definitions and
necessary background on both diameter 2 properties and the Daugavet property are
incorporated in the presentation in Section 3.

The above results on inheriting the diameter 2 property and the Daugavet property
indicate that subspaces obeying conclusion in Theorem 1.2 with T almost isometric
are of some relevance, and we think it is natural to find out what could be said in
general about such subspaces.

DEFINITION 1.3. Let Y be a Banach space and X a subspace. X is called an almost
isometric ideal (ai-ideal) in Y if for every ε > 0 and every finite-dimensional subspace
E ⊂ Y there exists T : E → X which satisfies condition (i1) in Theorem 1.2 and also

(ai2) (1 + ε)−1‖e‖ ≤ ‖Te‖ ≤ (1 + ε)‖e‖ for e ∈ E.

Note that X need not be closed in the definition of ai-ideals. By a perturbation
argument, a non-closed subspace is an ai-ideal if and only if its closure is also an
ai-ideal.

REMARK 1.1. A Banach space Y is finitely representable in X if for every finite-
dimensional subspace E ⊂ Y there exists a T : E → X such that (ai2) holds.

There is a 1-complemented isometric copy of �1 in L1[0, 1] (see e.g. [4, Lemma
5.1.1]) and, in particular, �1 is an ideal. L1[0, 1] is finitely representable in �1, but
�1 is not an ai-ideal in L1[0, 1] because ai-ideals inherit diameter 2 properties (see
Proposition 3.2 below). Hence, there is no T that satisfies properties (i1) and (ai2)
simultaneously.

A natural question is whether the analogue of Theorem 1.2 holds. Lindenstrauss’
compactness argument, of course, produces a Hahn–Banach extension operator, but
the problem is that we risk losing the ε-isometry property of T . It turns out that the
analogue of Theorem 1.2 is true.

THEOREM 1.4. Assume that X is an ai-ideal in Y. Then there exists a Hahn–Banach
operator ϕ : X∗ → Y∗ such that for every ε > 0, every finite-dimensional subspace E ⊂ Y
and every finite-dimensional subspace F ⊂ X∗ there exists T : E → X which satisfies
statements (i1), (ai2) and (i3).

The proof of this structure result will be the starting point of Section 2.
Note that the conclusion of Theorem 1.4 is very similar to the Principle of Local

Reflexivity, and a Banach space X is always an ai- ideal in its bi-dual X∗∗. By Goldstine’s
theorem, in the Principle of Local Reflexivity setting, the range of ϕ : X∗ → X∗∗∗ is
1-norming for X∗∗ (here ϕ is simply a canonical embedding of X∗ into X∗∗∗). We will
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see in Proposition 2.1 that it is in general true that when the range of ϕ in Theorem 1.2
is 1-norming for Y , then the ideal X is an ai-ideal in Y .

Knowing this, our next question is naturally whether for an ai-ideal the associated
Hahn–Banach extension operators ϕ from X∗ into Y∗ must have range that is 1-
norming for Y . We will see that this is not so in general; in Example 1 we will see that
the 1-co-dimensional subspace X = {(an)∞n=1 ∈ c0 : a1 = 0} of c0 is a counterexample.

However, in an important case of u-ideals, the ε-isometry condition of T and having
1-norming range are indeed equivalent (Theorem 2.3). U-ideals were introduced and
studied in [7]; we also give some necessary background on u-ideals in the introduction
to our Theorem 2.3.

To sum up, our motivation is the question of when diameter 2 properties and the
Daugavet property pass to subspaces. This leads to the concept of ai-ideals, which
are studied in Section 2, and the results on diameter 2 properties and the Daugavet
property form Section 3.

In Section 4 we characterize Gurariy spaces in terms of ai-ideals: It is known from
[5] that the Banach spaces that form an ideal in every superspace is exactly the class
of Lindenstrauss spaces. We observe in Theorem 4.3 that the class of spaces that are
ai-ideals in every superspace is the Gurariy spaces. From this it follows that Gurariy
spaces have the Daugavet property. We end the paper by proving that Lindenstrauss
spaces in general enjoy diameter 2 properties.

