SEMIGROUPS ACTING ON CONTINUA
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A semigroup is a nonvoid Hausdorff space together with a continuous
associative multiplication. (The latter phrase will generally be abbreviated
to CAM and the multiplication in a semigroup will be denoted by juxta-
position unless the contrary is made explicit.)

Any Hausdorff space may be supplied with a CAM, and, for example,
one may define xy == « for all # and y. The addition of algebraic conditions
may change the situation greatly and a circle together with a diameter
does not admit a CAM with unit. It was shown in [W 1] (see [KW 1] for
another example) that the space consisting of the curve y = sin (1/z),
0 < z = 1, together with its limit continuum, does not admit a CAM with
unit. (This result follows readily from a result of Robert Hunter’s [H].)

An act is such a continuous function

TxX—>X

that T is a semigroup and X is a nonvoid Hausdorff space and, denoting
the value of the anonymous function at the place (¢, ) by ¢z, the associ-
ativity condition

ti(tax) = (his)x

holds for all ¢,,¢, € T and all z € X. We shall refer to this situation as an
action of T on X and say that T acfs on X, or use similar terminology.

Again, any semigroup may act upon any space, for example one may
put tx = x for all te T and all x € X. Moreover, the situation in which T
is a group is so well known as not to require explication. However, when T
is merely a semigroup, very little is known without additional conditions
on T and X of an algebraic and metric nature, and it is our intention here
to inaugurate such an investigation, of a modest character.

Put in its simplest form, we shall give conditions under which a compact
connected semigroup may not act upon the sinuscurve described in an earlier
paragraph. In more detail, suppose that the space X contains an open dense
half-line whose complement is a set C, that there is some ¢ € X such that
Tq= X, that T acts unitarily on X (x € Tx for each z e X), and that a
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certain natural hypothesis is made to exclude trivial action of the sort just
indicated — then C is (topologically) homogeneous.

It may be remarked that, from a paper by J. Aczel and A. D. Wal-
lace (to appear), it can be concluded that X must indeed have the structure
of a semigroup provided that T is commutative. It is also proved there that
if T and X are compact, T acts unitarily, and {Tz | z € X} is a tower, then
there exists ¢ € X with 7g = X.

For material concerning discrete semigroups reference may be made to
the books of Clifford-Preston [CP] and Ljapin {L] and for the general case
to the excellent expository dissertation of Paalman-de Miranda [P-de M]
and the forthcoming research monograph of Mostert-Hofmann.

Insofar as topology is concerned, we assume familiarity with much
standard material and refer to Hocking-Young [HY], Hu [Hu], Kelley [K]
and Wilder [Wi]. It does not follow that we adhere to the language and
notation of any of these, but generally we note any departure from the
customary rubric. In particular, we prefer 4*, A°, and F(4) = A*\A4° for
the closure, interior and boundary of the set 4. Where there may be con-
fusion of meaning, topological usuage will take precedence of algebraic
usage. Thus to say a set is closed, is to mean that it is closed in the topology
and »of that it is a subsemigroup.

“Space” will include the quantifier “Hausdorff”’. A continuum is a
compact connected space and a bing (Middle English, Old Norse— heap,
pile) is a compact connected semigroup.

1

Henceforth it will be supposed that Tx X — X is an act, as defined
earlier. For 4 contained in X and M contained in T we write

MA = {tx|teM and ze 4},

MVA ={x|Men A £}
and

MUUA = {o | Mz C A}

It will be observed that no differentiation is made between « and {z} if it
is not convenient to do so, and does not readily lead to confusion. In this
vein we write A\x rather than 4\{z}, and so on. Also, inclusive quantifiers
will be omitted if there is likely to be no misunderstanding.

It may be observed that

(1.1) M4 = X\M“D(X\A4).

Proof of the following have been given in [W 1] and [W 6] in various

https://doi.org/10.1017/51446788700004171 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700004171

[3) Semigroups acting on continua 329

forms and in varying degrees of generality and we content ourselves with
a brief sketch.

