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ABSTRACT. Estimates of point-cloud positional accuracies in terrestrial laser scanning (TLS) datasets
are currently limited to rudimentary combinations of GPS position error and manufacturer precision
specifications. However, rigorous error propagation techniques can be applied to the three-dimensional
TLS points and potentially integrated into software visualization and analysis products. Beyond the
immediate value of qualitatively observing the distribution of expected TLS errors within a point cloud,
rigorously estimated point errors can be further propagated to quantify expected errors in derived
products such as point-to-point distance measurements, best-fit planes or volume computations. We
review TLS error sources, detail their propagation through a rigid registration and illustrate the
application of estimated TLS point errors to propagated snow volume uncertainties for a large and small
TLS dataset. The resulting volume errors are of negligible size compared to the volume magnitudes, in
no case exceeding 0.007% of the computed snow volume. For a dataset generating a large snow
volume, the method of surface representation (e.g. grid or triangulated mesh) was more influential than
the estimated TLS point errors on volume uncertainty. This suggests the random errors inherent in TLS

measurement techniques are not a limiting factor in achievable snow volume accuracies.
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INTRODUCTION

Measurement of the snow water equivalent (SWE) of a
snowpack over a large spatial extent is crucial for forecasting
snowmelt timing (Luce and others, 1998) and calculating
snowmelt volume (Elder and others, 1991), among other
applications. Direct measurement of SWE in mountain
environments with remote sensing is theoretically possible,
relying upon the sensitivity of radar backscatter to the water
content and structure of the snowpack (Shi and Dozier,
2000), but has proved extremely challenging in practice.
Snow depth, in contrast, is the primary driver of spatial SWE
variability, and is relatively straightforward to measure over
large areas with remote-sensing techniques, in particular
through differencing of surface elevations measured using
airborne or ground-based lidar systems (Deems and others,
2013). SWE is a function of bulk snow density and snow
depth; thus, when used in combination with a regional snow
density model (e.g. Jonas and others, 2009), lidar-altimetry-
derived snow depths enable the calculation of SWE. Many
commercially available lidar scanners operate at wave-
lengths that minimize the penetration of the laser light into
the snowpack, making them ideally suited for measuring the
surface of snow (Dozier and Painter, 2004).

As application of airborne and terrestrial laser scanning
(ALS and TLS) techniques to the measurement of snow depth
continues to grow (e.g. Deems and others, 2013), there is a
corresponding need to understand and quantify the expected
accuracies of the three-dimensional (3-D) points derived
from the raw scanner measurements. To date, the bulk of
literature addressing estimated errors in laser-scanning
products has dealt with ALS systems, often focusing on the
relative influence of system components or calibration
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methods on subsequent point error (e.g. Glennie, 2007;
Goulden and Hopkinson, 2010). TLS systems, however,
observe topography at a much different geometry, with high
incidence angles the norm rather than the exception.
Furthermore, the geo-registration of TLS points is quite
different than the method applied to ALS points. While TLS
snow observation accuracies have been empirically esti-
mated by comparing TLS-computed snow depths and ava-
lanche deposit boundaries with independent in situ depth
measurements (Prokop, 2008; Prokop and others, 2008,
2015; Revuelto and others, 2014), rigorous propagation of
estimated TLS point errors (e.g. Lichti and Gordon, 2004) has
yet to be incorporated. Rather, TLS point quality is typically
interpreted in one-dimensional terms of ranging precision or
accuracy. These metrics are universally reported on instru-
ment specification sheets and appear to be the de facto
standard for performance comparisons. However, the
angular and terrain-induced range errors resulting from the
diverging laser beam alone can have a greater influence on
positional uncertainty than the specified ranging accuracies,
particularly at longer ranges.

This paper is motivated by the incomplete body of
literature existing on TLS error propagation coupled with
current uses of TLS as an in situ method for independent
validation of ALS and satellite remote-sensing methods
(Kaasalainen and others, 2010; Alsubaie and others, 2014;
Hauglin and others, 2014). Quantifying the spatial distribu-
tions of errors in TLS points and their influence on derived
products (e.g. snow depths and volumes) is critical for evalu-
ation of TLS as an independent quality-control mechanism
for other sensors or observational methods. The contributions
of this paper include (1) post-acquisition mitigation of TLS
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Fig. 1. Range uncertainty as a function of laser-beam incidence
angle and beamwidth. The beam power probability distribution
function (PDF) can be projected to a local planar estimate of the
observed surface as in Schaer and others (2007). The range error
due to beamwidth is interpreted as the orthogonal projection of the
surface PDF to the laser-beam center line. The beam power,
projected surface, and range error PDFs are shown in two
dimensions for clarity. The laser-beam divergence (v) and hori-
zontal (¥) and vertical (9) angle directions are also illustrated. (After

Deems and others, 2013.)

movement when observing from the top of a snow surface,
(2) inclusion of the influence of beamwidth uncertainty on
measured angles and ranges prior to error propagation,
(3) propagation of feature-based point-cloud registration
uncertainty and (4) propagation of TLS point uncertainties
into snow volumes for both raster- and mesh-based surface
products. Note that only random error quantities that are
readily estimated from TLS system specifications are propa-
gated into 3-D point and volume error estimates in this work.
Systematic error sources (e.g. imperfect TLS system cali-
bration or intensity correlated range bias) are not considered;
if available, their inclusion could significantly impact the

propagated 3-D point and volume errors.

The propagation of TLS measurement and registration
error into point uncertainties and the subsequent propa-
gation of these point uncertainties into volume products are
reviewed in the following two sections. The details of two
test datasets are then described, followed by a review of the
specific processing methods applied to each dataset to gain
the desired point and volume uncertainties. The paper
concludes with a discussion of the results and recommen-

dations for future research.