We use standard Banach space notation; symbols and terms will, however, be
carefully explained throughout the text when we think it is helpful to the reader. The
reader only interested in the results on the passage of diameter 2 properties or the
Daugavet property to subspaces may go directly to Section 3.

2. ai-ideals, strict ideals and u-ideals. We start by proving our main structure
theorem which was stated in the Introduction.

Proof of Theorem 1.4 We first construct ϕ using a Lindenstrauss compactness
argument. Order the set A = {(E, F, ε)}, where E ⊂ Y and F ⊂ X∗ are finite-
dimensional and ε > 0 by (E1, F1, ε1) ≤ (E2, F2, ε2) if E1 ⊂ E2, F1 ⊂ F2 and ε2 ≤ ε1.

For α ∈ A, α = (E, F, ε), choose Tα : E → X satisfying (i1) and (ai2). Define
Lα : Y → X∗∗ by Lαy = Tαy if y ∈ E and Lαy = 0 if y /∈ E. We consider (Lα) ⊂
�y∈Y BX∗∗ (0, 2‖y‖), which by Tychonoff’s theorem is compact in the product weak∗

topology. Without loss of generality, we assume (Lα) is convergent to some S ∈
�y∈Y BX∗∗ (0, 2‖y‖). Note that this implies that for every finite number of elements
(yi)n

i=1 in Y and (x∗
j )m

j=1 in X∗ we have

x∗
j (Lαyi) → x∗

j (Syi). (2.1)

By construction, Sy = y for every y ∈ X . It is also clear that ‖S‖ = 1, hence ϕ = S∗|X∗ :
X∗ → Y∗ is a Hahn–Banach extension operator.

Next we apply a perturbation argument modelled after [20, Lemma 1.2], which in
turn was inspired by [12].

Let (x∗
i , xi)n

i=1 be a complete bi-orthogonal system for F . Define

Q =
n∑

i=1

iX xi ⊗ ϕ(x∗
i ).
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Here iX : X → Y is the identity embedding. Then Q ∈ F(Y∗, Y∗) is a projection
with Q(Y∗) = ϕ(F), and Q∗(Y∗∗) ⊂ X . Similarly, let P ∈ F(E, E) be a projection with
P(E) = E ∩ X .

For α ∈ A, α = (E, F, ε), let (Tα) be the net from the first paragraph. Define
Sα : E → X by

Sα = iEP + Tα(IE − P) − Q∗(Tα − iE)(IE − P)

= iE + (IY∗∗ − Q∗)(Tα − iE)(IE − P).

Here iE : E → Y denotes the identity embedding. Now Sα ∈ F(E, X), because
iEP(E) = E ∩ X ⊂ X and Q∗(Y∗∗) ⊂ X and P, Tα, and iE are finite-rank operators.
We have Sαe = e for every e ∈ E ∩ X because E ∩ X = P(E) and P is a projection.

Let f ∗ ∈ F and e ∈ E. Using Sα(E) ⊂ X we have

〈f ∗, Sαe〉 = 〈ϕf ∗, Sαe〉
= 〈ϕf ∗, iEe〉 + 〈ϕf ∗, (IY∗∗ − Q∗)(Tα − iE)(IE − P)e〉
= 〈ϕf ∗, iEe〉 + 〈(IY∗ − Q)ϕf ∗, (Tα − iE)(IE − P)e〉
= 〈ϕf ∗, iEe〉

since Q(ϕf ∗) = ϕf ∗.
So far we have shown that (Sα) satisfies (i1) and (i3). Far out in the net, Sα’s will

inherit (ai2) from Tα’s if we can show that ‖Sα − Tα‖ can be made as small as we wish.
Note that

Sα − Tα = (iE − Tα)P − Q∗(Tα − iE)(IE − P) = −Q∗(Tα − iE)(IE − P)

since Tαe = e for all e ∈ P(E). Thus, we have

‖Sα − Tα‖ = sup
‖e‖=1

‖Q∗(Tα − iE)e‖ ≤ sup
‖e‖=1

n∑

i=1

‖xi‖|x∗
i (Tαe) − ϕx∗

i (e)|.