(2.2) () If M is compact and if A is closed then M~ A is closed.
(ii) If A is open then M-V A is open.
(iii) If M is compact and if A is open then M1 A is open.
(iv) If A is closed then M'=1) A is closed.
(v) If M is compact then {x| A CMz}=n{M“VajaecAd} is
closed and hence if A is also closed then {x | Mx = A} is closed.

For the proof of (i) it may be observed that
M4 = qg(MxX) nal(4))
where « is the (continuous) action-map, «(f, ) = fz, and g is the projection
of T x X onto X. From this, (iii) follows via (1.1). The others are similar.

The set A C X is an M-ideal if A is non-void and if MA CA. If T and
X are compact and if X properly contains a T-ideal then it is known (e.g.,
[KW1] and [W1]) that there is a maximal proper ideal and that each such
is open.

We make repeated use of the fact that

M*A* C (MA)*
(which follows immediately from the continuity of the action) and, in
particular,
TA* C (TA)*.
If ¢ is an element of a semigroup then
]‘(t) — {t, tz, B, }*

and for useful properties reference is made to [P-de M], in particular,
P. 22 ef seq. (These results are due mainly to Hewitt, Koch and Numakura,
loc. cit.)

An illustrative and basic example of an act is given as follows. Suppose
that X is locally compact Hausdorff and that M (X) is the set of all con-
tinuous functions taking X into X, so that M(X) is a semigroup under
composition, using the compact-open topology. Then M (X) acts on X by
evaluation, (f, ) — f(z). As a matter of orientation (and we do not use this
fact) it may be observed that, recalling that T acts on X, the function

0:T > M(X)
0(t)(z) = tz

is a continuous homomorphism which will be an iseomorphism (homeomor-
phic isomorphism) into provided that T is compact and that T is effective,
which is to say that if ¢ = ¢, then tx # #'z for some x € X.

defined by
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Additional insight into acts may be given. A left congruence on a semi-
group S is such an equivalence CC S x S that ACCC, A being the diagonal,
If g is the natural map from S to S/C then, S being compact and C closed,
there is a unique manner in which S may act upon S/C such that
sg(s’) = g(ss’). Thus any compact semigroup acts in a canonical manner
upon any of its left quotients.

Now conversely, assume that S acts on X (both being compact) and
suppose that Sg = X for some g € X. If C is defined as the set of all (s, s’)
such that sq = s’g then C is a closed left congruence and there is a homeo-
morphism of X upon S/C, and the canonical action of S on S/C mimics in
all essential respects the original action of S on X.

A congruence on a semigroup S is a subset of SX S which is simulta-
neously an equivalence (reflexive, symmetric and transitive) and a sub-
semigroup of SXS, using coordinatewise operations in the latter. If S is
compact and if C is a closed (in the standard topology of S S) congruence
on S, then S/C is a semigroup and the canonical function

g:S—S5/C

is a continuous onto homomorphism. The topological parts of this construc-
tion are contained, among many other places, in Kelley [K] and the whole
matter is essentially in the folklore of semigroups (but cf. [W 1] and {W 71).

Removal of the harsh hypothesis that S be compact is very much an
open question. If S were a group then the function g would be open, which
would settle matters. But when S is just a semigroup there are examples
to show that S/C need not be Hausdorff, even if it is assumed that S is
the real line (but of course the operation is not addition). In this connection,
reference is made to the papers of E. J. McShane [M] and B. J. Pettis [P],
among others.

Reverting to the present instance, with 7 acting on X, we define
CCTXT by

C = {(t1, ty) |tz = tyx for all x € X}

and readily verify that C is a closed congruence on 7. When T is compact,
T/C is a semigroup and acts on X, and in fact, T'/C is iseomorphic to a subset
of M (X)) since T/C is compact and separates the points of X.

