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A semigroup is a nonvoid Hausdorff space together with a continuous
associative multiplication. (The latter phrase will generally be abbreviated
to CAM and the multiplication in a semigroup will be denoted by juxta-
position unless the contrary is made explicit.)

Any Hausdorff space may be supplied with a CAM, and, for example,
one may define xy = x for all x and y. The addition of algebraic conditions
may change the situation greatly and a circle together with a diameter
does not admit a CAM with unit. It was shown in [W 1] (see [KW 1] for
another example) that the space consisting of the curve y = sin (I/a;),
0 < x ^ 1, together with its limit continuum, does not admit a CAM with
unit. (This result follows readily from a result of Robert Hunter's [H].)

An act is such a continuous function

TxX-^X

that T is a semigroup and X is a nonvoid Hausdorff space and, denoting
the value of the anonymous function at the place (t, x) by tx, the associ-
ativity condition

MM) = (hh)*
holds for all t^t^eT and all x e X. We shall refer to this situation as an
action of T on X and say that T acts on X, or use similar terminology.

Again, any semigroup may act upon any space, for example one may
put tx = x for all t e T and all x e X. Moreover, the situation in which T
is a group is so well known as not to require explication. However, when T
is merely a semigroup, very little is known without additional conditions
on T and X of an algebraic and metric nature, and it is our intention here
to inaugurate such an investigation, of a modest character.

Put in its simplest form, we shall give conditions under which a compact
connected semigroup may not act upon the sinuscurve described in an earlier
paragraph. In more detail, suppose that the space X contains an open dense
half-line whose complement is a set C, that there is some q e X such that
Tq — X, that T acts unitarily on X (x e Tx for each xeX), and that a
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certain natural hypothesis is made to exclude trivial action of the sort just
indicated — then C is (topologically) homogeneous.

It may be remarked that, from a paper by J. Aczel and A. D. Wal-
lace (to appear), it can be concluded that X must indeed have the structure
of a semigroup provided that T is commutative. It is also proved there that
if T and X are compact, T acts unitarily, and {Tx \ x e X} is a tower, then
there exists q e X with Tq = X.

For material concerning discrete semigroups reference may be made to
the books of Clifford-Preston [CP] and Ljapin [L] and for the general case
to the excellent expository dissertation of Paalman-de Miranda [P-de M]
and the forthcoming research monograph of Mostert-Hofmann.

Insofar as topology is concerned, we assume familiarity with much
standard material and refer to Hocking-Young [HY], Hu [Hu], Kelley [K]
and Wilder [Wi]. It does not follow that we adhere to the language and
notation of any of these, but generally we note any departure from the
customary rubric. In particular, we prefer A*, A0, and F(A) — A*\A° for
the closure, interior and boundary of the set A. Where there may be con-
fusion of meaning, topological usuage will take precedence of algebraic
usage. Thus to say a set is closed, is to mean that it is closed in the topology
and not that it is a subsemigroup.

"Space" will include the quantifier "Hausdorff". A continuum is a
compact connected space and a bing (Middle English, Old Norse— heap,
pile) is a compact connected semigroup.

Henceforth it will be supposed that TxX -> X is an act, as defined
earlier. For A contained in X and M contained in T we write

MA = {tx 11 e M and x e A},

M<-»A = {x\MxnA^\J}
and

M^-^A = {x\MxCA}.

It will be observed that no differentiation is made between x and {x} if it
is not convenient to do so, and does not readily lead to confusion. In this
vein we write A\x rather than ^4\{a;}, and so on. Also, inclusive quantifiers
will be omitted if there is likely to be no misunderstanding.

It may be observed that

(1.1) M[~1]A = X\M<-»(X\A).

Proof of the following have been given in [W 1] and [W 6] in various
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forms and in varying degrees of generality and we content ourselves with
a brief sketch.

(1.2) (i) / / M is compact and if A is closed then Ml~v A is closed.
(ii) / / A is open then M(-1) A is open.