Let α = (E, F, ε). Let δ > 0 and choose a δ-net (ej)k
j=1 for SE . We choose β ≥ α so

that |x∗
i (Tβej) − ϕx∗

i (ej)| < δ for every i = 1, . . . , n and j = 1, . . . , k using (2.1).
For e ∈ SE choose j such that ‖e − ej‖ < δ, then

|x∗
i (Tβe) − ϕx∗

i (e)| ≤ |x∗
i (Tβe) − x∗

i (Tβej)| + |x∗
i (Tβej) − ϕx∗

i (ej)|
+ |ϕx∗

i (ej) − ϕx∗
i (e)|

≤ 2‖x∗
i ‖δ + δ + ‖x∗

i ‖δ ≤ δ(1 + 3 max
i

‖x∗
i ‖).

By choosing δ small enough, we get that Sβ satisfies (i1), (ai2) and (i3) for the given
α = (E, F, ε). The desired T : E → X is then Sβ . �

In the proof above we used the connection ϕ = S∗|X∗ between a Hahn–Banach
extension operator ϕ : X∗ → Y∗ and a norm one extension S : Y → X∗∗ of canonical
embedding kX : X → X∗∗. Clearly, from this connection the existence of a Hahn–
Banach extension operator and a norm one extension of kX to Y are equivalent.
Moreover, the existence of a Hahn–Banach extension operator ϕ : X∗ → Y∗ is
equivalent to the existence of a norm one projection P on Y∗ with ker P = X⊥ and
range equal to ϕ(X∗).
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From the way P, ϕ and S are connected, one obtains that the range of ϕ (or P) is
1-norming if and only if S is an isometry. This is well studied in the recent literature
(see e.g. [21] or [16]); these ideals are called strict ideals.

PROPOSITION 2.1. Suppose X is a strict ideal in Y. Then X is an ai-ideal in Y.

Proof. Let ε > 0, E ⊂ Y finite-dimensional and S : Y → X∗∗ an isometric
extension of kX . Since F = S(E) ⊂ X∗∗ is finite-dimensional, there exists by the
Principle of Local Reflexivity T : F → X satisfying (i1) and (ai2). It is clear that
the composition T ◦ S : E → X satisfies (i1) and (ai2) and so we are done. �

We now give an example that shows the converse of Proposition 2.1 is not true.
For this example we will just need a little more background on ideals. An ideal X ⊂ Y
is an M-ideal in Y if the ideal projection P : Y∗ → Y∗ is an L-projection, that is,

‖y∗‖ = ‖Py∗‖ + ‖y∗ − Py∗‖ for all y∗ ∈ Y∗.

A particular case of this is when X is 1-complemented in Y by an M-projection Q, that
is, QY = X and

‖y‖ = max{‖Qy‖, ‖y − Qy‖} for all y ∈ Y,

in which case X is called an M-summand in Y . The M-ideal projection is unique (see
e.g. [9, Proposition 1.2] or [10, p. 2]). Further, if X is also an M-summand, then Q∗(Y∗)
is weak∗ closed, hence if X is a proper subspace of Y it can not be a strict ideal in Y .

We denote by en the nth standard basis vector in c0 and by e∗
n its corresponding

coordinate functional in �1.

EXAMPLE 1. The subspace X = {(an)∞n=1 ∈ c0 : a1 = 0} = ker e∗
1 of c0 is 1-

complemented and an ai-ideal in c0.

Proof. Clearly, X is a proper M-summand in c0 complemented by the projection
Q putting 0 on the first coordinate, and by the above remarks we only need to show
that X is an ai-ideal.

Let E be a finite-dimensional subspace of c0. and let (xi)m
i=1 be some ε-net for

SE . Find N such that |xi(N)| < ε for i = 1, 2, ..., m. Define T : E → X by T(y) =
Qy + e∗

1(y)eN . Then T is obviously linear and an ε-isometry on (xi)m
i=1. By [4, Lemma

11.1.11] T is an almost isometry on all of E. �
As we have seen from Example 1 ai-ideals need not be strict. We will now show that

if some symmetry condition is imposed, then ai-ideals indeed are strict. A subspace X
is said to be a u-ideal in Y if there exists an ideal projection P : Y∗ → Y∗ such that
‖I − 2P‖ = 1 (P is unconditional). If the range of P is 1-norming for Y , then X is called
a strict u-ideal in Y . There can never be more than one unconditional P ([7, Lemma
3.1]). Further, every M-ideal is a u-ideal. It is known from [7, Proposition 3.6] that X
is a u-ideal if and only if X is an ideal with the extra condition

(i4) ‖e − 2T(e)‖ ≤ (1 + ε)‖e‖ for all e ∈ E.
We will now assume that X is a u-ideal in Y and Ts mentioned above can be

chosen to be almost isometries.