(1.3) ProposITION. Using in part the notation above, suppose that, in

the diagram
T/C

gI\f’

T——> X

f

https://doi.org/10.1017/51446788700004171 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700004171

5] Semigroups acting on continua 331

the continuous function f is consistent with the action of T on X, in the sense that
(*) g(t) = g(t') smplies f(t) = f(¢'), for all t, ¢’ in T,

and suppose that T is compact. Then there is such a continuous function h
that the diagram is analytic, f = hg. If f is bisconsistent, in the sense that (*)
is an equivalence rather than merely an implication, then h is a homeo-
morphism into, f(T) is a semigroup under the multiplication

zox' = h(h1(x)h1(x')),

k is an iseomorphism onto this semigroup and f is similarly a homomorphism.
If f is also a translation relative to the given act, in the sense that

Het') = tf() for all t,¢ in T,

and if C is a minimal T-ideal which intersects {(T), then C C{(T), C is a
minimal left ideal of (f(T), o), and if there is some uw € T with f(u)eC and
#C = C, then (C, o) is a group.

Proor. The first paragraph is easily verified. To prove that C C f(T),
first notice that f(T') is a T-ideal: for Tf(T') = f(T?) since { is a translation,
and T2 CT, so that T/(T) C {(T). This, together with the hypothesis that
C is a minimal 7T-ideal intersecting f(T'), implies that C C (7).

Now let # = f(¢) be an arbitrary but fixed element of C. From the
definition of o, one sees that f(#;) o f(¢,) = f(¢,%2), and f is a translation, so
that /(T) o f(t) = f(T¢) = T/(¢). Since f(¢) e C and C is a minimal 7-ideal,
Tf(t) = C. That is, {(T) o x = C for arbitrary z € C, so that C is a minimal
left ideal of (f(T), o).

From the above, (C, o) is a semigroup and Cox = C for each zx e C
since C is a minimal left ideal. If there is some « € C such that z o C = C also,
then as is well known, C is a group. Thus we observe that f(#) e C by
hypothesis, and prove that f(#) o C = C: from the previous paragraph,
we have that

C = Tf(u) = {(Tu) and f(u)o f(Tu) = f(uTu),
which when combined give
fu) o C = f(uTu).
Since [ is a translation,
FuTu) = uf(Tw),

and uf(Tu) equals #C since f(Tu) = C by the above. Therefore

fu)o C =uC,
and #C equals C by hypothesis, so we have the desired result,
flu)o C=C.
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In the following corollary and in our later use of (1.3), we shall have,
for some a € X, f(t) = ta (and thus {(T) = Ta) and the condition

) ta = t'a implies tx = ¢’z for all ¢{,# €T and all ze X.
It is easy to see that f is a biconsistent translation.
NOTATION. @ = {re X | Tz = X}.

(1.31) CoROLLARY. If X = Q and if there is some a € X which satisfies
(1), then X is a left simple semigroup, hence X is iseomorphic to E X H, where
E is the set of idempotents of X and H is a maximal subgroup of X. If also,
there is some u € X with uX = X, then X 1s a group.

ProOF. Define f: T — X by f(t) = fa; then f is a biconsistent trans-
lation and f(T) = Ta = X (since a € Q), so that X is a semigroup by (1.3).
It is clear that X is the only T-ideal since X = Q, so also by (1.3), X has
no proper left ideals — i.e., X is left simple. Then by a result in [W 3], X
is iseomorphic to E X H.

If there is # € T such that #X = X, then by the above and (1.3), X
is a group.

(1.4) PROPOSITION.

(@) If T s compact and X is a continuum, then each maximal proper
T-ideal is open and dense.

(ii) Suppose that X # Q = (1. Then X\Q is the unique maximal proper
T-ideal, and if also T and X are continua, then X\Q s open, dense and con-
nected.

ProOF. (i) Let J be a maximal proper T-ideal and let z € X\J; X\J
is closed since either X\J = {#} or X\J = {y € X | Ty = Tx}, which is
closed because T is compact. Therefore [ is open.

Since J is a proper open set and X is connected, J S J*; J* is also
a T-ideal and ] is a maximal proper one, hence J* = X, and thus J is dense.