(iii) / / M is compact and if A is open then M[~1] A is open.
(iv) / / A is closed then M[~1] A is closed.
(v) / / M is compact then {x \ A C Mx} = n {M^-^a \ a e A} is

closed and hence if A is also closed then {x | Mx = A} is closed.

For the proof of (i) it may be observed that

M<~»A = q((MxX) n a.'1 {A))

where a is the (continuous) action-map, <x,(t, x) = tx, and q is the projection
of TxX onto X. From this, (iii) follows via (1.1). The others are similar.

The set A C X is an M-ideal if A is non-void and if MA C A. If T and
X are compact and if X properly contains a T-ideal then it is known (e.g.,
[KW 1] and [W1]) that there is a maximal proper ideal and that each such
is open.

We make repeated use of the fact that

M*A* C (MA)*

(which follows immediately from the continuity of the action) and, in
particular,

TA* C (TA)*.

If t is an element of a semigroup then

r(t) = {t, t\ fi, • • •}*

and for useful properties reference is made to [P-de M], in particular,
p. 22 et seq. (These results are due mainly to Hewitt, Koch and Numakura,
loc. cit.)

An illustrative and basic example of an act is given as follows. Suppose
that X is locally compact Hausdorff and that M (X) is the set of all con-
tinuous functions taking X into X, so that M(X) is a semigroup under
composition, using the compact-open topology. Then M(X) acts on X by
evaluation, (/, a;) -*• f(x). As a matter of orientation (and we do not use this
fact) it may be observed that, recalling that T acts on X, the function

0 : T - • M(X)
defined by

0(t)(x) =tx

is a continuous homomorphism which will be an iseomorphism (homeomor-
phic isomorphism) into provided that T is compact and that T is effective,
which is to say that if t J= t', then tx =£ t'x for some x e X.
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Additional insight into acts may be given. A left congruence on a semi-
group S is such an equivalence CCSxS that ACCC, A being the diagonal,
If g is the natural map from S to SjC then, 5 being compact and C closed,
there is a unique manner in which S may act upon S/C such that
sg(s') = g(ss'). Thus any compact semigroup acts in a canonical manner
upon any of its left quotients.

Now conversely, assume that S acts on X (both being compact) and
suppose that Sq = X for some q e X. If C is defined as the set of all (s, s')
such that sq = s'q then C is a closed left congruence and there is a homeo-
mprphism of X upon SjC, and the canonical action of 5 on SjC mimics in
all essential respects the original action of S on X.

A congruence on a semigroup S is a subset of SxS which is simulta-
neously an equivalence (reflexive, symmetric and transitive) and a sub-
semigroup of SxS, using coordinatewise operations in the latter. If 5 is
compact and if C is a closed (in the standard topology of S X 5) congruence
on S, then S/C is a semigroup and the canonical function

is a continuous onto homomorphism. The topological parts of this construc-
tion are contained, among many other places, in Kelley [K] and the whole
matter is essentially in the folklore of semigroups (but cf. [W1] and [W 7]).

Removal of the harsh hypothesis that S be compact is very much an
open question. If S were a group then the function g would be open, which
would settle matters. But when S is just a semigroup there are examples
to show that SjC need not be Hausdorff, even if it is assumed that S is
the real line (but of course the operation is not addition). In this connection,
reference is made to the papers of E. J. McShane [M] and B. J. Pettis [P],
among others.

Reverting to the present instance, with T acting on X, we define
CCTxT by

C = {(tlt t2) | txx = t2x for all x e X)

and readily verify that C is a closed congruence on T. When T is compact,
T/C is a semigroup and acts on X, and in fact, TjC is iseomorphic to a subset
of M(X) since TjC is compact and separates the points of X.