3-D POINT ERROR PROPAGATION
Mathematical model

Error propagation requires a mathematical model expressing
the quantities whose estimated errors are desired, registered
xyz coordinate triplets in this case, as a function of
parameters or observations for which estimated errors are
known. Note that the terms ‘estimated error’ and ‘estimated
uncertainty’ will be used interchangeably and often simply
stated as error or uncertainty hereafter. To begin, we express
a coordinate triplet in the scanner’s coordinate system as a
function of the TLS range and horizontal and vertical angle

measurements:
X p cos B cos )
y| = |pcosfsiny |,
7] psinf
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where p is the measured range, ¢ and 6 are the measured
horizontal and vertical angles (Fig. 1) and subscript S
designates the scanner coordinate system. The horizontal
angles are measured counterclockwise from the x-axis and
the vertical angles are measured from the xy-plane. In order
to compute differential surface volumes, at least one point
cloud must be aligned, or registered, to a second point cloud
so that they occupy a common coordinate frame. To
accomplish this, a six-parameter (three rotations and three
translations) rigid body transformation is applied to the
coordinates in the scanner coordinate frame:

X Ty X
Z | q T, z |

where subscript R designates the registered, or georefer-
enced, coordinate system, T indicates a translation value,
and R is a 3 x 3 rotation matrix derived from w, ¢ and &
rotation angles about the x, y and z axes as

COSKCOS¢ COSKSIN@sinw sin kK sinw
—sin Kk cosw —+C0s K sin ¢ cos w
R = | sinkcos¢ COS K COS W sin K sin ¢ cos ¢
+sinksin ¢ sinw —COoS Kk Sinw
—sin¢ cos ¢sinw COS ¢ COS W

(3)
Note that R is defined here using point rotation, as opposed
to axis rotation, with a w, ¢, k rotation order and positive
counterclockwise angles (McGlone and others, 2004).

The model in Eqn (2) is sufficient for propagating TLS
observation and point-cloud registration parameter errors
into registered coordinate errors. However, the registration
technique used in this study requires the two point clouds to
be coarsely aligned prior to a fine adjustment of the
registration parameters for two reasons. First, the coarse
alignment facilitates selection of common features within
the separate point clouds for use as observations in a least-
squares adjustment that is used to solve for the fine
registration parameters. Second, the registration parameters
from the coarse alignment are required as initial approxima-
tions for the least-squares adjustment, which is nonlinear.
Equation (2) is therefore augmented with a coarse rotation
and translation:

X Ty Ty X
y = Ty + R Ty + Rc y , (4)
Z1R T2 1 Tz1c Z]s

where subscripts C and F designate coarse and fine rotation
and translation components, respectively.

Equation (4) can be further augmented to address a
rotationally dynamic instrument position resulting from a
TLS tripod being located on a non-rigid surface (e.g. warm
asphalt, loose soil, or snowpack). An additional rotation
matrix Rp, which transforms the dynamic instrument pos-
ition to a stationary datum, is inserted prior to the coarse
registration rotation matrix:

X Ty Ty X
y = Ty + Rg Ty + RcRp y , (5)
Z]R Tz ¢ Tz1c Z]s

where subscript D designates a rotation matrix based on
dynamic TLS orientation angles. For the work reported in
this paper the orientation angles are limited to rotations
about the scanner coordinate frame horizontal axes (x and y
axes) and will be referred to as inclination angles hereafter
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(Silvia and Olsen, 2012). A dynamic instrument position is
not included in Eqn (5), as the influence of instrument
rotation caused by a slight tripod movement far outweighs
that of the translation of the instrument position (typically on
the order of a few mm), particularly with increasing target
ranges. Note that the rotation and translation components in
Egn (5) can be removed as appropriate, depending on
whether a point cloud requires orientation corrections or
registration to a second point cloud, potentially reverting to
Egn (1) in the simplest case.

Error sources

The registered coordinates in Eqn (5) are a function of TLS
range and horizontal and vertical angle observations, point-
cloud coarse and fine registration parameters, and TLS
inclination angle observations. With the exception of the
coarse registration parameters, all of these observations and
parameters have associated stochastic errors that can be
estimated in terms of a variance (%), potentially along with
covariance terms, for propagation through the mathematical
model. The random errors are propagated according to the
general law of propagation of variance (GLOPOV) (Ghilani,
2010). As noted in the Introduction, the error propagation in
this paper is simplified by the assumed absence of system-
atic error.

In addition to those error sources listed above, the
nonzero beamwidth, BW, of the transmitted laser pulse is a
significant source of positional uncertainty. For a Gaussian
laser beam, beamwidth is a function of the laser-beam waist
radius and position (Lichti and Gordon, 2004), but is usually
estimated in terms of the beam diameter at exit d, beam
divergence v and target range p as

BW =d +p, (6)

which implies that beamwidth grows linearly with range. As
described in Lichti and Gordon (2004), the power profile of a
laser pulse acts as a probability density function (PDF) that
defines the probabilistic location of the reflecting target
within the laser-beam footprint. This beamwidth uncertainty
can be interpreted as an angular error with respect to the
beam center line, where the reflecting target is assumed to be
located. Therefore, the variance defining the beamwidth PDF
can be directly added to the TLS horizontal and vertical angle
variance values specified by the manufacturer prior to error
propagation. Lichti and Gordon (2004) solve for the variance
of the beamwidth PDF using a uniform laser power distri-
bution. However, a Gaussian beam power distribution is
more commonly found in practice (Glennie, 2007; Ussysh-
kin and others, 2009). Many instrument specification sheets,
including those used in this study, define  according to the
location on the beam power distribution where the power
falls to the fraction 1/e” of the maximum power level. Since
the 1/e” points of a Gaussian distribution coincide with +24,
the angular variance resulting from a Gaussian laser pulse
can be defined in terms of the divergence angle as

. = (1) 7)