DEFINITION 2.2. A subspace X is called an almost isometric u-ideal (ai-u-ideal) if
for every ε > 0 and every finite-dimensional subspace E ⊂ Y there exists T : E → X
which satisfies conditions (i1) and (ai2) and also (i4).
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REMARK 2.1. Note that (i2) (and the right-hand inequality of (ai2)) follows from
(i4).

An inspection of the proof of Theorem 1.4 shows that when X is an ai-u-ideal
in Y , it is possible to obtain a Hahn–Banach extension operator ϕ : X∗ → Y∗ which
satisfies (i3). However, this observation will not be needed in what follows.

THEOREM 2.3. Let X be a subspace of Y. Then X is an ai-u-ideal in Y if and only if
X is a strict u-ideal in Y.

Proof. Assume that X is a strict u-ideal in Y . Let E ⊂ Y and F ⊂ X∗ be
finite-dimensional subspaces. Let φ : X∗ → Y∗ be the strict unconditional extension
operator. Let L(E, X) denote the bounded linear operators from F to X and let
iE ∈ L(E, Y ) be the identity embedding.

Define 
 : L(E, X)∗ → L(E, Y )∗ by 
(e ⊗ x∗) = e ⊗ φx∗ as in [7, Proposition 3.6].
Using [7, Lemma 2.2] we find a net (Tα) in L(F, X) converging weak∗ to 
∗(iE) ∈
L(E, X)∗∗ such that lim supα ‖iE − 2Tα‖ ≤ ‖iE‖ = 1. Applying the perturbation
argument from [20, Lemma 1.2] (as in Theorem 1.4) we get at linear operator
T : E → X satisfying (i1), (ai2) and (i4). (For T to become an almost isometry we
may have to enlarge F .)

Assume that X is an ai-u-ideal in Y . Choose y ∈ Y \ X . Then X is an ai-u-
ideal in Z = span(X, {y}). Let z ∈ SZ and let E be a finite-dimensional subspace of
Z containing z. Choose T : E → X∗∗ satisfying (i1), (ai2) and (i4). We have (1 − ε) <

(1 + ε)−1, so by (ai2)

(1 − ε) ≤ ‖Tz‖ ≤ (1 + ε),

hence

|‖Tz‖ − 1| ≤ ε.

Using (i4) we get

‖z − 2
Tz

‖Tz‖‖ ≤ ‖z − 2Tz‖ + 2‖Tz − Tz
‖Tz‖‖ ≤ (1 + ε) + 2|1 − ‖Tz‖| ≤ 1 + 3ε,

which shows that

inf
x∈SX

‖z − 2x‖ = 1.

By Theorem 2.4 in [16] X is a strict u-ideal in Z. This is true for any y ∈ Y and so, by
Proposition 2.1 in [16], X is a strict u-ideal in Y . �

3. ai-ideals inherit diameter 2 properties and the Daugavet property. Let X be
a nontrivial (real) Banach space with unit ball BX . By a slice of BX we mean a set
S(x∗, ε) = {x ∈ BX : x∗(x) > 1 − ε}, where x∗ is in the unit sphere SX∗ of X∗ and
ε > 0. A finite convex combination of slices of BX is then a set of the form

S =
n∑

i=1

λiS(x∗
i , εi), λi ≥ 0,

n∑

i=1

λi = 1,

where x∗
i ∈ SX∗ and εi > 0 for i = 1, 2, . . . , n.
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The relations between the following three successively stronger properties were
investigated in [1].

