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Abstract. Direct detection of a planet around a star by a nulling interferometer, requires to
minimize as far as possible the stellar leaks due to the resolved angular size of the star. The
original Bracewell configuration features a nulling function in θ2 which is insufficient in many
cases. Several interferometric configurations have been proposed in order to improve the quality
of the rejection with a nulling function θn with 2 � n � 6. I proposed recently a method to build
linear configurations of telescopes that achieve nulling function θn for any even value of n, using
the Prouhet-Thué-Morse sequence to select those telescopes where a π phase shift is applied.
In a first part, I recall the basis of this method and its generalization to 2D configurations and
1D arrays of non-identical telescopes, or even to configurations where the phase shift is not π.
In a next step, I evaluate the efficiency of deep nulling interferometers in real world, i.e. when
nulling is not perfect because of variations of distances or of phase shift between telescopes. I
conclude that there is a clear advantage given by the highest order systems that keep a better
nulling capability than conventional interferometers, even in severe conditions where parameters
driving the nulling performance are highly fluctuating.
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1. Introduction
There is a huge contrast (106−10) between a star and a planet that orbits it, so that

directly detecting the planet means cancelling as much as possible the stellar light.
Bracewell, 1978 was the first to propose the concept of a nulling interferometer, where
the light collected by two telescopes are coherently combined with however the trick that
a π phase shift is applied on one of the optical path. The system of fringes projected
onto the sky shows a central dark fringe. If the star image is put on this central dark
fringe, it disappears (actually, the stellar photons are all sent in the second output of
the interferometer). If the planet is at the same time on a bright fringe, then it can be
detected, in principle. The modulation of the fringes with respect to the angular distance
is according to a (1 − cos θ) function, so that close to the axis the nulling is ∝ θ2. If the
interferometer has enough resolution (equivalently a long basis), as it should to separate
a planet, then the angular diameter of the stellar disk is no longer small with respect to
the fringe period and leaks of stellar light will contaminate the planet flux and severely
limit the detection capability.

Several interferometric configurations have been presented in order to improve the
quality of the rejection, especially in increasing the exponent of the term θn which gives
the cancellation efficiency with respect to angular distance to the axis of the central
fringe (e.g. Léger et al., 1995). The Angel’s Cross (Angel, 1989), Oases configuration or
Mariotti / Laurance (Darwin ESA project) configuration and others (Woolf, 1997) do
fill this condition of a nulling with an exponent >2. In general, those configurations have
been found through some trial method, but, as far as I know, no systematic method has
been proposed to reach any given power of θ.
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I presented recently (Rouan, 2003-a,Rouan, 2003-b) a method to define linear con-
figurations of telescopes that provide a θn nulling function for any even value of n.
The principle is based on a remarkable property discovered by Prouhet (Prouhet, 1851)
about a peculiar partition in two sets of the N = 2L first integers, done according to the
Prouhet-Thué-Morse sequence. This property is such that, provided that to half of the N
telescopes output a π phase shift is applied, it is possible to cancel the (L-1) first terms
of the developement in θ of the recombined amplitude, thus leading to the wished θ2L

behaviour of the intensity. 1D configurations of identical telescopes is the basic config-
uration from which one starts to generalize the method for construction of 2D arrays –
still of identical telescopes –, then to build 1D and 2D arrays of non-identical telescopes
and finally extend the theory to arrays where the phase shift is 2π/n. The various steps
of this approach are summarized in the first section.

However, this work would remain a rather formal exercise and more a mathematical
trick than a true instrumental concept, if one would not go further. This is the object of
section two to assess the actual performances of those Very Deep Nulling Interferometers
(VDNI), when non perfect conditions of nulling are considered.

2. Building Very Deep Nulling Interferometers
2.1. Prouhet-Thué-Morse sequence and Prouhet partition of the integers

The Prouhet-Thué-Morse sequence is very easily built and can be considered as one of
the simplest fractal objects. Let’s start from the symbol “+”. This is the first term of the
series. Now take its inverse, “-”, and concatenate it to the first element: this produces
the second term of the series, i.e. “+ -”. Let’s redo the operation: we take the current
term “+ -”, and concatenate to it its complement, “- +”: this leads to the third term,
“+ - - +”. The following terms are built the same way by concatenating the complement
of the previous term:
+ - - + - + + -
+ - - + - + + - - + + - + - - +
+ - - + - + + - - + + - + - - + - + + - + - - + + - - + - + + - etc.
One can note that: a) any term of the series never contains more than two identical
digits (+ or -) that are juxtaposed (e.g. no +++ nor - - - -); b) periodic patterns never
appear; c) the Lth term of the series contains 2L digits (considering that the index of
the first term is 1). Prouhet, 1851 had the idea to distribute the first 2L integers into
two sets according to the Prouhet-Thué-Morse sequence: the first set corresponds to
integers that have the same rank as the (+) in the sequence and the second set to those
that have same rank as the (-). This reads: P = [1, 4, 6, 7, 10, 11, 13, 16, . . . , ok, ...] and
M = [2, 3, 5, 8, 9, 12, 14, 15, . . . , ek, ...]

