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MODULES ARISING PROM SOME RELATIVE INJECTIVES

YIQIANG ZHOU

A ring R is a right SJ-ring if every singular right .R-module is injective, while
R is a right 53/-ring if every singular semisimple right ii-module is injective. In
this paper, we investigate and characterise several analogues of the two notions to
modules, with many illustrative examples included.

INTRODUCTION

Let R be an associative ring with identity and M a unitary right .R-module. In
this paper we study the following conditions on the module M:
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Every singular .R-module is M-injective;

Every singular semisimple .R-module is M-injective;

M is a GV-module and M/Soc(M) is locally Noetherian;

Every cyclic singular .R-module in <r[M] is M-injective;

Every M-singular .R-module is M-injective;

Every M-singular semisimple fl-module is M-injective;

M is a GCO-module and M/Soc(M) is locally Noetherian;

Every cyclic M-singular .R-module is M-injective.

When MR = RR, Cn = C14 = Cu = C21 coincides with the right ST-rings in-
troduced and studied by Goodearl [3], while C12 = Cn = C23 = C22 is the denning
condition of the right S3I-rings due to Page-Yousif [12]. For the various characterisa-
tions of right 5/-rings and right 53/-rings, we refer to [3], [11] and [12]. Modules with
C\\ were investigated in Yousif [18], while modules satisfying C21 constitute the main
subject of Huynh-Wisbauer [8]. Article [12] considered modules with C12 and Wisbauer
[16] carried out a study of modules satisfying Cij (j — 1, 2, 3). We note that all these
existing results on modules M with C{j required some additional assumptions on M
such as M being quasi-projective, or finitely generated, or both (for example, see [8,
1.3; 2.2], [12, Corollary 1.6], [16, 3.5; 3.10] and [18, 2.4; 2.6]).
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250 Y. Zhou [2]

One purpose of the present paper is to exhibit several characterisations of modules
M satisfying C,y (i = 1, 2; j = 1, 2, 3) without additional assumptions on M. These
characterisations extend naturally the known characterisations of right 5/-rings and
right 53/-rings and improve several results in [12], [16] and [18]. The other purpose of
this paper is to show the differences among these conditions. C\\ implies C^\, but the
converse does not hold by an example in [8]. Ci2 does not imply C\\ because of the
existence of a Noetherian F-ring which is not a right ST-ring (see [11, p.347]). We shall
construct examples which, together with the above-mentioned examples, establish the
following implication diagram with none of these arrows (except Cu <= Cu) reversible:

\\ =$• C\i C13

C24 <= C21 => C22 => C23.

0. DEFINITIONS AND NOTATION

Throughout all rings R are associative rings with identity and all modules are
right unitary .R-modules (unless specified otherwise). Mod-iZ will denote the category
of unitary right i2-modules. For modules M and N, N <—> M means that N is
embeddable in M, while N ^ e M means that N is essential in M. We write N •—> M

to indicate that N is essentially embeddable in M. We denote by Z{M) the singular
submodule of M. The module M is called a Goldie torsion module if Z[M) ^ e M.

We let Soc(M) be the socle of M, and use Socni(M) to indicate the sum of all
non-singular simple submodules of M. Following [17], for any module M, we denote
by cr[M] the full subcategory of Mod-/?, whose objects are the submodules of M-

generated modules. The M-injective hull, EM{N), of N is defined to be the trace of
M in the injective hull E(N) of N, that is EM{N) = E{ / ( - ^ ) = / e Horn (M, E{N))}.

Following [16], a module N is called M-singular if N = L/K for an L E a[M] and
K ^ e L. Note that every M-singular module belongs to <r[M]. The class of all M-

singular modules is closed under submodules, factor modules, and direct sums. Hence
any module N £ a[M] contains a largest M-singular submodule, which is denoted by
ZM(N) (see [16]). A module N is said to be non M-singular if ZM(N) - 0. We
denoted by Socn3(N) the sum of the non M-singular simple submodules of N.

We let Q(M) be the singular torsion theory in a[M], that is, Q(M) is the smallest
torsion class in <r[M] which contains all M-singular modules (see [15]). Q(M) is closed
under M-injective hulls by [15, 2.4(3)], and hence £(M) = {N e <r\M): ZM(N) ^e N}.

A module is said to be locally Noetherian if every finitely generated submodule
is Noetherian. A module M is called a ^-module (or GF-module, or GCO-module,
respectively) if every simple (or singular simple, or M-singular simple, respectively)
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module is M-injective (see [5] and [14] and [16]). It is easy to show that submodules,
factor modules, and direct sums of locally Noetherian (or V-, or GV-, or GCO-,
respectively) modules are locally Noetherian (or V-, or GV-, or GCO-, respectively)
modules. Clearly, every GF-module is a GCO-module, but the converse is not true
(see [16]).

1. CONDITIONS C12, C13, C22 AND C2Z

Lemma 1 follows from [9, Theorem 1.7] and the fact that M is locally Noetherian
if and only if every direct sum of M-injective modules is M-injective [9, Theorem 1.11]
if and only if every direct sum of M-injective hulls of simple modules is M-injective
[19, Corollary 2.7]. It also follows from [4, Theorem 3.8] by taking the module class X
to be Mod-.R.