If knowledge of local terrain morphology is available, then
the influence of beamwidth uncertainty is not limited to
angular error (Fig. 1). This problem is approached in Schaer
and others (2007) by projecting the beamwidth PDF onto a
planar estimate of the local surface, resulting in two-
dimensional (2-D) error ellipse oriented in 3-D space. The
maximal horizontal and vertical extents of the ellipse axis are
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then combined with independently propagated horizontal
and vertical error to arrive at a final quality indicator.
However, this approach does not uniquely encapsulate
uncertainties in the x- and y-axes directions or provide any
covariance information. Furthermore, it fails to capture any
of the vertical uncertainty due to beamwidth when the local
surface is horizontal. Therefore, we retain the angular
uncertainty as defined in Eqn (7) and use the approach
found in Baltsavias (1999) and Goulden and Hopkinson
(2014) to estimate range uncertainty at each point as a
function of the intersection of the diverging laser ray and a
local planar estimate of the surface. This can be accom-
plished by orthogonally projecting the semi-major axis of the
elliptical beam footprint onto the beam center line as shown
in Figure 1, but is more simply computed as

2 v 2
opwrange = (p-Z- tan a) , (8)

where « is the incidence angle between the laser beam and
the normal vector of the planar surface estimate. As with the
beamwidth angular uncertainty, o3,yrange is directly added
to the manufacturer-specified range variance prior to error
propagation.

Note that considering beamwidth uncertainty solely as an
angular error is sufficient to capture the positional un-
certainty of the reflecting target within the beam. However,
this assumes there is no degradation in TLS ranging
performance or target discrimination beyond the value
specified by the manufacturer. The addition of the terrain-
induced range uncertainty prior to error propagation more
conservatively models the large errors often realized in the
direction of the laser ray on surfaces observed at high
incidence and long ranges (Morin, 2002; Schaer and others,
2007; Goulden and Hopkinson, 2014). Recent work by
Goulden and Hopkinson (2014) has shown the inclusion of
beamwidth range uncertainty produces better estimates of
the positional error inherent to high incidence angle
airborne lidar observations.

Error propagation

Observation errors are propagated through the mathemat-
ical model according to GLOPOV. A covariance matrix C,,,
is generated for each registered coordinate triplet as

2
Oy Oxy Oxz

nyz = | Oyx Uﬁ Oyz | = ACIIAT/ (9)
2

Oz Ozy 0y

where A is a matrix defining a linear relationship between
the observations and registered coordinates and Cj; is a
covariance matrix containing the observation errors. Since
the model developed in Eqns (1-5) is nonlinear, A is built
from partial derivatives in order to approximate a linear
relationship. For example, if TLS range and angle obser-
vation error is propagated through the basic model given in
Eqgn (1), A takes the form

ox  Ox  Ox

dp OV OH

— |9 9y 9y
A= 9 9V 9H |- (10)

dz 0z 0z

9p OV OH

In this study the error propagation was carried out in sub-
steps, rather than in a single computation as expressed in
Eqn (9), in order to more easily include or exclude dynamic
instrument orientation observations or registration transfor-
mations in the error propagation.
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Finally, we note that error is propagated in terms of
variance, but is generally interpreted in the form of a
standard deviation having the same unit as the quantity
being analyzed. Therefore, error sources and propagated
errors will be reported as standard deviations in this paper.
To avoid a misleading representation, however, an excep-
tion is made in the case of several figures that display point
or raster cell contributions to an overall volume error, since
the variances (not standard deviations) are summed to
produce the cumulative volume error estimate.

VOLUME ERROR PROPAGATION

The complex spatial structure of a lidar point cloud is
commonly simplified to a surface model by rasterizing the
3-D point cloud to a regularly gridded product, or by
connecting all points into a triangulated irregular network
(TIN) or mesh. The volume between two surfaces can then
be computed from the difference in volume beneath each
surface with respect to a common datum or reference plane,
i.e. a differential volume. The volume under each surface is
a gross volume, and the differential volume is a net volume.
Figure 2a provides an illustration. For this study, the xy-
plane in the scanner coordinate system of the snow-off scan
was chosen as the common datum, after an adjustment to
the point-cloud z-coordinates to eliminate negative values.
Note that while the result is the equivalent, this method is
not the same as directly computing the volume between two
surfaces; direct volume computation was deliberately
avoided as the differencing of two mesh surfaces requires
geometric shapes such as tetrahedrons, which greatly
increase the complexity of the volume error propagation.
The mathematical models for computing volume under
raster and mesh surfaces and the propagation of 3-D
coordinate covariance matrices (C,,,) through each volume
model are reviewed in the following subsections.

Volume under a raster surface

Rasterization consists of specifying a grid interval in the xy-
plane and deriving a single z-value for each grid (raster) cell
that is representative of surrounding point z-values. When
the grid interval is smaller than the nominal point spacing,
an interpolation method (e.g. inverse distance weighting or
kriging) is often used to compute the raster cell z-value. In
the case of very dense TLS scan data, the grid interval is
typically larger than the point spacing, and a simple average
of all coordinate z-values within each raster cell is sufficient:

1 m
zZe=—Y z, (11)
2>

where z, is the raster cell z-value and m is the number of
coordinate triplets falling within the raster cell. It can be
shown according to GLOPOV that the vertical variance of
each triplet o2 within a gridcell is propagated into the

vertical variance of the raster point o7, | as

1 m

Uf,zpzf’i- (12)

i=1

Note that only the vertical component of each coordinate
covariance matrix is propagated.