DEFINITION 3.1. A Banach space X has the

(i) local diameter 2 property if every slice of BX has diameter 2.
(ii) diameter 2 property if every non-empty relatively weakly open subset of BX has

diameter 2.
(iii) strong diameter 2 property if every finite convex combination of slices of BX has

diameter 2.

It is not known to us whether properties (i) and (ii) are really different. However,
in a recent paper [3] it was established that property (iii) is strictly stronger than
property (ii). (The same result has been also independently discovered by R. Haller, J.
Langemets, and M. Põldvere, private communication, April 25th 2012). The study of
property (ii) above goes back to Shvidkoy’s work [22] on the Daugavet property, where
a by-product is that spaces with the Daugavet property enjoy the diameter 2 property,
and to Nygaard and Werner’s paper [19], where uniform algebras are shown to have
the diameter 2 property. We postpone the definition of the Daugavet property until
needed; it can be found in the introduction to Proposition 3.8 below. A uniform algebra
is a separating closed sub-algebra of a C(K)-space that contains the constants.

In addition to Daugavet spaces and uniform algebras, spaces with ‘big’ centralizer
are also known to have the diameter 2 property. Precise definition of ‘big’ centralizer
can be found in [1] or [2], we will not give it here as we will not really need it; for our
purposes it is enough to know that Daugavet spaces, uniform algebras and spaces with
‘big’ centralizer form three large classes of spaces with the diameter 2 property.

We believe it is folklore among researchers working on the diameter 2 property
that X inherits the diameter 2 property from its bi-dual X∗∗, although we do not know
any explicit reference for it. Here we will show the much more general result that all
diameter 2 properties are inherited by ai-ideals.

PROPOSITION 3.2. Let X be an ai-ideal in a Banach space Y. If Y has the diameter
2 property, so does X.

Proof. Let ϕ be the associated Hahn–Banach extension operator from Theorem 1.4.
Let U ⊂ BX be relatively weakly open and ε > 0. We will show that for every x0 ∈ U
any set of the form

Uδ = {x ∈ BX : |x∗
i (x − x0)| < δ, i = 1, 2, ..., n}

contains two points with distance greater than 2 − ε. Let

Vδ = {y ∈ BY : |ϕx∗
i (y − x0)| < δ, i = 1, 2, ..., n}.

Vδ is relatively weakly open in BY and hence has diameter 2. Thus, we can find
z1, z2 ∈ Vδ with ‖z1‖ ≤ 1, ‖z2‖ ≤ 1 and ‖z1 − z2‖ > 2 − ε/4. Let 0 < η < ε/8 and set
yi = (1 + η)−1zi. Then ‖y1 − y2‖ > 2 − ε/2.

Let E = span{x0, y1, y2} and F = span{x∗
i }n

i=1. Use Theorem 1.4 to find an η-
isometry T : E → X . Then ‖Tyi‖ ≤ (1 + η)‖yi‖ ≤ 1,

‖Ty1 − Ty2‖ ≥ (1 + η)−1‖y1 − y2‖ > 2 − ε,
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and for i = 1, 2, . . . , n and j = 1, 2 we have

|x∗
i (Tyj − x0)| = |x∗

i (Tyj − Tx0)| = |x∗
i (T(yj − x0))| = |ϕx∗

i (yj − x0)| < δ,

hence Ty1, Ty2 ∈ Uδ. �
REMARK 3.1. Note that in the proof above we only needed to push every three-

dimensional E ⊂ Y into X almost isometrically.

Now we prove that the strong diameter 2 property is also inherited by ai-ideals.

PROPOSITION 3.3. Let X be an ai-ideal in Banach space Y. If Y has the strong
diameter 2 property, so does X.

Proof. Let S ⊂ BX be a finite convex combination of slices. S is then of the form

S =
n∑

i=1

λiSi(x∗
i , εi),

where x∗
i ∈ B∗

X , εi > 0, λi > 0 and
∑n

i=1 λi = 1. Now put

Sϕ =
n∑

i=1

λiSϕ,i(ϕx∗
i , εi),

where ϕ is the Hahn–Banach extension operator associated with an ai-ideal. Note
that each Sϕ,i(ϕx∗

i , εi) = {y ∈ BY : ϕx∗
i (y) > 1 − εi} is a slice of BY . Since Sϕ has

diameter 2, there are for every η > 0, yk ∈ Sϕ , k = 1, 2, such that ‖y1 − y2‖ > 2 − η.
Now yk ∈ Sϕ is of the form yk = ∑nk

i=1 λiyi
ϕ,k, where yi

ϕ,k ∈ Sϕ,i(ϕx∗
i , εi). Let E =

span(yk, ynk
ϕ,k)k,i ⊂ Y and F = span(x∗

i )i ⊂ X∗. By a perturbation argument, we may
assume that maxk ‖yk‖ = r < 1.