(1.3) PROPOSITION. Using in part the notation above, suppose that, in
the diagram

TjC

https://doi.org/10.1017/S1446788700004171 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700004171


[5] Semigroups acting on continua 331

the continuous function f is consistent with the action of T on X, in the sense that

(*) g{t) = g{f) imp^s f{t) = f(t'), for all t, f in T,

and suppose that T is compact. Then there is such a continuous function h
that the diagram is analytic, f = hg. If f is bisconsistent, in the sense that (*)
is an equivalence rather than merely an implication, then h is a homeo-
morphism into, f(T) is a semigroup under the multiplication

xox'= h{h-1{x)h-1{x')),

h is an iseomorphism onto this semigroup and f is similarly a homomorphism.
If f is also a translation relative to the given act, in the sense that

f(tf) = tf(t') for all t, t' in T,

and if C is a minimal T-ideal which intersects f{T), then C Cf(T), C is a
minimal left ideal of {f{T), o), and if there is some ueT with f{u) eC and
uC = C, then (C, o) is a group.

PROOF. The first paragraph is easily verified. To prove that C C f(T),
first notice that f{T) is a T-ideal: for Tf(T) = /(T2) since / is a translation,
and T2 C T, so that Tf(T) Cf(T). This, together with the hypothesis that
C is a minimal 7*-ideal intersecting f(T), implies that C C f(T).

Now let x = f(t) be an arbitrary but fixed element of C. From the
definition of o, one sees that f(tj) o f(t2) = f{txt^, and / is a translation, so
that f(T) o f(t) = f(Tt) = Tf(t). Since f{t)eC and C is a minimal T-ideal,
Tf(t) = C. That is, f(T) o x = C for arbitrary x e C, so that C is a minimal
left ideal of (f{T),o).

From the above, (C, o) is a semigroup and C o x = C for each x eC
since C is a minimal left ideal. If there is some x eC such that x o C = C also,
then as is well known, C is a group. Thus we observe that f(u) eC by
hypothesis, and prove that /(«) o C = C: from the previous paragraph,
we have that

C = Tf(u) = f(Tu) and f(u) o f(Tu) = f{uTu),

which when combined give
f(u) o C = f(uTu).

Since / is a translation,
f(uTu) = uf(Tu),

and uf(Tu) equals uC since f(Tu) = C by the above. Therefore

f(u) oC = uC,

and uC equals C by hypothesis, so we have the desired result,

/(«) o C = C.
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In the following corollary and in our later use of (1.3), we shall have,
for some a e X, f(t) = ta (and thus f(T) = Ta) and the condition

(t) ta = fa implies tx = t'x for all t,f eT and all x e X.

It is easy to see that / is a biconsistent translation.

NOTATION. Q = {x e X \ Tx = X).

(1.31) COROLLARY. / / X = Q and if there is some a e X which satisfies
(t), then X is a left simple semigroup, hence X is iseomorphic to ExH, where
E is the set of idempotents of X and H is a maximal subgroup of X. If also,
there is some u e X with uX = X, then X is a group.

PROOF. Define / : T -> X by f(t) = ta; then / is a biconsistent trans-
lation and f(T) = Ta = X (since a e Q), so that X is a semigroup by (1.3).
It is clear that X is the only T-ideal since X = Q, so also by (1.3), X has
no proper left ideals — i.e., X is left simple. Then by a result in [W 3], X
is iseomorphic to ExH.

If there i s « e l such that uX = X, then by the above and (1.3), X
is a group.

(1.4) PROPOSITION.

(i) / / T is compact and X is a continuum, then each maximal proper
T-ideal is open and dense.

(ii) Suppose that X 7̂  Q ^ • • Then X\Q is the unique maximal proper
T-ideal, and if also T and X are continua, then X\Q is open, dense and con-
nected.

PROOF, (i) Let / be a maximal proper T-ideal and let x e X\J; X\J
is closed since either X\J = {x} or X\J — {y e X \Ty = Tx}, which is
closed because T is compact. Therefore / is open.

Since / is a proper open set and X is connected, J^J*',J* is also
a T-ideal and / is a maximal proper one, hence / * = X, and thus / is dense.