(i) @ nTx £ if and only if z e Q (if there is some g€ Q n Tx,
then X = Tq C T% C Tz, hence X = Tz so that x € Q; if 2 € Q, obviously
x € Q n Tx). Therefore Tz C X\Q if and only if z € X\Q, i.e., X\Q = TtV
(X\Q). This implies that 7'(X\Q) C X\Q; it is nonempty and proper, hence
is a proper T-ideal, since X # Q 3= [] by hypothesis; and if J is a set
properly containing X\Q, then J intersects Q, hence TJ = X, so that no
proper T-ideal properly contains X\Q.

Now assume further that T and X are continua. X\Q is open and dense
by the preceding proof. Suppose that X\Q is not connected, so that
X\Q =U uV, where U and V are disjoint nonempty open sets. Observe
that X\Q = T0UU u THUV since z € Q implies Tz = X so that Te ¢ U
and Tz ¢V, hence z¢ TU1U v TI-1V; conversely, z e X\Q implies
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Tx C X\Q since X\Q is a T-ideal, and Tz is a continuum, so either T2 CU
or Tz CV. Therefore at least one of 71U and T1-1V is nonempty, say
T-11U # [O. Both sets are proper and they are open by (1.2) (iii). Thus
X being connected implies that there is some z e (TUNU)*\TH1U, Be-
cause 711V is an open set disjoint from 7TUMU, z ¢ T'71V, so that
ze (T7HU)* A Q. Therefore X = T2 CT(TYU)*; by continuity,
T(TV-UU)* C (TTU)*; by definition, TT-UU C U, and thus X C U*,
which contradicts our assumption that ¥ is a nonempty open set disjoint
from U.

2

The following lemma differs from similar statements in [F], [W 1],
[W 4], and [W 6] only in that we do not require the semigroup to be con-
nected. The fact that connectedness is unnecessary proves very useful in
(2.3), where we apply it to a semigroup of the form I'(¢).

(2.1) LEMMA. Let X be a continuum, let H C X, and let S be a compact
semigroup acting on X. If F(H) % (O and there exists an S-ideal in H, then
there is some p € F(H) such that Sp C H*.

Proor. Let G be a component of H n STUH., (H n SI7YH is non-
empty since there is an S-ideal L contained in H by hypothesis,
and [(]# SLCLCH implies (1% LCH n ST™MH). Then G u SGCH,
hence G* u SG* CH* by continuity of the action. Suppose that
(G* U SG*) n F(H) = []; then G*u SG* C H°, which is to say,
G* C H° n S'YHY, Since S is compact, SI™MH? is open by 1.2 (iii), so
HO ~ SI7UH? is open; it is also a proper subset of X since it is contained in
H and F(H) # (. Of course H® n SI"1H° C H ~ SI"YH, so we have that
G = G* and that G must be a component of H° n SI™VH?, But then G is
a component of a proper open subset of a continuum, whose closure does
not intersect the boundary of the open set, and this is impossible (see [HY],
for example). Theretore there must be some p € (G* U SG*) n F(H), and
then Sp C S(G* u SG*) = SG* U S3G* C SG* C H*.

A subset N of a continuum is a nodal set iff N is a nondegenerate
continuum and F(N) is exactly one point. When a set B is the intersection
of all the nodal sets containing it, we will say that B = D(B). Faucett has
proved that if 4 is the complement of a maximal proper ideal of a bing and
if A = D(A), then cardinal A =1 [F]. We have proved a more general
result (2.3), that if T is a bing acting on a continuum X, and if 4 is a subset
of the complement of a maximal proper T-ideal, then A = D(A4) implies
that cardinal 4 = 1. We shall use without proof the following facts:
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(x) D(A) is a continuum [R].

(B) If A =D(A) and F is a continuum intersecting 4, then 4 n F
is a continuum [R].

(y) If A = D(4) is contained in an open set U and y ¢ U, then there
is a nodal set N containing 4 such that y ¢ N and F(N) e U [R].