For δ > 0 such that (1 + δ) · r ≤ 1, choose T : E → X which fulfills (i)–(iii) in the
conclusion of Theorem 1.4 with this δ, and observe that Tyk = ∑nk

i=1 λiTyi
ϕ,k. Then

Tyk ∈ S since ‖Tyk‖ ≤ (1 + δ)‖yk‖ ≤ (1 + δ) · r ≤ 1, and Tyi
ϕ,k(x∗

i ) = ϕx∗
i (yi

ϕ,k) > 1 −
εi, so Tyi

ϕ,k ∈ Si.
Finally, observe that ‖Ty1 − Ty2‖ > (1 + δ)−1(2 − η) and δ and η may be chosen

arbitrarily small, so the diameter of S must be 2. �
REMARK 3.2. Note that in the proof above we cannot take E with just three

dimensions as we could in the proof of the similar result for the diameter 2 property.

COROLLARY 3.4. Almost isometric ideals inherit the local diameter 2 property.

Proof. Take n = 1 in the proof of Proposition 3.3. �
PROPOSITION 3.5. Let Y be a Banach space. If every infinite-dimensional separable

ideal in Y has the (local, strong) diameter 2 property, so does Y.

Proof. Firstly, let us prove the result for the strong diameter 2 property. To this
end let εi > 0 for i = 1, . . . , n and S = ∑k

i=1 λiSi, a finite convex combination of slices
Si = {y ∈ BY : y∗

i (y) > 1 − εi} of the unit ball of Y . Each slice is relatively weakly open
and therefore contains a ball of small radius about a point in the slice. Thus, it is
possible to find a sequence of infinitely many linearly independent points in each slice.
It is clearly also possible to find a linearly independent sequence (yn) ⊂ S. Let Z be the
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norm closure of span(yn). By [11] (cf. [10, Lemma III.4.3]) there is a separable ideal
X in Y containing Z such that span(y∗

i )k
i=1 ⊂ ϕ(X∗), where ϕ : X∗ → Y∗ is the Hahn–

Banach extension operator. Now, for i = 1, . . . , k, find x∗
i ∈ X∗ such that y∗

i = ϕ(x∗
i ).

Let S′
i = {x ∈ BX : x∗

i (x) > 1 − εi} = {x ∈ BX : ϕx∗
i (x) > 1 − εi} be slices of the unit

ball of X . Denote by S′ = ∑k
i=1 λiS′

i the corresponding convex combination of slices.
Since S′ has diameter 2 and S′ ⊂ S, S has diameter 2.

For the local diameter 2 property the result follows by taking k = 1 in the argument
above.

For the diameter 2 property let V be a relatively weakly open subset in BY . Find
y0 ∈ V and y∗

i ∈ Y∗ such that Vε = {y ∈ BY : |y∗
i (y − y0)| < ε, i = 1, · · · , n} ⊂ V . It is

possible to choose a sequence (yn) of infinitely many linearly independent points in Vε

and a similar argument as above will now finish the proof. �
Our next goal is to show that ai-ideals inherit the Daugavet property. Let us first

recall the definition of this property.

DEFINITION 3.6. A Banach space X has the Daugavet property if for every rank 1
operator T : X → X ,

‖T + I‖ = 1 + ‖T‖.

In Definition 3.6, I denotes the identity operator on X . We will need a fundamental
observation from [13, Lemma 2.2].

LEMMA 3.7. The following are equivalent.
(i) X has the Daugavet property.

(ii) For all y ∈ SX , x∗ ∈ SX∗ and ε > 0, there exists x ∈ SX such that x∗(x) ≥ 1 − ε

and ‖x + y‖ ≥ 2 − ε.