(ii) Q n Tx ^ • if and only if x e Q (if there is some q eQ r> Tx,
then X = TqC T*x C Tx, hence X = Tx so that x e Q; if x e Q, obviously
x e Q n Tx). Therefore Tx C X\Q if and only if x e X\Q, i.e., X\Q = T^1]

(X\Q). This implies that T(X\Q) C I ^ ; it is nonempty and proper, hence
is a proper T-ideal, since X ^ Q =£ • by hypothesis; and if / is a set
properly containing X\Q, then J intersects Q, hence TJ = X, so that no
proper T-ideal properly contains X\Q.

Now assume further that T and X are continua. X\Q is open and dense
by the preceding proof. Suppose that X\Q is not connected, so that
X\Q = U u V, where U and V are disjoint nonempty open sets. Observe
that X\Q = r[-1] U u r[~1] V since x e Q implies Tx = X so that Tx <t U
and Tx<kV, hence a; ^ T[~1]t/u r[~1]F; conversely, xeX\Q implies
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Tx C X\Q since X\Q is a T-ideal, and Tx is a continuum, so either TxCU
or Tx C V. Therefore at least one of Tl~^U and T[~1]V is nonempty, say
r[~1]C7 ^ • • Both sets are proper and they are open by (1.2) (iii). Thus
X being connected implies that there is some x e (Ti~1'iU)*\Tl~1'iU. Be-
cause r[~1]F is an open set disjoint from Tl~1]U, x 4 r [~1 ]F, so that
x e (T[~1]U)* n Q. Therefore X = Tx C T(T[~1]U)*; by continuity,
r ( r [ - 1 ] t / )*C(rr [ - 1 ] f7)* ; by definition, TT^-^UCU, and thus XCU*,
which contradicts our assumption that V is a nonempty open set disjoint
from U.

The following lemma differs from similar statements in [F], [W 1],
[W 4], and [W 6] only in that we do not require the semigroup to be con-
nected. The fact that connectedness is unnecessary proves very useful in
(2.3), where we apply it to a semigroup of the form F(t).

(2.1) LEMMA. Let X be a continuum, let H C X, and let S be a compact
semigroup acting on X. If F(H) ^ • and there exists an S-ideal in H, then
there is some p e F(H) such that Sp C H*.

PROOF. Let G be a component of H n Sl~1]H. (H n S[~1]H is non-
empty since there is an S-ideal L contained in H by hypothesis,
and • ^ SL C L C H implies D ^ I C f f n Sl~1]H). Then GuSGCH,
hence G* u SG* C H* by continuity of the action. Suppose that
(G* u SG*) n F(H) = • ; then G* u SG* C H°, which is to say,
G*CH° nS[~1]H°. Since 5 is compact, S^H0 is open by 1.2 (iii), so
H° n S[~1]#° is open; it is also a proper subset of X since it is contained in
H and F(H) ^ • • Of course H° n Sl~1]H° C H n S[~1]H, so we have that
G = G* and that G must be a component of H° n S[~^H°. But then G is
a component of a proper open subset of a continuum, whose closure does
not intersect the boundary of the open set, and this is impossible (see [HY],
for example). Therefore there must be some p e (G* u SG*) n F(H), and
then Sp C 5(G* u SG*) = SG* u S*G* C SG* C H*.

A subset 2V of a continuum is a woiflZ set iff JV is a nondegenerate
continuum and F(N) is exactly one point. When a set B is the intersection
of all the nodal sets containing it, we will say that B = D(B). Faucett has
proved that if A is the complement of a maximal proper ideal of a bing and
if A = D(A), then cardinal 4 = 1 [F]. We have proved a more general
result (2.3), that if T is a bing acting on a continuum X, and if A is a subset
of the complement of a maximal proper T-ideal, then A = D(A) implies
that cardinal A = 1. We shall use without proof the following facts:
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(«) D(A) is a continuum [R].
(/?) If A = D(A) and F is a continuum intersecting A, then A n F

is a continuum [R].
(y) Ii A = D(A) is contained in an open set U and y $U, then there

is a nodal set N containing A such that y $N and .F(iV) e U [R].
(d) If N is a collection of nodal sets, if AQ = n N =£ U, and if

Z = {F(N) | N e N}, then yl0 o Z* ^ • (easily proved using

(y))-

The following lemma contains the heart of the proof of (2.3), our
generalization of Faucett's theorem. The reason we define N, which may
be a proper subset of M, and Ao = n N, is that (2.2) (ii) need not be true
if one states it for A and {F(M) \MeM}, rather than for Ao and
Z= {F{N) \NeN}.