A property established by Prouhet, is that the sum of the elements of the two series
are equal, but much more remarkably, the sum of the squares, of the cubes, etc. are also
equal, and this up to the power L-1 when considering the 2L first integers. In a condensed
form this can be written:∑2L −1

k=0(ok)p =
∑2L −1

k=0(ek)p , ∀ p < L.

2.2. 1D nulling interferometers

Let’s consider an interferometer made with a set of N = 2L identical telescopes regularly
aligned, with a distance d between two adjacent telescopes, as illustrated on Fig. 1. If
the telescopes are pointing in a direction θ (measured from the normal to the baseline),
then the amplitude a of the wave at the output of the recombiner is:
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Figure 1. Top: configuration of a linear interferometer with equally spaced telescopes. Bottom:
the fractal nulling interferometer, where some telescopes (the darker ones) experience a π phase
shift.

a =
∑N

k=0 exp(jkφ)
Where φ is the phase difference between two consecutive telescopes: φ = 2πθd/λ. Let’s

now add a π phase shift on all telescopes whose rank is a “-” in the Prouhet series, in
other word we change the sign of the amplitude. The previous relation becomes:

a = a+ − a− =
∑

k∈P exp(jkφ) −
∑

l∈M exp(jlφ)
where P and M stand respectively for the “+” and “-” sets. Considering relatively

small values of φ, i.e. of θ, one can develop each exponential in series of (kφ)n , so that
the two terms of the above expression become:

a+ =
∑

k∈P 1 + jφ ×
∑

k∈P k − φ2 ×
∑

k∈P k2 − jφ3 ×
∑

k∈P k3 + . . .

and
a− =

∑
k∈M 1 + jφ ×

∑
k∈M k − φ2 ×

∑
k∈M k2 − jφ3 ×

∑
k∈M k3 + . . .

Thanks to the remarkable property found by Prouhet, i.e.
∑

k∈P kp =
∑

k∈M kp ,
the L-1 first terms of each series cancel out mutually, so that the wished property is
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reached: a ∝ φL ∝ θL, and the intensity has the behaviour: I ∝ θ2L. For instance, the
interferometer shown in the lower part of Fig. 1 would produce a nulling function ∝ θ6.

2.3. Algebra of nulling interferometers
2D VDNI

Let’s consider a square grid of telescopes where on any row or any column the sign
of the output of each telescope is set following a Prouhet-Thué-Morse sequence – or its
complement –. For instance the grid above would describe a 4×4 VDNI.

+ - - +
- + + -
- + + -
+ - - +
The intensity varying as θ4L , its nulling capability is in θ12. One can note that: a) the

case L=1 (2×2 telescopes) corresponds to the Angel’s cross (Angel, 1989); b) the number
of telescopes required to reach a given nulling exponent α (on the intensity) is the same
in the 2D array and the 1D array cases: it is equal to 2α/2.

VDNI with telescopes of different sizes
One shows that by shifting by k steps each line with respect to the previous one, in the
2D array, and by summing algebraically the columns of the resulting matrix, one defines
a 1D array of telescopes of different sizes which has the nulling power of the initial 2d-
array. For instance, the sheared 2d-array of the previous example
+1 -1 -1 +1

-1 +1 +1 -1
-1 +1 +1 -1

+1 -1 -1 +1

+1 -1 -2 +2 0 0 +2 -2 -1 +1
leads to the 1D nulling configuration at the bottom line (0 means no telescope). One can
also build 2D arrays from 1D arrays by simply having a matrix where the first column
and the first line are any 1D VDNI and making the algebraic product at the intersection,
as illustrated by he following example:
+1 -2 +2 -1
-2 +4 -4 +2
+1 -2 +2 -1

VDNI with phase shift different from π
Finally, one shows that the Prouhet property can be extended to partitions of the first
nL integers in n sets rather than 2, through some permutations at each step to build
the terms of the series (Rouan, 2003-b). Provided that the phase shift for each group of
telescopes becomes 2 k π/n instead of π, the nulling property in θ2L is as effective as in
the bipartition.