(8) If N is a collection of nodal sets, if 4, = N =[], and if
Z={F(N)|NeN}, then Ay Z* £ [] (easily proved using
))-

The following lemma contains the heart of the proof of (2.3), our
generalization of Faucett’s theorem. The reason we define N, which may
be a proper subset of M, and 4, = n N, is that (2.2) (ii) need not be true
if one states it for 4 and {F(M)|M e M}, rather than for 4, and
Z = {F(N)|NeN}

(2.2) LEMMA. Let A be a nonempty set in a continuum X such that
A = D(A), and let M be all the nodal sets containing A. Fix Ny in M, let
N={NeM|NCNy}, let Z={F(N)|NeN}andlet Ay= n N. Then

(i) AnZ*=A,n Z*
(ii) If B is a continuwm intersecting both A, and X\A,, then
BDOAyn Z*.
(i) Suppose that T is a semigroup acting on X and that teT,
a’' € Ay O Z* such that ta’ € Ay. Then A, contains a I'(t)-ideal.

ProoOF. (i) Suppose M e M and Z* ¢ M. Since M is closed this implies
that Z ¢ M, so there is some N € N such that F(N) ¢ Z. Now M is con-
nected, M n N # [J since A CM n N, and F(N) is a cutpoint of X not
contained in M, hence M C N. Therefore M CN,, so that M € N. We have
proved that if M € M\N, then Z* CM. Now 4 = [n N] n [n (M\N)] by
definition, hence 4 n Z* = [n N] n Z*, which is precisely 4, n Z*.

(ii) First observe that Z* "N = (ZnN)*forNeN:letpe Z*n N,
so that either p = F(N), in which case pe Z n N, or else p € Z* n N°, so
that surely p € (Z n N)*. The other inclusion is obvious.

Suppose now that B is a continuum intersecting both 4, and X\4,,
so that B intersects X\N for some N € N. If we can show that B contains
N n Z, then B is closed so that B will contain (N n Z)* = N n Z*, which
contains 4, n Z*. Thus let peNn Z. In case p = F(N), then pe B
since B is a connected set intersecting both X\N and N (since 44 CN).
Otherwise p eN\F(N); since p € Z, thereis some N, e N such that p = F(N,).
We will prove below that N; C NV, from which it is clear that F(N,) separates
X\N from 4, C N,, hence the connected set B must contain F(N,) = p. To
prove that N, N, e N and F(N;) e N imply N, CN, first note that (X\N)*
is connected since its boundary is a point and X is connected; therefore,
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since p = F(N,) is a cutpoint and p ¢ (X\N)*, either (1) (X\N)*CN, or
(2) (X\N)* CX\N,. It is not possible that (1) holds: for we know that
N UN,CN, by definition of N, hence (X\Ny)*C (X\N)* and, if (X\N)*
were contained in N,, we would have (X\Ny)* CN; CN,. But this implies
that X\N, = [, which is false because N, is nodal (a closed set with non-
empty boundary cannot have an empty complement). Therefore it must be
true that (2) holds, which clearly implies that N; C V.

(iii) We are given a set Ay; for » = 1, define 4, to be {4, n 4,.
Observe that A; = D(A4,), so that A, is a continuum by («); then by in-
duction, using these facts, (f) and the continuity of ¢, each 4, is a conti-
nuum. One also easily shows by induction that ¢4, C¢4,_,, so that if there
were a nonempty A, such that ¢4, C 4,, then A, would be a I'(t)-ideal in
4, and we would be done. Suppose therefore, in the remainder of the proof,
that whenever A, # [, t4, ¢ 4,; we will first show, by induction, that
this implies 4, # [ for each #, and then we will use this fact to exhibit a
I'(t)-ideal in 4,. We will prove each 4, nonempty by showing that there is
some a, € A, such that fa, = a’. We lean heavily on the hypotheses that
a’'eZ* n Agand ta’ € A,, and on the fact, stated as (2.2) (ii), that Z* n 4,
has the property that a continuum intersecting both 4, and its complement
must contain Z* n 4,. (Thus Z* n 4, behaves somewhat like a C-sef;
see § 3 for definition.) First observe that A, s [] by hypothesis, hence
tA, is a nonempty subcontinuum by continuity of the action. Also, 4, in-
tersects both X\A4, (by supposition) and 4, (since ta’ € ¢4, N A,). Hence
t4,D Z* n A, by (2.2) (ii), so there must be some a, € A, such that fa, = a’.
Now suppose that » = 0 and that we have a, € A, such that /a, = a’; then
a'etd,nAy=A,,, sothatta’etd, , n 4,. Also, t4,,, is a continuum
and it intersects X\A4, by supposition, hence again by (2.2) (ii), we have
Z*n Ay CtA, ;. Therefore there is some a,,, € 4, ,, such that ta, , = a’.
Therefore A, % [ for each #; also, ¢: X — X is a continuous function,
hence there is a I'(t)-ideal in 4, by the following remark.