(2.2) LEMMA. Let A be a nonempty set in a continuum X such that
A = D(A), and let M be all the nodal sets containing A. Fix NQ in M, let
N = {NeM\ NCN0}, let Z = {F{N) \NeN} and let Ao = n N. Then

(i) AnZ* =Aon Z*.
(ii) / / B is a continuum intersecting both AQ and X\A0, then

BDAon Z*.
(iii) Suppose that T is a semigroup acting on X and that t eT,

a' e Ao n Z* such that ta' e Ao. Then Ao contains a F(t)-ideal.

PROOF, (i) Suppose M e M and Z* <£ M. Since M is closed this implies
that Z <£ M, so there is some N e N such that F(N) $ Z. Now M is con-
nected, M n N =£ • since A CM r\N, and F(N) is a cutpoint of X not
contained in M, hence M C N. Therefore M CN0, so that M e N. We have
proved that if M e M\N, then Z* C M. Now A = [n N] n [n (M\N)] by
definition, hence A n Z* = [n N] n Z*, which is precisely Ao n Z*.

(ii) First observe that Z* n N = (Z n N)* for N e W: let p e Z* n iV,
so that either >̂ = F(N), in which case p e Z n IV, or else p e Z* n N°, so
that surely^) e (Z n 2V)*. The other inclusion is obvious.

Suppose now that B is a continuum intersecting both Ao and X\/l0,
so that B intersects X\N for some N e N. If we can show that B contains
N n Z, then B is closed so that B will contain (N n Z)* = N n Z*, which
contains Ao n Z*. Thus let p eN n Z. In case >̂ = F(N), then p e B
since B is a connected set intersecting both X\2V and N (since i0CJV).
Otherwise /> eN\F(N); since ̂ > e Z, there is some NxeN such that >̂ = F ^ ) .
We will prove below that Nt C AT, from which it is clear that F(N1) separates
X\N from Ao CN1, hence the connected set B must contain F(N1) = >̂. To
prove that N.Nj^eN and F(2VJ eN imply N^^CN, first note that (X\2V)*
is connected since its boundary is a point and X is connected; therefore,
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since p = F(Nj) is a cutpoint and p £ [X\N)*, either (1) (X\N)* CNX or
(2) (X\N)*CX\N1. It is not possible that (1) holds: for we know that
NvNiCN,, by definition of N, hence {X\N0)* C (X\N)* and, if (X\N)*
were contained in iV^ we would have (X\N0)* CA^ CiV0. But this implies
that X\N0 = D, which is false because No is nodal (a closed set with non-
empty boundary cannot have an empty complement). Therefore it must be
true that (2) holds, which clearly implies that Nt C N.

(iii) We are given a set Ao; for n 2s 1, define An to be tAn_1 n Ao.
Observe that Ao = D(A0), so that Ao is a continuum by (a); then by in-
duction, using these facts, (ft) and the continuity of t, each An is a conti-
nuum. One also easily shows by induction that tAn C tAn_lt so that if there
were a nonempty An such that tAn C J o , then An would be a r(t)-ideal in
4 0 and we would be done. Suppose therefore, in the remainder of the proof,
that whenever An =£ • , tAn <fc Ao; we will first show, by induction, that
this implies An ^ • for each n, and then we will use this fact to exhibit a
jT(£)-ideal in Ao. We will prove each An nonempty by showing that there is
some an e An such that tan — a'. We lean heavily on the hypotheses that
a' e Z* n Ao and ta' e Ao, and on the fact, stated as (2.2) (ii), that Z* n Ao

