Bull. Austral. Math. Soc.
Vol. 38 (1988) [475-477]

Optimal Solutions of Restricted Subadditive Inequalities

Roger James Wallace

Consider the following question:
"Let k be a given non-negative integer, and let g denote a real valued function of one variable, defined on a known finite open interval, and possessing a continuous k-th derivative $g^{(k)}$. How might simple real zeros of $g^{(k)}$ be efficiently approximated, by using only values of g and points in the domain of g ?"

A standard approach to this question is to choose successively a (prescribed) total of $n(>k)$ points to be the abscissae for sequences of k-th divided differences. The signs of the differences are then used to locate the zeros; see Wallace [4] and the references therein to the pioneering work of R.S. Booth, S.M. Johnson, J. Kiefer and others.

Of central importance is the particular rule (or strategy) $S_{k}=S_{k}(n)$ by which these n points are selected. Some strategies estimate the zeros of $g^{(k)}$ more efficiently than others, so workers have sought the most efficient strategy \bar{S}_{k}, for given k. To date, \bar{S}_{k} has been exhibited for $k=0,1,2,3,4,5,6,14$ only.

The main result of the first part of this thesis is the establishment of $\bar{S}_{2\left(2^{A+1}-1\right)}$, A a fixed non-negative integer. Also determined is an extension of a result of Booth on \bar{S}_{4}. Both results are found by analysis of a particular maximal solution of the restricted subadditive inequality

$$
\psi_{2 p}(n+2 p+1) \leqslant \psi_{2 p}(n+\ell)+\psi_{2 p}(n+2 p-\ell), n \geqslant 0,0 \leqslant \ell \leqslant p,
$$

(p a fixed non-negative integer); namely, that sequence $U_{2 p}=\left\{U_{2 p}(n)\right\}, n \geqslant 0$, which is defined, for fixed non-negative integer p, by the initial conditions

$$
U_{2 p}(0)=U_{2 p}(1)=U_{2 p}(2)=\ldots=U_{2 p}(2 p)=1
$$

and by the restricted subadditive recursion

$$
U_{2 p}(n+2 p+1)=\min _{0 \leqslant \ell \leqslant p}\left(U_{2 p}(n+\ell)+U_{2 p}(n+2 p-\ell)\right), n \geqslant 0 .
$$

[^0]Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/88 $\$ \mathbf{A 2 . 0 0}+0.00$.

Various number theoretic and algebraic properties of $U_{2_{p}}$ are also exhibited.
The problem of multi-stage allocation processes is one of the many classes that can be solved by dynamic programming; see Bellman [1], Iwamoto [2, 3]. The main aim of the second part of the thesis is to introduce a new class of optimal decision-making problems arising in a certain (discrete) multi-stage allocation process in manufacturing. It is also shown how these problems can be solved by a certain (discrete) dynamic programming approach.

Specifically, it is first established that the solutions to the problems in question can be modelled by a particular minimal solution of the weighted generalised restricted superadditive inequality

$$
\chi_{\alpha, \beta}(n) \geqslant\left\{\begin{array}{l}
\alpha\left(1-\beta^{3}\right) \chi_{\alpha, \beta}(n-1)+(1-\alpha) \beta^{3} \chi_{\alpha, \beta}(n-3)+\alpha \beta^{3} \chi_{\alpha, \beta}(n-4) \tag{1}\\
\left(\alpha^{2}\left(1-\beta^{2}\right)+\beta^{2}\left(1-\alpha^{2}\right)\right) \chi_{\alpha, \beta}(n-2)+\alpha^{2} \beta^{2} \chi_{\alpha, \beta}(n-4), n \geqslant 4 \\
\beta\left(1-\alpha^{3}\right) \chi_{\alpha, \beta}(n-1)+(1-\beta) \alpha^{3} \chi_{\alpha, \beta}(n-3)+\alpha^{3} \beta \chi_{\alpha, \beta}(n-4)
\end{array}\right.
$$