The next result is proved for M-ideals in [13, Proposition 2.10].

PROPOSITION 3.8. If X is an ai-ideal in Y and Y has the Daugavet property, then X
has the Daugavet property.

Proof. Let ϕ : X∗ → Y∗ be the (ai-) Hahn–Banach extension operator.
We will show that (ii) in Lemma 3.7 is fulfilled. For this, let y ∈ SX , x∗ ∈ SX∗ and

ε > 0. Consider the slice

S1 = {x ∈ BX : x∗(x) ≥ 1 − ε}.

We will need to produce some x ∈ S1 with ‖x‖ = 1 and ‖y + x‖ ≥ 2 − ε. Look at

S = {z ∈ BY : ϕ(x∗)(z) ≥ 1 − η}.

Since Y has the Daugavet property, for all η > 0, there is some z ∈ S with ‖z‖ = 1 such
that ‖z + y‖ ≥ 2 − η. Let ε

2 > η > 0 and choose ε
2 > δ > 0 such that δ ≤ ε

2 −η

2− ε
2

. Note

that this choice gives (1 + δ)−1(2 − η) ≥ 2 − ε
2 .

Let E = span{z, y} ⊆ Y , F = span{x∗} ⊆ X∗ and find a corresponding δ-isometry
T : E → X . Let x = T(z)

‖T(z)‖ . Clearly, ‖x‖ = 1. We get

‖x − T(z)‖ = |‖T(z)‖ − 1| ≤ δ ≤ ε

2
,
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hence

‖x + y‖ ≥ ‖T(z) + y‖ − ‖x − T(z)‖ ≥ (1 + δ)−1(2 − η) − δ ≥ 2 − ε.

Finally,

x∗(x) = x∗(T(z)) + x∗(x − T(z)) ≥ ϕ(x∗)(z) − δ ≥ 1 − η − δ ≥ 1 − ε,

and we conclude that X has the Daugavet property. �
REMARK 3.3. As in the proof of Proposition 3.2, the full strength of an ai-ideal was

not needed in the above proof. We only needed E 2-dimensional and F 1-dimensional.
Of course, as for diameter 2 properties, we also get from Proposition 3.8 that X
inherits the Daugavet property from X∗∗, but this is trivial since, from the definition
of the Daugavet property, X always has the Daugavet property if X∗ does.

Recall Milne’s theorem that every Banach space is a 1-complemented subspace of
a uniform algebra. Wojtasczyk observed in [25, Corollary 4] that the standard proof
of this theorem yields a uniform algebra with the Daugavet property, hence also the
strong diameter 2 property. In particular, diameter 2 properties do not automatically
pass to 1-complemented subspaces and hence not to ideals.

4. Gurariy-spaces in terms of ai-ideals. Recall that a Lindenstrauss space is a
Banach space such that the dual is an L1(μ)-space for some (positive) measure μ.
Fakhoury [5, Proposition 3.4] has proved the following result.

THEOREM 4.1. For a Banach space X the following statements are equivalent:
(i) X is a Lindenstrauss space.

(ii) X is an ideal in every superspace.

Now we will prove an analogous result for ai-ideals. For this we will need the
definition of Gurariy space.

DEFINITION 4.2. A Banach space X is called a Gurariy space if it has the property
that whenever ε > 0, E is a finite-dimensional Banach space, TE : E → X is isometric
and F is a finite-dimensional Banach space with E ⊂ F , then there exists a linear
operator TF : F → X such that

(i) TF (f ) = TE(f ) for all f ∈ E, and
(ii) (1 + ε)−1‖f ‖ ≤ ‖TF f ‖ ≤ (1 + ε)‖f ‖ for all f ∈ F .

If TF : F → X is taken to be isometric, then X is called a strong Gurariy space.

Gurariy proved in [8] that Gurariy spaces exist. Indeed, he constructed a separable
such Banach space and showed that all separable Gurariy spaces are linearly almost
isometric. Later Lusky [18] proved that all separable Gurariy spaces are in fact linearly
isometric. The fact that strong Gurariy spaces exist can be found in [6].