has the property that a continuum intersecting both Ao and its complement
must contain Z* n Ao. (Thus Z* n Ao behaves somewhat like a C-set;
see § 3 for definition.) First observe that Ao ^ • by hypothesis, hence
tA0 is a nonempty subcontinuum by continuity of the action. Also, tA0 in-
tersects both X\AQ (by supposition) and Ao (since ta' etA0 n Ao). Hence
tA0 D Z* n Ao by (2.2) (ii), so there must be some a0 e Ao such that ta0 = a'.
Now suppose that n ^ 0 and that we have are e ^4n such that tan = a'; then
a' e £4B n ^40 = ^4n+1 so that ta' e ^ m + i n Ao. Also, ^ n + 1 is a continuum
and it intersects -X^o by supposition, hence again by (2.2) (ii), we have
Z* n Ao C tAn+1. Therefore there is some an+x e An+1 such that tan+1 = a'.
Therefore An =fr D for each n; also, ^ : X ->- X is a continuous function,
hence there is a .T(£)-ideal in ^40 by the following remark.

REMARK. Let t: X -> X be a continuous function, let Ao be a compact
subset of X, and define, inductively,

An+1 = t{An) nA0.

If each of the sets An is nonempty, then there is a nonempty closed set B con-
tained in every An such that t(B) C B.

PROOF. Immediately from the definition there is, for each n, an
element xn e Ao such that

{xn,t{xn), ••;t»(xn)}CA0.
For n S: 1, let

B n — l^n- xn+\> ' ' '> }*>
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so that these sets form a tower of closed subsets of the compact set Ao,
and hence that

is nonempty. It follows that tk(B0) C Ao for every k ^ 1, and from this that

B=(v{t*(B0)\k^l})*
is the desired set.

(2.3) PROPOSITION. Suppose that T acts on X, X is a continuum, J
is a maximal proper T-ideal and A is a nonempty subset of X\J such that
A = D(A). If either

(a) T is a continuum, or
(b) T is F-compact (F(t) is compact for each teT) and there is a T-

ideal contained in X\NQ for some nodal set No containing A,

then cardinal A = \.

PROOF. If a e X\J, then / u Ta is clearly a T-ideal; / is a maximal
proper T-ideal, hence either / u Ta = J or / u Ta = X. The former
implies that / u a = X and we are done. Therefore, suppose for the rest
of this proof that / u Ta = X for each a e X\J. Then in particular, since
J C X\A, {X\A) yjTa = X for each aeA. We will find an a' e A such
that Ta' C (X\A) u a', which clearly implies that A = a', the desired con-
clusion.

Let us first prove that given the other hypotheses, (a) implies (b).
Obviously, T compact implies T /"-compact. Let x e J (which is nonempty
by definition of T-ideal) and note that TxC J C X\A and that Tx is a
continuum since T is and since the action is continuous. Therefore X\Tx
is open so that if y e Tx, then by (y), there is a nodal set 2V0 containing A
such that y $N0 and F(N0) e X\Tx. Tx is connected, in the complement of
the cutpoint F(N0), and intersects X\N0, so we conclude that Tx C X\N0.
Since Tx is a T-ideal, (b) is satisfied.

Assume (b) now, let N = {N \ A CN CN0 andiVis nodal}, let Ao = r\N,
and let Z = {F(N) | N e N}. Choose a' e Ao n Z*, which is nonempty by
(6); note that Ao n Z* = A n Z* by (2.2) (i), so that a' e A; and suppose
that ta' eA. We will show that ta' = a', hence Ta' C {X\A) u a', which is
the desired result. Since A C Ao, we have a', ta' eA0, so (2.2) (iii) asserts
that there exists a .T(£)-ideal in Ao. It is clear that each N e N also contains
this F(t)-idea.l, and for each N eJV, X\N contains a T-ideal, hence a F(t)-
ideal (by (b), since X\N0CX\N). Finally, the action map TxX^X
restricted to F(t) X X is an action of the compact semigroup F(t) on the
continuum X, so by (2.1), since F(N) = F(X\N) = one point, we have
F(t)F{N) CN* and F(t)F(N) C {X\N)*. That is, F(t)F(N) = F(N). This
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is true for each N eN, which is to say F(t)z = z for each z e Z. Now
a' e Z* and the action is continuous, hence also F{t)a' = a', so that, in
particular, ta' — a'.