The volume under a raster cell is a simple rectangular
prism (Fig. 2b), computed as the raster cell area A multiplied
by z,. The volume under a raster surface is the summation of
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Fig. 2. (a) Illustration of net snow volume as the difference between
the gross volume under a snow-on surface and the gross volume
under a snow-off surface. (b) Raster prism model used for gross
volume computation. (c) Triangulated mesh prism model used for
gross volume computation.

the raster-based prisms:

Vr_zn]:AZri_AZn;Zri; (13)
i= i=

where n is the number of raster cells. Now, the vertical
variance of each raster point o2 propagates into the total

volume variance o3, as
n
2 _ a2 2
oy, =A ZJZ”. (14)
p

Finally, the variance in the differential net volume computed
from the two gross volumes (e.g. a snow-on surface and a
snow-off surface) is the sum of the individual raster volume
variances:

oy, =op + o} (15)

"diff fsnow—on "snow—off

Volume under a mesh surface

A TIN or mesh surface model is a more rigorous
representation of the volume under a point cloud as it
maintains greater fidelity to surface roughness. For each
triangle in the mesh, the coordinates defining the vertices
are orthogonally projected to the horizontal datum forming
a truncated right-triangular prism (Fig. 2c) whose volume is
computed as

1
Vi = (z1 4+ 20+ z3), (16)
where the subscripts index the triangle vertices and A is the
area of the prism triangular base in the xy-plane and is
computed as

A:;_[Xl(h—)’3)+X2(Y3—y1)+x3(y1_VZ)]' (17)

Note that with this numbering convention the three vertices
defining the triangle must be indexed in a counterclockwise
direction to avoid a negative area computation. Inserting
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Eqn (17) into Egn (16) produces

Vi :é[m (y2—y3)+x2(ys—y1)+xs(y1— y2)l(z1+ 22+ z3).
(18)

The total volume V,, of a triangulated mesh with respect to
the xy-plane is computed from the summation of the
individual prism volumes:

2 1
V=3 v = g <32 =3) #3053 = 1) #2807 = 13)]

s A0E=Y) 504 =)+ (4 - v3)]

(19)

where the subscripts index each triangle’s vertices {1,2,3}
and the superscripts index the n triangles comprising the
mesh. Each coordinate triplet contributes to the volume
computation of those prisms which are defined in part by
the triplet. Note that a coordinate triplet may be assigned
different triangle vertex index values depending on its
position within the particular prism being examined.

To correctly account for the correlation between indi-
vidual prism volumes that are derived from common
coordinate triplets, computation of o}, requires the propa-
gation of each coordinate covariance matrix (C,,,) through
Eqn (19). To begin, we linearize the volume equation for a
single prism, Eqn (18), with respect to each coordinate
component for each triangle vertex index:

ov, 1 % 1
—axr:zg(yz—%)(ﬁ +2,+23), a—x;nz E(Y3—Y1)(Z1 +2,+23),
ovy 1 v, 1
87)::8()/1 —y2)(z1+22+23), 87):: g e —x)(z1+22+23),
vy 1 v, 1
87)2:6()(1 —x3)(z1+22+23), 87)/':: g be—xi)(z1+22+23),

OV OVy Ovy 1 1 1
8_;:6—@:(‘)_228’” (v2 —y3)+gX2(Y3 -y )+gx3(y1 —y2)-

(20)

The following steps summarize a method for obtaining the
necessary partial derivatives of the total volume
(%Lxm, %Lym, ‘)()Lzm) for a single coordinate triplet:

Identify the prisms relying on the triplet.

Identify the triangle vertex index occupied by the triplet
for each prism.

For each prism, evaluate the appropriate partial deriva-
tive from Eqn (20) with respect to x per the triplet vertex

assignment and sum the results to arrive at 2.

%Lym and %= are obtained in a similar manner.

By linearizing V., with respect to each coordinate triplet
component, the covariance matrix C,,, of the triplet can be
propagated into V,, by the standard method of

oy =ACy,A" where A is the row vector of partial

Mxyz
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derivatives

ox Oy 0z |

The total error propagated into V,, by all triplets that form
the basis of the mesh is then given by the summation

k
2 2
oy, = E Vi,
=1

where k is the total number of xyz coordinate triplets. Note
that the summation in Eqn (21) is a simplification of a
complete expression of AC,,,A" where A would contain the
partial derivatives for every triplet in the mesh and C,,, would
be a block diagonal matrix containing the 3 x 3 covariance
matrices for every triplet. Since the non-block diagonal
elements are zero, the computation of ACXyZAT can be
partitioned into the more computationally efficient summa-
tionin Eqn (21). As in Eqn (15), the error in a differential mesh
volume is the sum of the gross volume errors derived from
two mesh surface models, such as snow-on and snow-off
models.

Note that describing C,,, as a block diagonal matrix
assumes that no temporal or spatial correlation exists
between individual laser shots, i.e. each lidar measurement
is assumed to be statistically independent. This assumption
ignores, for example, the likelihood that similar ranging
errors will exist in adjacent laser returns due to observation
of common terrain morphology. Although ignoring correl-
ation between individual 3-D point errors will result in more
conservative (larger) volume errors, it will be seen that
propagated volume errors are already quite small in com-
parison to the computed volumes even without the
inclusion of the mitigating effects of correlation.

(21)

TEST DATASETS
Mammoth Mountain

The US Army Corps of Engineers Cold Regions Research and
Engineering Laboratory (CRREL) and the University of
California Santa Barbara (UCSB) maintain a snow study site
in the eastern Sierra Nevada located on Mammoth Moun-
tain, CA, USA, in partnership with Mammoth Mountain Ski
Area. Among the many sensors at the site is a permanently
mounted Riegl LMS-Z390i TLS (Fig. 3a). Information regard-
ing the history of the snow study site and other available
sensor measurements can be found online at http:/www.
snow.ucsb.edu/cues/. The LMS-Z390i is mounted on a steel
platform elevated ~6 m above ground level and collects a
scan every 15min with a field of view of 180° in the
horizontal and 60° in the vertical. A symmetric horizontal
and vertical angle measurement resolution of 0.09° gener-
ates ~1.4 x 10° 3-D points in each scan. Given the low
reflectivity of snow and ice at the 1550 nm wavelength of the
laser used in the LMS-Z390i (Bair and others, 2012), dry
snow observations are limited to ~150 m in range (Riegl LMS
GmbH, 2010). This range limitation does not negatively
impact the TLS measurements at this site since only a small
clearing of trees exists in front of the TLS sensor. However,
considerable laser return dropouts were observed during
periods of snowmelt (due to increased laser energy absorp-
tion by the liquid water content) and scans were therefore
selected to avoid this condition. A snow-off scan from June
2012 and a snow-on scan from November 2012 were
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Fig. 3. (a) Permanently mounted TLS at the Mammoth Mountain field site. (b) Tripod-mounted TLS viewing the Montezuma Bowl field site.

chosen, and a common area (~560m?) within the scans
selected for TLS point and volume error propagation.