3. Comparison between VDNI interferometers in the real world
We compare here the nulling properties of VDNI when a non perfect system is exam-

ined, i.e. when distances and phase are fluctuating, so that nulling is no longer constant.
Indeed the question of the nulling stability is an issue since the associated noise tends to
be the most important contributor in the present studies of space interferometers (Lay,
2004; Chazelas, 2005). For this comparison, I considered only 2D square arrays of the
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Figure 2. Left: theoretical nulling capability of the four first 2D square VDNI vs the number
of telescopes on one side; Right: best transmission of the VDNI.

basic type: 2×2, 4×4, 8×8, 16×16. I assumed that the total surface of telescopes was
the same: either few large telescopes or many small telescopes. I have in mind the TBC
assumption that in terms of mission cost, this could be equivalent because the mass pro-
duction of identical small telescopes should be rather cheap (e.g. 64 × 25 cm telescopes vs
4 × 1m telescopes). Simulations were done for an Earth-Sun system: this means that the
distance between telescopes is such that the projected first maximum of transmission is
at 1 AU and that the star diameter to consider for leaks calculation is .01 AU. Two causes
of nulling degradation were considered in this preliminary exercise: a) the distances be-
tween telescopes are not constant and the rms relative variation is δd/d = 10−3; b) there
is an imperfect π phase shift with an rms fluctuation of .01 radians. Fig. 2, 3, and 4
summarize the results of this study.

First, in terms of absolute performances (perfect nulling configuration), the nulling
capability of VDNI is indeed excellent and far beyond the required factor of 1010 for
an Earth detection, since, for instance, it reaches 10−32 for the 16×16 array (Fig. 2-a).
However the maximum transmission of the planet is decreasing with the order, it is 12%
for the 16×16 pattern, while it is 100% for the 2×2 one (Fig.2-b).

The most interesting results is the one giving the nulling performance when fluctuations
of distances and of phase are introduced: Fig.3a-b shows that there is a clear improvement
when using, for a given level of fluctuation, larger arrays: for instance, even with a very
severe phase fluctuation of .5 o rms, the nulling capability can be maintained at a fairly
good level with a 16×16 array, with a gain of 85 over the 2×2 array. If one looks at the
detail of the behavior with time of the nulling performance (Fig. 4), it clearly appears
that the larger the array, the lesser the amplitudes of fluctuations, and especially the
big ones (note the logarithmic scale of Fig. 4): for instance in the case of the 2×2 array,
the nulling factor can vary by as much as a factor of 2000, while it is only a factor of
370 for the 16×16 array. One can logically suspect some averaging effect to explain this
robustness of the nulling efficiency in the higher order VDNI.

Since the stability of the nulling efficiency is clearly a concern in the design of space
nulling interferometer, it seems thus that considering the VDNI concept to improve this
performance deserves some attention. More detailed estimates are obviously required.

4. Conclusion
Reaching a good nulling on starlight is mandatory for detecting terrestrial planets. A

method to design a nulling interferometer that provides a central null depth of any given
even power of θ has been given previously. It is based on a property of the Prouhet-Thué-
Morse sequence, and allows to build 1D interferometers where to half of the telescopes
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Figure 3. Left: nulling capability of the four first 2D square VDNI when distance between
telescopes fluctuates, with rms δd/d = 10−3; Right: same but when π phase shift fluctuates,
with σφ = 1 deg.

Figure 4. Exemple of nulling stability as a function of time for 2×2 and 16×16 patterns.

is applied a π phase shift. From this basic pattern, one can then build 2D or other 1D
patterns, by combining in one dimension or two dimensions those building bricks. In a
second step I estimate how those VDNI behave when the basic interferometric parameters
(distances and phase) fluctuate, as this happens in the real world. I show that the higher
the order of the VDNI, the more robust they are with respect to nulling performances,
beating largely conventional nulling interferometers of lower orders. This is especially
true when very severe phase variations are introduced. This robustness is likely the result
of some averaging effects. Especially the nulling stability noise, which is a very serious
concern in the design of space interferometers, is largely reduced with a high order VDNI.
This type of interferometer may be a serious alternative to more conventional design, if
indeed the nulling stability noise remains the main concern in presently studied missions.
For a given collecting surface, the increasing number of telescopes could be compensated,
in terms of cost, by the mass production of identical small telescopes.
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https://doi.org/10.1017/S1743921306009343 Published online by Cambridge University Press

https://doi.org/10.1017/S1743921306009343