(2.3.1) COROLLARY. Let S be a bing and J be a maximal proper (left,
right or two-sided) ideal of S. If A is a nonempty subset of S\J and A = D(A),
then cardinal A = 1.

PROOF. First suppose that / is a maximal proper left ideal of S. The
multiplication of S is an action of S on itself (on the left) and, with respect
to this action, / is a maximal proper S-ideal. S is a continuum so that
cardinal A = 1 by (2.3). Left-right duality gives the same result when /
is a maximal proper right ideal of S.

Suppose now that / is a maximal proper two-sided ideal of S. One can
check that the space T — SxS with the multiplication

is a semigroup, and that
TxS-^S

defined by ((a;, y), s) = xsy is an action of T on S. T is a continuum and
one can see without difficulty that / is a maximal proper T-ideal, so that
we may again use (2.3) to conclude that cardinal .4 = 1.

We will use without proof the following facts.

(e) Let X be a continuum containing an open dense half-line, W, and let
C = -ST\PF. Then C is a C-set, i.e., a continuum which intersects C
and is not contained in C, must contain C.

(p) A locally connected subcontinuum which intersects a nondegenerate
C-set is contained in it {follows from a result in [W 5]).

(3.1) PROPOSITION. Let X be a continuum containing an open dense
half line, W, let C = X\W, and suppose that cardinal C > 1. Let T be a bing
acting unitarily on X such that • ^ Q ^ X. Then Q is a single element, the
endpoint q of X, C CTx for each x e X, and either

(i) TC <t C, so that TC is homeomorphic with X and the Q-set of the act
TxTC -> TC is all of TC; or, disjunctively,

(ii) TC CC,C is the unique minimal T-ideal and C is a homogeneous
space.

If also there is some a e X such that

(t) ta = t'a implies tx = t'x for all x e X,
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then Ta has the structure of a semigroup, C is the minimal ideal of Ta and a
group.

PROOF. Since T and X are continua, X\Q is connected and dense in
X by (1.4), so Q must be a subset of C u q, where q is the endpoint of X.
Q is the complement of a maximal proper T-ideal by (1.4), C = D(C),
and cardinal C > 1 by hypothesis, hence Q cannot contain C by (2.3);
thus to prove that Q = q, we must show that Q n C ̂  • implies QD C.
Whether or not Q intersects C, C = Bx u B2, where

Bx = {x e C | Tx D C}, B2 = {xeC\TxC C}.

This follows from (e) since, for each x e C, Tx is a continuum and
a; e Tx n C. If Q n C # D, then Q n C = Br: for obviously 0 n C C B ^
and if a; e Bx, Q n Tx ^ <O, hence a; e Q (see proof of (1.4) (ii)). Therefore
if Q r\C =£U,

C = (Q nC)u{xeC\TxCC},

which are both closed sets by continuity and compactness. They are disjoint
by continuity, and C is connected by either (a) or (e), hence if Q n C =£ •
then C = Q n C, which is false.

We prove next that C C Tx for each x e X, which observation was made
to the authors by K. Sigmon. Suppose first that there is some x eW such
that Tx C W. Let t eT such that tueC and let A be the arc in W joining
x and u. Since tA is a locally connected continuum intersecting C and since
C is a nondegenerate C-set, £4 must be contained in C by (d); but this
contradicts tx eW n tA. Therefore, for each x e W, Tx c\C ^ • • Also,
x eTx nW for each a; e W, Ta; is a continuum, and C is a C-set, hence Tx
must contain C for each x eW. Because W is dense and the act is continuous,
Ta; must contain C for each x e C as well.