REMARK. Let ¢t : X — X be a continuous function, let Ay be a compact
subset of X, and define, inductively,
An+1 = t(An) N AO'
If each of the sets A, is nonempty, then there is a nonempty closed set B con-
tained in every A, such that t(B) C B.

ProoF. Immediately from the definition there is, for each #, an
element x, € 4, such that
{xn’ t(xn)’ Y t”(xn)} CAO
Forn =1, let
Bn = {xm xn+1’ Y }*’
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so that these sets form a tower of closed subsets of the compact set 4,,

and hence that
By=n{B,|n=1}CA,

is nonempty. It follows that #(B,) C 4, for every 2 = 1, and from this that

B = (v {*(B,) | k = 1})*
is the desired set.

(2.3) PROPOSITION. Suppose that T acts on X, X is a continuum, J
is a maximal proper T-ideal and A is a nonempty subset of X\J such that
A = D(A). If either

(@) T is a continuum, or

(b) T is I'compact (I'(t) is compact for each teT) and there is a T-
ideal contained in X\N, for some nodal set N containing A,

then cardinal A = 1.

ProoF. If a2 € X\J, then J u Ta is clearly a T-ideal; J is a maximal
proper T-ideal, hence either JuTa = J or Ju Ta = X. The former
implies that J u ¢ = X and we are done. Therefore, suppose for the rest
of this proof that J u Ta = X for each a € X\J. Then in particular, since
JCX\4, (X\4) uTa =X for each ae A. We will find an @’ € 4 such
that Ta' C (X\A4) u a’, which clearly implies that A = a’, the desired con-
clusion.

Let us first prove that given the other hypotheses, (a) implies (b).
Obviously, T compact implies T I'-compact. Let # € J (which is nonempty
by definition of T-ideal) and note that T2 C J C X\A4 and that Tz is a
continuum since T is and since the action is continuous. Therefore X\Tx
is open so that if y € T, then by (y), there is a nodal set N, containing 4
such that y ¢ Ny and F(N,) € X\Tz. Tz is connected, in the complement of
the cutpoint F(N,), and intersects X\N,, so we conclude that Tz C X\N,.
Since Tz is a T-ideal, (b) is satisfied.

Assume (b) now,let N = {N |4 CN CNyand Nisnodal}, let A, = NN,
and let Z = {F(N) | N e N}. Choose a’ € 4y, n Z*, which is nonempty by
(6); note that 4y n Z* = A ~ Z* by (2.2) (i), so that a’ € 4; and suppose
that fa’ € A. We will show that fa’ = a’, hence Ta’ C (X\4) v a’, which is
the desired result. Since 4 C 4,, we have a',ta’ € 4,, so (2.2) (iii) asserts
that there exists a I'(f)-ideal in 4,. It is clear that each N € N also contains
this I'(t)-ideal, and for each N € N, X\N contains a T-ideal, hence a I'(¢)-
ideal (by (b), since X\N,C X\N). Finally, the action map TxX - X
restricted to I'() X X is an action of the compact semigroup I'(¢) on the
continuum X, so by (2.1), since F(N) = F(X\N) = one point, we have
I'(¢)F(N) CN* and I'(t)F(N) C (X\N)*. That is, I'(¢() F(N) = F(N). This
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is true for each N e N, which is to say I'(f)z = z for each ze Z. Now
a’ € Z* and the action is continuous, hence also I'(f)a’ = a’, so that, in
particular, fa" = a’.