Montezuma Bowl

The Montezuma Bowl (Fig. 3b) is located within the
Arapahoe Basin Ski Area near Dillon, CO, USA. TLS
measurements were collected with a tripod-mounted Riegl
VZ-4000 TLS from a single set-up multiple times, with the
primary goal to study snow depth distribution to assist in
avalanche forecasting (Deems and others, 2014). However,
the data offer an excellent opportunity to study TLS point
and volume error propagation characteristics of a large area
(~140 000 m*) with complex topography. As with the LMS-
Z390i, the VZ-4000 employs a 1550 nm laser (Deems and
others, 2014) that falls within the low-reflectance portion of
the spectral signature of snow and ice. However, given the
long-range performance of the VZ-4000, which is rated for
lidar observations up to 4000 m for highly reflective targets
in clear atmospheric conditions (Riegl LMS GmbH, 2013),
dry snow surfaces were successfully measured at the
relatively short ranges (maximum 600 m) that were required
to observe the the Montezuma Bowl.

A snow-off scan from September 2013 and a snow-on
scan from February 2014 were chosen for the Montezuma
Bowl analysis. Since the scans were tripod-mounted and no
georeferenced targets were collected, point-cloud registra-
tion was accomplished by merging planar and point features
common to both datasets with a least-squares adjustment.
The arbitrary datum defined by the scanner coordinate
system of the September 2013 scan was held fixed and the
February 2014 observations registered to this control datum.
The TLS tripod settled slightly into the snowpack during the
February 2014 scan acquisition and required application of
inclination sensor corrections in a time-segmented fashion
to reduce the impact of the dynamic instrument orientation.
The method of registration and inclination correction is
reviewed in the following section.

DATA PROCESSING
Mammoth Mountain

Each point cloud was clipped to a common bounding
polygon enclosing the analysis area chosen to be free of trees
and not subject to large occlusions from drifting snow. Data
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within a 0.5 m exterior buffer of the bounding polygon were
retained so that surfaces created within the analysis area did
not suffer from edge effects due to data voids or reduced
point density. Vegetation and a number of posts and cables
that support additional sensors within the snow study site
were filtered from each point cloud using tools within Riegl’s
RiSCAN PRO software (Riegl LMS GmbH, 2014b).

Using the values listed in Table 1, errors corresponding to
measured range and angle observations and the errors
derived from the diverging laser beamwidth were propagated
into 3 x 3 covariance matrices for each point coordinate
triplet. Since only an angular measurement resolution, i.e.
quantization value, is provided by the manufacturer for each
TLS, the angular error was estimated as the variance of a
uniform distribution having a width equal to the specified
resolution value. The local surface orientation at each point
was estimated via a least-squares planar fit (Shakarji, 1998)
incorporating the nearest 20 points and combined with the
laser ray vector and beamwidth according to Eqn (8) to
estimate the terrain-induced range error.

Raster surfaces were created with a 0.25 m grid spacing,
which was chosen to be similar to the maximum point
spacing observed at the locations furthest from the TLS

Table 1. TLS manufacturer specifications relevant to error propa-
gation (Riegl LMS GmbH, 2010, 2013)

Mammoth Montezuma

Make and model

Riegl LMS-Z390i Riegl VZ-4000
Laser
Wavelength 1.55pum 1.55um
Exit diameter 8.5mm 18 mm
Divergence 0.3 mrad 0.15mrad
Range
Max. 400m (p>80%) 4000 m (p>90%)
Accuracy 6 mm 15 mm
Precision 4 mm 10mm
Angle
Min. step 0.002° 0.002°
Meas. resolution 0.001° <0.0005°
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Fig. 4. Raw and low-pass filtered 1 Hz inclination sensor signal for (a) roll (rotation about TLS x-axis) and (b) pitch (rotation about TLS y-axis).
The low-frequency portion of the signal exceeds the inclination sensor 1o accuracy rating of £0.008° by a large amount, indicating the
sensor is capturing the long-term movement of the TLS instrument as it settles into the snowbank.

position (Deems and others, 2013). As previously reviewed,
each grid elevation was computed from the average
elevation of all points falling within the gridcell. Elevations
and corresponding errors for void gridcells falling inside the
boundary were linearly interpolated from surrounding cells.
Gridcells with centers falling outside the boundary were
discarded prior to computing the volume under the raster
surface and the associated propagation of 3-D point error
through the volume model.

Following the raster surface creation and corresponding
volume computation, a mesh surface was created from the
point cloud using a Delaunay triangulation algorithm. In
order to better compare computed mesh and raster volumes,
the mesh surface was constrained to follow the boundary
defined by the edge of the raster surface prior to volume
computation and error propagation. The final raster and
mesh snow volumes were then computed from the differ-
ence of the snow-off and snow-on volumes. Note that since
the instrument was permanently mounted during the time
period encompassing the collection of all datasets used in
this study, registration of the snow-off and snow-on point
clouds was not required.