(i) Suppose TC 4= C and let x e C such that Tx <t C. Since C C Ta;, Tx
is homeomorphic with X, and since T(Tx) C Ta;, T acts on Tx via a restric-
tion of the original action. Let Qx be the @-set for this restricted action:
i.e., Qx = {y e Tx | Ty = Tx}. Since a; e C n &., (?a ^ • and ()„ is not just
the endpoint of Tx, hence by the first assertion of this theorem, we conclude
that Qx = Tx. Therefore Ta; = TC and the proof of (i) is complete.

(ii) Suppose that TC C C. We proved above that C C Tx for each
x e X, which is to say, C is a subset of every T-ideal; thus, when TC C C,
Tx = C for each x e C and C is the unique minimal T-ideal.

We prove that C is homogeneous by a series of assertions:
(1) For each x e W, Tx is the continuum irreducible between C and x.

For Tx is a continuum containing C and x, hence Tx is homeomorphic with
X. T acts on Ta;, x e Qx = {y e Tx | Ty = Tx} and C C Tx\Qx, hence Qx
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contains only the endpoint of Tx by the first assertion proved above.
Therefore, x is the endpoint of Tx.

(2) T contains an idempotent e which acts as identity for X. For there
exists t eT such that tq = q, since Tq = X by (i) above; then tX is a con-
tinuum containing q and intersecting C (tC CtX n C), hence tX = X.
Therefore tnX = X for each n ^ 1, hence yX = X for each y e r(t). r{t)
contains an idempotent e since F(t) is compact [P-de M].

(3) Let J = {teT\tWC W); then T\J = {teT\tXC C}, and J is
open. The bracketed set is closed by (1.2) (iv), and it is clear that T\J con-
tains it. Conversely let t e T\J, so that ty eC for some y e W. If A is an arc
in W containing y, then tA is a locally connected continuum intersecting C,
hence tA C C by (£); W is the union of a family of such arcs, hence tW C C.
Therefore, t e T\J implies tW C C, hence tX C C.

(4) If t e J* then tC = C, hence t is a homeomorphism of C onto itself.
By continuity of the action, we have only to prove that tC = C for each
t e / , so let t e J. Then tX is a continuum not contained in but intersecting
C, hence C C tX by (s). (Z = rt7u *C and tW C JF, hence C C tC. Then,
since T is compact, £ is a homeomorphism of C onto itself by the Swelling
Lemma [W 1], [W 2].

(5) Let To be the component of J which contains e, and let To = J*; then
Tox = Tx for each x e X. If / = T, then To = T and we are done, so sup-
pose J ^T. Then Jo is a component of a proper open subset of the conti-
nuum T, hence / * = To intersects the boundary of / [HY]. Let t e r o \ / ;
then tXCC by (3), so that Tox intersects C for any x eX. Also, x = exeTox,
and it is clear that Tox is a subcontinuum of Tx. Thus if x e W, Tox is a
continuum containing C and x; hence ToxD Tx, by (1). It is clear that
ToxCTx for any x e X, hence Tox = Tx for each x eW. Continuity then
gives Tox = Tx for each x e X.

(6) C is homogeneous. Since Toa; = C for each x e C, by (5), and since
each member of To is a homeormorphism of C onto itself by (4), C must be
homogeneous.

We suppose now that there is some aeX satisfying (t); then, as remarked
in § 1, t -^ ta is a biconsistent translation of T onto Ta, so that Ta has a
semigroup structure with C as minimal left ideal, by (1.3). Since C is the
unique minimal T-ideal, it is the unique minimal left ideal of the semigroup
Ta, hence is the minimal ideal of Ta [P-de M]. According to (1.3), to prove
that C is also a group, we have only to produce some u eT with ua e C
and uC = C; but there exists u eT0 with ua e C since Toa = TaD C, and
uC = C by (4).

Case (i) of the theorem is not vacuous. The dual of a construction due
to Koch and Wallace, p. 282, [KW 2], shows that any continuum X with
an isolated arc A admits the structure of a semigroup with the endpoint
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of A as right unit and with Xb = B for each b e B = (X\A)*. Thus if we
take X as in the theorem and let A be an arc in X containing q, then X with
the semigroup mentioned is a bing acting on itself as described in case (i).
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