(2.3.1) COROLLARY. Let S be a bing and | be a maximal proper (left,
right or two-sided) ideal of S. If A is a nonempty subset of S\J and A = D(4),
then cardinal A = 1.

Proor. First suppose that J is a maximal proper left ideal of S. The
multiplication of S is an action of S on itself (on the left) and, with respect
to this action, J is a maximal proper S-ideal. S is a continuum so that
cardinal 4 = 1 by (2.3). Left-right duality gives the same result when J
is a maximal proper right ideal of S.

Suppose now that J is a maximal proper two-sided ideal of S. One can
check that the space T = S x S with the multiplication

(@ )", y) = (@', y'y)
is a semigroup, and that
TxXS—>S

defined by ((z, ), s) = sy is an action of T on S. T is a continuum and
one can see without difficulty that J is a maximal proper T-ideal, so that
we may again use (2.3) to conclude that cardinal 4 = 1.

3

We will use without proof the following facts.

(¢) Let X be a continuum containing an open dense half-line, W, and let
C = X\W. Then C is a C-set, i.e., a continuum which intersects C
and 1s not contained tn C, must contain C.

(p) A locally connected subcontinuum which intersects a nondegenerate
C-set is contained in it (follows from a rvesult in [W 5]).

(3.1) PrROPOSITION. Let X be a continuwm containing an open dense
half line, W, let C = X\W, and suppose that cardinal C > 1. Let T be a bing
acting unitarily on X such that (] #= Q % X. Then Q is a single element, the
endpoint g of X, C C Tx for each z € X, and either

(i) TC & C, so that TC is homeomorphic with X and the Q-set of the act
TXTC — TC is all of TC; or, disjunctively,

(i) TC CC, C 1s the unique minimal T-ideal and C is a homogeneous
space.

If also there is some a € X such that

h ta = t'a implies tx = t'z for all x € X,
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then Ta has the structure of a semigroup, C is the minimal ideal of Ta and a
group.

Proor. Since T and X are continua, X\Q is connected and dense in
X by (1.4), so Q must be a subset of C U ¢, where ¢ is the endpoint of X.
Q is the complement of a maximal proper T-ideal by (1.4), C = D(C),
and cardinal C > 1 by hypothesis, hence  cannot contain C by (2.3);
thus to prove that Q = ¢, we must show that Q n C 5 [ implies Q D C.
Whether or not Q intersects C, C = B; u B,, where

B,={&eC|TxDC}, B,={zeC|TzCC}.

This follows from (¢} since, for each zeC, Tz is a continuum and
zeTznC. If Q nC %[, then Q n C = By: for obviously Q n C C B,,
and if z € B;, Q n Tz # [, hence « € @ (see proof of (1.4) (ii)). Therefore
if QnC#0,

C=@nC)u{reC|TzCC},

which are both closed sets by continuity and compactness. They are disjoint
by continuity, and C is connected by either («) or (g), hence if Q n C £ [J
then C = Q n C, which is false.

We prove next that C C Tz for each # € X, which observation was made
to the authors by K. Sigmon. Suppose first that there is some x € W such
that Tx C W. Let ¢t € T such that fu € C and let A be the arc in W joining
2 and #. Since ¢4 is a locally connected continuum intersecting C and since
C is a nondegenerate C-set, {4 must be contained in C by (d); but this
contradicts txr € W n tA. Therefore, for each x e W, Tx n C 7% [J. Also,
zeTx n W for each x € W, Tz is a continuum, and C is a C-set, hence Tx
must contain C for each # € W. Because W is dense and the act is continuous,
Tx must contain C for each x e C as well.

(1) Suppose TC ¢ C and let « € C such that Tz ¢ C. Since C C Tz, Tz
is homeomorphic with X, and since T (Tx) C Tz, T acts on Tz via a restric-
tion of the original action. Let (, be the Q-set for this restricted action:
ie,Q,={yeTz| Ty = Tx}. Since x e C n Q,, @, # [ and @, is not just
the endpoint of Tz, hence by the first assertion of this theorem, we conclude
that Q, = Tz. Therefore T2 = TC and the proof of (i) is complete.