(α, β fixed in $0<\alpha, \beta<1$); namely, by that sequence $P_{\alpha, \beta}=\left\{P_{\alpha, \beta}(n)\right\}, n \geqslant 0$, which is defined, for fixed α, β in $0<\alpha, \beta<1$, by the initial conditions

$$
\left\{\begin{array}{l}
P_{\alpha, \beta}(0)=1 ; \quad P_{\alpha, \beta}(1)=\max \left\{\begin{array}{l}
\alpha\left(1-\beta^{3}\right) \\
\beta\left(1-\alpha^{3}\right)
\end{array}\right. \tag{2a}\\
P_{\alpha, \beta}(2)=\max \left\{\begin{array}{l}
\alpha\left(1-\beta^{3}\right) P_{\alpha, \beta}(1) \\
\left(\alpha^{2}\left(1-\beta^{2}\right)+\beta^{2}\left(1-\alpha^{2}\right)\right) ; \\
\beta\left(1-\alpha^{3}\right) P_{\alpha, \beta}(1)
\end{array}\right. \\
P_{\alpha, \beta}(3)=\max \left\{\begin{array}{l}
\alpha\left(1-\beta^{3}\right) P_{\alpha, \beta}(2)+(1-\alpha) \beta^{3} \\
\left(\alpha^{2}\left(1-\beta^{2}\right)+\beta^{2}\left(1-\alpha^{2}\right)\right) P_{\alpha, \beta}(1) \\
\beta\left(1-\alpha^{3}\right) P_{\alpha, \beta}(2)+(1-\beta) \alpha^{3}
\end{array}\right.
\end{array}\right.
$$

and by the generalised restricted superadditive recursion

$$
P_{\alpha, \beta}(n)=\max \left\{\begin{array}{l}
\alpha\left(1-\beta^{3}\right) P_{\alpha, \beta}(n-1)+(1-\alpha) \beta^{3} P_{\alpha, \beta}(n-3)+\alpha \beta^{3} P_{\alpha, \beta}(n-4), \tag{2b}\\
\left(\alpha^{2}\left(1-\beta^{2}\right)+\beta^{2}\left(1-\alpha^{2}\right)\right) P_{\alpha, \beta}(n-2)+\alpha^{2} \beta^{2} P_{\alpha, \beta}(n-4), n \geqslant 4 \\
\beta\left(1-\alpha^{3}\right) P_{\alpha, \beta}(n-1)+(1-\beta) \alpha^{3} P_{\alpha, \beta}(n-3)+\alpha^{3} \beta P_{\alpha, \beta}(n-4),
\end{array}\right.
$$

It is then shown how the values of $P_{\alpha, \beta}$ generated by recursions ($2 \mathrm{a}, \mathrm{b}$) can be utilised to solve the aforementioned problems. (Note that determining a minimal solution $\chi_{\alpha, \beta}$ of the superadditive inequality (1) is tantamount to finding a maximal solution of a subadditive inequality ((1) with $\chi_{\alpha, \beta}$ replaced by $\left.-\chi_{\alpha, \beta}\right)$.)

The analysis of $U_{2 p}$ and $P_{\alpha, \beta}$ summarised above suggests several areas for future investigation. Three of these are discussed briefly in the final chapter.

References

[1] R. Bellman, 'A functional equation arising in allocation theory', J. Soc. Indust. Appl. Math. 3 (1955), 129-136.
[2] S. Iwamoto, 'Inversion of dynamic programs and its application to allocation processes', J. Math. Anal. Appl. 81 (1981), 474-496.
[3] S. Iwamoto, 'On Bellman's allocation processes', J. Math. Anal. Appl. 111 (1985), 65-89.
[4] R.J. Wallace, 'The maximal solution of a restricted subadditive inequality in numerical analysis', Aequationes Math. 33 (1987), 183-193.

Department of Quantitative Methods
Victoria College
Burwood, Victoria, 3125
Australia.

[^0]: Received 9 June 1988. Thesis submitted to La Trobe University, May 1987. Degree approved December 1987. Supervisors: Dr A.L. Andrew, Professor Emeritus E.R. Love and Dr D.K. Ross.

 The author is indebted to Dr R.S. Booth, who first introduced him to the field of sequential search for zeros of derivatives.