Montezuma Bowl

Similar to the method described for the Mammoth datasets,
an analysis boundary following the ridgeline of the mountain
and descending the mountain along the approximate extents
of the ‘bowl’ was defined. Vegetation was initially filtered
using tools within RiSCAN PRO, but aggressive filter settings
could not be applied as they tended to also remove boulders
and portions of rock outcrops. Therefore, any vegetation
remaining after automated filtering was removed via manual
editing. Although the dense point spacing in TLS (decimeter-
level spacing) as opposed to ALS (meter-level spacing) allows
discrimination of rock outcrops versus trees, low vegetation
is still difficult to identify and the intersection of the ground
surface and larger vegetation is not always easily defined.
Vegetation filtering errors are therefore a significant, but
unquantified, source of error in the computed volumes.
After vegetation filtering was completed, the remaining
points were rasterized to a 0.5m grid and grid and mesh
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volumes with respect to the xy-plane were generated in a
similar fashion to that described for the Mammoth datasets.
Two additional tasks were then performed for the February
2014 Montezuma dataset: (1) correction of a dynamic
instrument position by application of inclination sensor
corrections, and (2) registration to the snow-off September
2013 point cloud.

Instrument inclination correction

Initial attempts to register the snow-on and snow-off point
clouds suggested the TLS had settled slightly into the
snowpack in an irregular fashion, producing vertical errors
in excess of 60cm at the extremities of the analysis area.
This was investigated by extracting inclination sensor
readings from the raw file produced by the VZ-4000 TLS
using Riegl’s RiVLib software library (Riegl LMS GmbH,
2014a). The inclination sensor readings are collected at
1Hz and provide a record of the instrument’s tilt, or
inclination, about its x (roll) and y (pitch) axes with respect
to the plumb line. The raw inclination signals shown in
Figure 4 indicate TLS movement well outside the nominal
inclination sensor precision of +0.008° reported on the
manufacturer’s specification sheet. To correct the raw point-
cloud coordinates for the moving instrument, 3-D rotation
matrices built from the inclination sensor angle readings
were applied to each coordinate according to the inclin-
ation measurement closest in time to the laser shot
generating the coordinate. Ideally, this correction transforms
the raw coordinates into a level coordinate frame while
simultaneously removing the rotational effect caused by the
settling instrument.

Prior to applying inclination corrections to the raw
coordinates, the low-frequency portion of the signal, which
is assumed to represent the instrument movement, was
isolated from the high-frequency portion. The high-fre-
quency signal components are believed to be from sensor
noise and instrument flutter in windy conditions, as scans
collected in an enclosed, stable environment produced
noise levels lower than the manufacturer’s specified 1o
precision of £0.008°. The high-frequency components were
removed by convolving a Blackman window low-pass filter
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Fig. 5. Estimated vertical (a) and horizontal (b) point error produced
by propagating TLS observation and beamwidth uncertainty
through the TLS coordinate model for a snow-on Mammoth
dataset. A hillshade digital surface model (DSM) of the snowdrift
topography and approximate TLS instrument location with respect
to the DSM is given in (c) for reference. The correlation of
horizontal error with the topography illustrates the influence of the

beamwidth on range error at high incidence angles.

kernel with the raw inclination signal in the time domain.
The filter cut-off frequency was estimated from the point at
which the Fourier transform of the raw inclination signal
approximately leveled out, indicating a transition from a
deterministic signal to white noise. The standard deviation
of the signal residuals with respect to the filtered signal is
+0.006°, which is close to the specified sensor precision
and confirms that the filter cut-off frequency was reason-
able. This standard deviation was used as the estimated error
for the inclination angles that are used to generate Rp in the

3-D point error propagation (Eqn (5)).

Application of the inclination readings as corrections to
the raw coordinates reduced errors between common
objects after registration of the snow-on and snow-off scans
from >60cm to ~17 cm. This is a large improvement, but
the magnitude of the remaining error suggests that either the
correction method is not sufficient to completely eliminate
the effect of a non-stationary instrument or additional

unknown systematic error sources still persist.

Point-cloud registration

Registration of the snow-on and snow-off scans was
accomplished with a custom least-squares algorithm that
adjusts the translation and rotation parameters of a rigid-
body transformation in order to minimize the distance
between selected planar and point features common to
each point cloud. The use of a custom algorithm rather
than an existing software solution was motivated by the
need for traceable error estimates for the final registration

parameters.

https://doi.org/10.3189/2015J0G15J031 Published online by Cambridge University Press

0.55

Hartzell and others: Rigorous error propagation for TLS

Each point used in the least-squares registration adjust-
ment was assigned a weight inversely based on propagated
TLS angle, range and beamwidth errors. After the adjust-
ment, the weights were scaled by the adjustment reference
variance, which is a statistic that indicates the presence of
blunders or an incorrectly scaled weighting scheme, to
produce a final reference variance equal to the a priori
assumption of unity (Ghilani, 2010). In this case, the initial
least-squares adjustment produced a large reference var-
iance (~3) due to the remaining inconsistencies between the
snow-off and snow-on point clouds detailed in the prior
section. The inverse normal matrix of the final, scaled least-
squares adjustment comprises the covariance matrix of the
adjusted registration parameters and was used in the 3-D
point error propagation for the snow-on point cloud.

The snow cover and lack of infrastructure in the
Montezuma Bowl domain yielded a sparse selection of
identifiable features common to the snow-off and snow-on
point clouds. A total of three vertically oriented planar
features and 12 point features common to both the snow-off
and snow-on scans were selected. The 1o accuracies of the
translation components were in the £1-3 cm range and the
rotation components in the £0.003-0.006° range. The weak
geometry due to the sparse feature selection also resulted in
substantial correlation between the registration components.
For example, the correlation coefficients between x and y
translation components and the z-axis rotation component
are 0.4 and 0.6, respectively. This is expected for a
geometrically weak network, as certain horizontal move-
ment can be replicated by rotation about the vertical axis.
The full covariance matrix of the registration parameters was
therefore included in the error propagation to accommodate
the significant off-diagonal covariance terms.