Let us now state and prove a result similar to Theorem 4.1 for ai-ideals.

THEOREM 4.3. For a Banach space X, the following statements are equivalent:
(i) X is a Gurariy space.

(ii) X is an ai-ideal in every superspace.

Proof. (i) ⇒ (ii). Let X be a subspace of Y , E a finite-dimensional subspace of Y
and ε > 0. If E ∩ X is of dimension ≥1, then T : E ∩ X → X is the identity operator.

https://doi.org/10.1017/S0017089513000335 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089513000335


ALMOST ISOMETRIC IDEALS IN BANACH SPACES 405

By assumption, there is a linear extension T̂ of T satisfying (1 + ε)−1‖e‖ ≤ ‖T̂e‖ ≤
(1 + ε)‖e‖ for every e ∈ E, just as needed. Now, if E ∩ X = {0}, then choose some
non-zero x ∈ X , put E′ = span(E, {x}) and argue as above.

(ii) ⇒ (i). Let ε > 0 and choose δ > 0 such that (1 + δ)2 ≤ 1 + ε. By [6, Theorem
3.6] we can assume that X is a subspace of a Gurariy space XG. Now, let E ⊂ F be
finite-dimensional subspaces, and T : E → X be linear and isometric. Since XG is a
Gurariy space, there exists a linear extension T̂ : F → XG of T with (1 + δ)−1‖f ‖ ≤
‖T(f )‖ ≤ (1 + δ)‖f ‖ for every f ∈ F . Put H = T̂(F). Since X is an ai-ideal in XG,
there exists an operator S : H → X satisfying (1 + δ)−1‖h‖ ≤ ‖Sh‖ ≤ (1 + δ)‖h‖ for
every h ∈ H such that Sh = h for every h ∈ H ∩ X . It follows that S ◦ T̂ : F → X is
a linear extension of T satisfying (1 + ε)−1‖f ‖ ≤ ‖S ◦ T̂(f )‖ ≤ (1 + ε)‖f ‖ for every
f ∈ F , which is exactly as desired. �

REMARK 4.1. It follows from the techniques used in [6] that every non-separable
Banach space can be isometrically embedded in a strong Gurariy space. Thus, by
arguing as in Theorem 4.3, it is easily seen that strong Gurariy spaces are exactly the
spaces that are ai-ideals with ε = 0 in every superspace.

COROLLARY 4.4. The separable Gurariy space is the only separable Banach space
that is an ai-ideal in every superspace.

The Daugavet property for Lindenstrauss spaces was studied by Werner (see [23,
Theorem 3.5]). We note the following.

COROLLARY 4.5. Gurariy spaces enjoy the Daugavet property and hence the strong
diameter 2 property.

Proof. Let X be a Gurariy space. C(BX∗ , weak∗) has the Daugavet property (cf. e.g.
[24]), and since X embeds isometrically into C(BX∗ , weak∗), the result follows Theorem
4.3 and Proposition 3.8. �

It is clear from Theorems 4.1 and 4.3 that a Gurariy space is a Lindenstrauss space.
Thus, the last part of Corollary 4.5 is also a particular case of the following result (see
also [3, Corollary 3.6]).

PROPOSITION 4.6. The bi-dual of every infinite-dimensional Lindenstrauss space has
the strong diameter 2 property. In particular, every Lindenstrauss space has the strong
diameter 2 property.

Proof. Let X be a Lindenstrauss space. It is classical that X∗ is order isometric
to an �1-sum of L1(μa)-spaces, where μa is a probability measure (see e.g. [17,
Theorem 1.b.2]).

Now there are two possibilities. Either every μa is purely atomic, and then
X∗ is isometric to �1() for some set , or one μa is not purely atomic (see [15,
Theorem 5.14.9] for a concrete representation). In the first case X∗∗ = �∞(), which
has the strong diameter 2 property. In the latter case we may write X∗∗ = Z ⊕∞ L∞(μa)
and thus X∗∗ has the strong diameter 2 property by Proposition 4.6 in [1]. In either
case X∗∗ has the strong diameter 2 property. �
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Note that not all Lindenstrauss spaces, e.g. c0, have the Daugavet property, see
also [24, p. 79].
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