(ii) Suppose that TC CC. We proved above that C C Tx for each
x € X, which is to say, C is a subset of every T-ideal; thus, when TC CC,
Tx = C for each x € C and C is the unique minimal T-ideal.

We prove that C is homogeneous by a series of assertions:

(1) For each x € W, Tx is the continuum irreducible between C and x.
For Tz is a continuum containing C and «, hence Tz is homeomorphic with
X. T acts on Tz, x€Q, = {y e T | Ty = Tz} and C C Tz\Q,, hence Q,
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contains only the endpoint of T by the first assertion proved above.
Therefore, z is the endpoint of Tz.

(2) T contains an idempotent e which acts as identity for X. For there
exists ¢ € T such that g = ¢, since Tqg = X by (i) above; then ¢X is a con-
tinuum containing ¢ and intersecting C ((C C¢X n C), hence tX = X.
Therefore "X = X for each #n = 1, hence yX = X for each y e I'(¢). I'(?)
contains an idempotent e since I'(¢) is compact [P-de M].

() Let J={teT|tWCW}; then T\] = {teT |tXCC}, and J s
open. The bracketed set is closed by (1.2) (iv), and it is clear that T\J con-
tains it. Conversely let ¢ € T\ J, so that #y € C for some y € W. If 4 is an arc
in W containing y, then ¢4 is a locally connected continuum intersecting C,
hence tA C C by (¢); W is the union of a family of such arcs, hence tW C C.
Therefore, ¢ € T\J implies {W C C, hence tX C C.

(4) If te J* then tC = C, hence ¢t is a homeomorphism of C onto itself.
By continuity of the action, we have only to prove that {C = C for each
teJ,solette J. Then ¢X is a continuum not contained in but intersecting
C, hence C CtX by (¢). tX = tW U {C and tW C W, hence C C¢C. Then,
since T is compact, ¢ is a homeomorphism of C onto itself by the Swelling
Lemma [W 1], [W 2].

(5) Let J, be the component of J which contains e, and let Ty = Ji; then
Tox = Tx foreach x e X. If | = T, then Ty = T and we are done, so sup-
pose J % T. Then J, is a component of a proper open subset of the conti-
nuum T, hence J§ = T intersects the boundary of J [HY]. Let t e T,\J;
then tX CC by (3), so that Ty« intersects C for any ze X. Also, x = exelz,
and it is clear that Tz is a subcontinuum of 7. Thus if x e W, Tz is a
continuum containing C and x; hence Tyx D Tz, by (1). It is clear that
Tox C Tx for any 2 € X, hence T,z = Tz for each 2 € W. Continuity then
gives Tz = Tx for each z € X.

(6) C s homogeneous. Since Tyx = C for each z € C, by (5), and since
each member of T, is a homeormorphism of C onto itself by (4), C must be
homogeneous.

Wesuppose now that thereissome a € X satisfying (t); then, as remarked
in §1, £ > ta is a biconsistent translation of T onto T, so that Ta has a
semigroup structure with C as minimal left ideal, by (1.3). Since C is the
unique minimal T-ideal, it is the unique minimal left ideal of the semigroup
Ta, hence is the minimal ideal of Te [P-de M]. According to (1.3), to prove
that C is also a group, we have only to produce some # € T with ua e C
and 4C = C; but there exists u € T, with ua € C since Toa = Ta O C, and
uC = C by (4).

Case (i) of the theorem is not vacuous. The dual of a construction due
to Koch and Wallace, p. 282, [KW 2], shows that any continuum X with
an isolated arc A admits the structure of a semigroup with the endpoint
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of A as right unit and with Xb = B for each b € B = (X\4)*. Thus if we
take X as in the theorem and let 4 be an arc in X containing ¢, then X with
the semigroup mentioned is a bing acting on itself as described in case (i).
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