RESULTS AND DISCUSSION

TLS 3-D point error propagation

3 x 3 covariance matrices defining the error ellipsoid shape
and orientation were produced for each coordinate triplet.
For the purpose of visualization and discussion, we extract a
horizontal and vertical error component from each matrix.
For the vertical component, we use the square root of the
variance in the z-direction, which is contained in the third
diagonal element of the covariance matrix. For the hori-
zontal component, we use the semi-major axis of the
horizontal error ellipse obtained from an eigen-decomposi-
tion of the x and y variance and covariance elements.
Noting that the standard ellipse confidence is only 39.4%
(Mikhail, 1976), we scale the axis length by 1+/2.298 to reach
68.3% confidence in order to match the 1o confidence of
the vertical component. The scale factor is obtained from
the x? distribution with 2 degrees of freedom (Mikhail,
1976): P{x3 < 2.298} = 0.683.

The majority of horizontal point uncertainties for the
Mammoth snow-on scan are <5cm, while most vertical
errors are <1 cm (Fig. 5). The correlation of error magnitude
with the snowdrift topography seen in Figure 5 illustrates
the influence of the laser-beam incidence angle and
beamwidth on point uncertainty. Interestingly, the smallest
vertical errors do not occur closest to the TLS. The point
observations closest to the TLS occur with the laser beam
pointing downward at its greatest extent, resulting in the
manufacturer-specified range uncertainty having its greatest
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Fig. 6. Estimated vertical (a) and horizontal (b) point error produced
by propagating TLS observation and beamwidth uncertainty
through the TLS coordinate model for the snow-off Montezuma
dataset. A hillshade digital surface model (DSM) of the snowdrift
topography and approximate TLS instrument location with respect
to the DSM is given in (c) for reference.

vertical influence. Note that physically lowering the instru-
ment in order to reduce the influence of ranging error in the
vertical component may not be desirable, as the lower
instrument will result in higher incidence angles and greater
horizontal uncertainty. In fact, the area closest to the
instrument is the only area where the magnitudes of the
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horizontal and vertical errors are consistently balanced,
which is a desirable characteristic. Further elevating the
instrument will slightly increase the areal extent of balanced
errors, but may not be practically feasible. The horizontal
error follows a more intuitive pattern, with the smallest
errors occurring closest to the TLS.

Figure 6a illustrates the increasing influence of beam-
width angular error at longer ranges for the snow-off scan of
the Montezuma dataset. Although beamwidth angular error
contributes to both horizontal and vertical uncertainty with
increasing range for the largely horizontal TLS measure-
ments in the Montezuma dataset, its influence on horizontal
point uncertainty (Fig. 6b) is masked by the terrain-induced
beamwidth range error since the dominant component of
the beam footprint is horizontal. However, the vertical point
uncertainties (Fig. 6a) show a clear correlation of error with
range and, hence, beamwidth angular error. The vertical
point error is also correlated with elevation; this is a function
of the vertical angles necessary to observe the mountain top,
which leads to greater propagation of beamwidth range
error into the vertical component. It is noted that the
estimated vertical uncertainties in Figure 6a are of similar
magnitude to the standard deviation of differences between
snow depths computed with TLS and tachymetric methods
reported in Prokop and others (2008).

Figure 7 illustrates the importance of including beam-
width angle and range uncertainty in the error propagation.
Propagated horizontal and vertical point error is plotted
versus the laser-beam vertical angle and incidence angle.
The bottom error surface is generated solely from the
manufacturer-specified angle and range errors, the middle
surface incorporates beamwidth angle error, and the top
surface (largest error) incorporates both beamwidth angle
and beamwidth range errors. The inclusion of beamwidth
angle error roughly doubles the propagated horizontal and
vertical errors at most vertical angle and incidence angle
combinations. The inclusion of beamwidth range error
produces a rapid increase in both horizontal and vertical
errors with increasing incidence angle, depending on the
vertical angle. Note that the plots are generated for single

b B Specified error

0.15 [ with BW angle error
[ with BW angle and range error
E 0.10 |
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8
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Fig. 7. Horizontal (a) and vertical (b) point error at 68% confidence versus the laser-beam vertical angle and incidence angle with respect to
local topography (computed at a fixed range of 500 m). The dark gray surface (bottom) is generated using the range and angle errors
specified on the Riegl VZ-4000 datasheet, the medium gray surface (middle) incorporates angular error due to the laser beamwidth into the
error propagation, and the light gray surface (top) incorporates both the angular and range error due to beamwidth.
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Fig. 8. Point density versus propagated volume error for the snow-
off Mammoth dataset. The rate of improvement diminishes beyond
200 pointsm™2.

range of 500m. The propagated point coordinate errors
increase linearly with range, so the relative shape of the
graph is identical regardless of the chosen maximum range.
These plots support prior work (Lichti and Gordon, 2004;
Schaer and others, 2007; Goulden and Hopkinson, 2014) in
illustrating the importance of accommodating the error due
to a diverging laser beam in error propagation computa-
tions.

Volume error propagation

Table 2 contains gross volumes from the Montezuma snow-
on and snow-off scans and the net snow volume along with
the associated estimated volume errors and their percen-
tages of the computed volumes. The same values are shown
for the snow-on and snow-off scans for the Mammoth site.
The volume errors were generated by propagating the point
covariance matrices through the raster and mesh volume
models as previously outlined. The snow volume errors are
a very small percentage of the total snow volumes (<0.007%
in all cases), and are exceeded by the difference in volume
between the raster and mesh surface methods for the
Montezuma dataset. The selection of surface representation,
and subsequent corresponding volume computation

Table 2. Snow volumes and propagated errors
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Fig. 9. Contribution of each point to the total gross mesh-based
volume variance for a Mammoth snow-on scan. The variance
contribution is correlated with the horizontal and vertical point
error distributions for the same dataset shown in Figure 5.

method, is therefore of greater influence than TLS system
accuracy for the Montezuma dataset, perhaps due to
differences in how occlusions impact the raster and mesh
computations. Additional research into point density, raster
size and sufficient TLS set-up locations to eliminate
occlusions is warranted in this regard. Interestingly,
although increasing point density does decrease volume
error, the improvement diminishes rapidly with increasing
densities. This is illustrated in Figure 8, which shows the
impact of a synthetic decrease in point density on gross
volume uncertainties for the Mammoth snow-off dataset.
Figure 8 also indicates that, for lower point densities, mesh-
based volume uncertainties are larger than those generated
from raster surfaces. This agrees with the results in Table 2,
where the mesh method produces larger estimated volume
errors than the raster method for the Montezuma data,
which have a lower point density than the Mammoth
Mountain data.

