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OPTIMAL SOLUTIONS OF RESTRICTED SUBADDITIVE INEQUALITIES

ROGER JAMES WALLACE

Consider the following question:
"Let k be a given non-negative integer, and let g denote a real valued function of

one variable, defined on a known finite open interval, and possessing a continuous fc-th
derivative g^. How might simple real zeros of gW be efficiently approximated, by
using only values of g and points in the domain of gV

A standard approach to this question is to choose successively a (prescribed) total
of n(> k) points to be the abscissae for sequences of fc-th divided differences. The signs
of the differences are then used to locate the zeros; see Wallace [4] and the references
therein to the pioneering work of R.S. Booth, S.M. Johnson, J. Kiefer and others.

Of central importance is the particular rule (or strategy) 5fc = Sjt(n) by which
these n points are selected. Some strategies estimate the zeros of g^ more efficiently
than others, so workers have sought the most efficient strategy Sk, for given k. To
date, Sk has been exhibited for k = 0, 1, 2, 3, 4, 5, 6, 14 only.

The main result of the first part of this thesis is the establishment of S2(2
A+1-i)»

A a fixed non-negative integer. Also determined is an extension of a result of Booth on
54 . Both results are found by analysis of a particular maximal solution of the restricted
subadditive inequality

V>2p(n + 2 p + l ) ^ ip2p{n + t) + i>2p(n + 2p - £), n > 0 , O^i^p,

(p a fixed non-negative integer); namely, that sequence U2p = {U2p(n)}, n ^ 0, which
is defined, for fixed non-negative integer p, by the initial conditions

U2p(0) = £72,(1) = E72p(2) = . . . = U2p(2p) = 1

and by the restricted subadditive recursion

U2p(n + 2p + 1) = min {U2p{n + I) + U2p{n + 2p- £)), n > 0 .
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Various number theoretic and algebraic properties of Uiv are also exhibited.

The problem of multi-stage allocation processes is one of the many classes that can
be solved by dynamic programming; see Bellman [1], Iwamoto [2, 3]. The main aim
of the second part of the thesis is to introduce a new class of optimal decision-making
problems arising in a certain (discrete) multi-stage allocation process in manufacturing.
It is also shown how these problems can be solved by a certain (discrete) dynamic
programming approach.

Specifically, it is first established that the solutions to the problems in question
can be modelled by a particular minimal solution of the weighted generalised restricted
superadditive inequality

( a{\ - P3)XaA
n - 1) + (1 - ")/?3Xa,M'» - 3) + a/?3Xa,/3 (n - 4),

(1) Xc.A"-)>\ ( a 2 ( l - ^ 2 ) + / 3 2 ( l - a 2 ) ) X a , / 3 ( n - 2 ) + a 2 / 3 2 X a , ^ - 4 ) ) n > 4

[ 0(1 - a3)Xa>/3(n - 1) + (1 - /3)ai
XaA

n ~ 3) + "3fta,/3 (n - 4),

(a,/? fixed in 0 < a,j3 < 1); namely, by that sequence Pa^ = {Pa,p(n)}> n ^ 0,

which is defined, for fixed a,0 in 0 < a, /? < 1, by the initial conditions

(2a)

= max •
I 0(1 - «3) '

and by the generalised restricted superadditive recursion

(2b)

!

a(l - P3)PaA
n - 1) + (1 - a)(33Pai/}(n - 3) + OL0*Pa4, (n - 4),

(a2 (1 - /?2) + /?2 (1 - a2))Pai/3(n - 2) + a2f32Pat0 (n - 4), n > 4

0(1 - a3)PaAn - 1) + (1 - (3)a3PaAn - 3) + a3/? Pa<0 (n - 4),

It is then shown how the values of Paip generated by recursions (2a,b) can be
utilised to solve the aforementioned problems. (Note that determining a minimal so-
lution Xa,p °f the superadditive inequality (1) is tantamount to finding a maximal
solution of a subadditive inequality ((1) with Xa,p replaced by — Xa,p)-)

The analysis of Uip and Pa,/3 summarised above suggests several areas for future
investigation. Three of these are discussed briefly in the final chapter.

https://doi.org/10.1017/S0004972700027878 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700027878


[3] Restricted subadditive inequalities 477

REFERENCES

[1] R. Bellman, 'A functional equation arising in allocation theory', J. Soc. Indust. Appl. Math. 3
(1955), 129-136.

[2] S. Iwamoto, 'Inversion of dynamic programs and its application to allocation processes', J. Math.
Anal. Appl. 81 (1981), 474-496.

[3] S. Iwamoto, 'On Bellman's allocation processes', J. Math. Anal. Appl. I l l (1985), 65-89.
[4] R.J. Wallace, 'The maximal solution of a restricted subadditive inequality in numerical analysis',

Aequationes Math. 33 (1987), 183-193.

Department of Quantitative Methods
Victoria College
Burwood, Victoria, 3125
Australia.

[3] Restricted subadditive inequalities 477

REFERENCES

[1] R. Bellman, 'A functional equation arising in allocation theory', J. Soc. Indust. Appl. Math. 3
(1955), 129-136.

[2] S. Iwamoto, 'Inversion of dynamic programs and its application to allocation processes', J. Math.
Anal. Appl. 81 (1981), 474-496.

[3] S. Iwamoto, 'On Bellman's allocation processes', J. Math. Anal. Appl. I l l (1985), 65-89.
[4] R.J. Wallace, 'The maximal solution of a restricted subadditive inequality in numerical analysis',

Aequationes Math. 33 (1987), 183-193.

Department of Quantitative Methods
Victoria College
Burwood, Victoria, 3125
Australia.

https://doi.org/10.1017/S0004972700027878 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700027878