Figure 9 shows the contribution of each TLS point
coordinate’s associated error to the total mesh-based
volume variance in the Mammoth snow-on scan. The
pattern of error contribution follows those of the horizontal
and vertical point errors (cf. Fig. 5) in that it is correlated
with topography and, hence, incidence angle. A similar plot
is given in Figure 10 for the Montezuma snow-off dataset,
except the contribution of each raster cell to the total raster-
based volume variance is shown instead (cf. Fig. 6).

Figure 11 illustrates the increasing influence of beam-
width error on propagated volume error as range and
incidence angle increase. The three surfaces represent the

Raster surface

Mesh surface

Volume Std dev. Volume Std dev.

m? +m? % total m> +m? % total
Montezuma
Gross snow-on vol. 14026138.82 4.150 0.00003 14026124.34 7.720 0.00006
Gross snow-off vol. 13895 555.79 2.296 0.00002 13895381.25 3.896 0.00003
Net snow volume 130583.04 4.743 0.004 130743.10 8.647 0.007
Mammoth
Gross snow-on vol. 2124.477 0.0156 0.00073 2124.732 0.0126 0.00153
Gross snow-off vol. 1728.709 0.0094 0.00054 1728.970 0.0090 0.00065
Net snow volume 395.767 0.0182 0.005 395.761 0.0155 0.004
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Fig. 10. Contribution of each raster cell to the total gross raster-
based volume variance for the Montezuma snow-off scan. The
apparent presence of trees is due to the increase in volume
uncertainty in raster cells containing only a few points, which
occurs in those areas where trees were filtered out of the dataset.

mesh-based volume error due to a single point, both with
and without the inclusion of beamwidth angle and range
errors in the error propagation. The distribution of TLS range
and incidence angle observations for the Montezuma dataset
is overlaid on the graph (in red), illustrating the large
percentage of points observed at high incidence angles in a
typical TLS dataset, even in a domain with steep, scanner-
facing slopes. As target ranges increase toward the nominal
4000m maximum range of the Riegl VZ-4000 TLS, the
contribution of the estimated error of a single point to volume
variance becomes quite substantial when beamwidth error is
included in the angle and range error budgets. It is worth
noting that although the volume errors contributed by the
individual points in the Montezuma datasets are very small
(indistinguishable from zero in Fig. 11), the relative shape of
the graph in Figure 11 is the same regardless of the maximum
range plotted. Thus, at incidence angles typical of TLS
observations, points observed at longer ranges will always
make a much greater contribution to overall volume error
than points observed at closer ranges. For very long-range
TLS sensors with laser wavelengths less attenuated by snow
and ice observations (e.g. the 1064 nm Riegl VZ-6000), the
influence of laser beamwidth on point and volume product
accuracy must be recognized during mission planning and
subsequent data processing.

CONCLUSIONS

A rigorous method of TLS observation and registration error
propagation was demonstrated in order to produce an
estimated covariance matrix for each TLS point. In addition
to standard error sources, angle and range error induced by
beamwidth uncertainty and local terrain morphology was
included in the error propagation and shown to have a large
influence on propagated point and volume errors. The
stability of the TLS instrument is also of primary concern, as
corrections derived from inclination sensor readings were
unable to fully mitigate the effects of tripod movement
during scan acquisition.

Propagated volume errors were found to be negligible
when compared to the net snow volumes, which suggests
the random errors inherent in TLS measurement techniques
are of less importance than the selection of surface model
structure (raster or mesh). However, the 3-D point errors do
influence volume error in an increasing manner as point
densities decrease, indicating that specific areas in a domain
with reduced point density demand extra scrutiny. The
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Fig. 11. Single point contribution to mesh-based volume variance
(using the Riegl VZ-4000 instrument parameters) versus range and
laser-beam incidence angle. At high incidence angles and long
ranges the influence of laser beamwidth dominates. The percen-
tages of Montezuma observations falling within the range- and
incidence-angle bins used to generate the plot are overlaid
(gradient: white (0%) to red (14%)), illustrating that the majority
of TLS observations occur at high incidence angles and will make
significant contributions to volume variance at longer ranges.

relationship between surface morphology and point density
with respect to propagated volume errors is an avenue for
additional research, and validation of the propagated TLS
point errors with more precise in situ measurements is also
recommended. Finally, volume errors produced from mesh-
based surfaces are larger than those from raster-based
surfaces for point densities under ~100 points m . This is
not unexpected, as the mesh method incorporates both
horizontal and vertical point error in the error propagation
and therefore better represents estimated volume error.

As the scope of TLS applications continues to expand, the
value of an estimated point error feature also grows. Simple
visualization of the horizontal and vertical error distribution
within a point cloud is a powerful tool to reinforce user
awareness of TLS accuracy constraints and to enable data
quality assessment. In light of the increasing maximum
range capabilities of new lidar instruments, it is important
that TLS practitioners appreciate the impact that long ranges
and high incidence angles have on estimated horizontal and
vertical uncertainties when planning data collection cam-
paigns. For example, it may be desirable to spend more time
in the field and collect data from several TLS locations in
order to minimize the required ranges or incidence angles,
which in turn limit point uncertainty magnitudes. Rigorous
TLS point error estimates can also be applied to downstream
products or methods that employ TLS points, such as the
snow volume error estimates computed in this paper;
additional examples include appropriate point weighting
for point-cloud registration techniques or point-based model
fitting. Rigorous estimated point errors from TLS obser-
vations are also relevant when TLS data are used to validate
independent topographic measurements of a common area,
such as photogrammetric measurements or airborne or
satellite laser-scanning observations.
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