LEMMA 1 . The following are equivalent for a module M:

(a) M is a locally Noetherian V-module;

(b) Every semisimple module is M-injective;

(c) Every countably generated semisimple module is M-injective. D

LEMMA 2 . For a GCO-module M, M is Noetherian if and only if every factor

module of M has finitely generated socle.

PROOF: By an argument used in the proof of [7, Lemma 1], one can show that
every GCO-module contains a maximal submodule. Since every subquotient of a
GCO-module is GCO, we have the equivalence by Shock [13, Theorem 3.8]. D

Extending a result of right S3/-rings in [12, Corollary 2.16], Wisbauer [16,
3.5] characterised quasi-projective modules with C23. Note that we have ZM(M) fl
Soc(M) = 0 for any quasi-projective GCO-module M by [16, 2.3]. Therefore the
following result, characterising modules with C23 , is an improvement of [16, 3.5].

PROPOSITION 3 . The following are equivalent for a GCO-module (in particu-

lar, for a GV-module) M;

(a) M/Soc(M) is a locally Noetherian module;

(b) Every direct sum of M-injective modules is M/Soc(M)-injective;

(c) Every direct sum of M-singular M-injective modules is M/Soc(M)-
injective;

(d) Every cyclic (or finitely generated) M-singular module has finitely gen-
eraged socle;

(e) M/N is locally Noetherian for every essential submodule N of M.

Moreover if ZM(M) (~1 SOC(M) = 0, then (a)-(e) are also equivalent to

(I) Every M-singular semisimple module is M-injective.
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PROOF: Clearly (a) => (b) => (c).

(c) =*• (a). Let X = ®Ejj{Xi), where M = M/Soc{M) and X{ G a[M/Soc{M)}

are simple modules. By [16, 1.3], each Xi is M-singular. Then Xi is M-singular M-
injective since M is GCO. It follows that Xi is M-injective and hence E-^Xi) = Xi.

Then X — (BXi is a direct sum of M-singular M-injective (simple) modules Xi. By
(c), X is M/5oc(M)-injective. Therefore, by [19, Corollary 2.7], M/Soc(M) is locally
Noetherian.

(a) => (d). Every finitely generated M-singular module N is in <r[M/Soc(M)] by

[16, 1.3], and hence is Noetherian by (a). So N has finitely generated socle.

(d) => (e). Let X <e M and N/X be a cyclic submodule of M/X. Then every

factor module of N/X is cyclic M-singular, and so has finitely generated socle by (d).

So N/X is Noetherian by Lemma 2.

(a) •£> (e) follows from the fact that for a module P, P/Soc(P) is Noetherian if

and only if P/X is Noetherian for all X ^ e P (see [12, Corollary 2.9]).

A similar argument in the proof of "(c) => (a)" shows (f) => (e). And a similar

argument in the proof of "(b) => (c)" of [18, 3.5] shows (a) + (b) => (f). D

For a module M with ZM{M) H SOC(M) — 0, we have C22 =̂> C23 by Proposition
3. In general for modules with C22 we have the following result.

PROPOSITION 4 . The following are equivalent for a module M:

(a) Every M-singular semisimple module is M-injective;

(b) M/Socnj(M) is locally Noetherian V-module;

(c) M is a GCO-module and M/Socnj(M) is locally Noetherian;

(d) M is a GCO-module and every direct sum of M-singular M-injective

modules is M-injective;

(e) M is a GCO-module and every cyclic (or finitely generated) module in
Q(M) has finitely generated socle.

PROOF: (a) =>• (b). In view of Lemma 1, we need show that every semisimple
module is M/Socnj (M)-injective. Since every M-singular semisimple module is M-
injective by (a) and hence M/Socnj (M)-injective, it suffices to show that every non
M-singular semisimple module is M/Socn}(M)-injective.

Let A" be a non M-singular semisimple module, and A/Socn3(M) an essential
submodule of M/Socni(M), and / : A/Socn3(M) —» X an iZ-homomorphism. Let
Ker(/) = B/Socn3(M). We claim that B ^ e A. If not, then B D Y = 0 for some
nonzero submodule Y of A. Therefore, we have Y = (Y + B)/B •-> A/B •-> X.

Then Y is non M-singular semisimple, and thus Y C Socn7(M) C B, a contradiction.
Therefore, B ^ e A. Then, from A/B <-» X, X is not non M-singular unless A =

B. Therefore, / = 0, and so / can trivially be extended to a homomorphism from
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M/Socn2(M) to X.
(b) => (c). Let X be an M-singular simple module, N an essential submodule of

M, and /': N —» X an .R-homomorphism. Note that Socn3(M) C Ker(/). Therefore,
/ induces an .R-homomorphism / : N/Socn3(M) —* X by /(a) = /(a) for all a £
N/Socnt(M). Since M/Socnj(M) is a V-module, there is an .R-homomorphism </
from. M/Socnj(M) to X that extends / . Let ir: M —> M/Socnj(M) be the canonical
.R-homomorphism. Then flro7r: M —» X is a homomorphism that extends / . Therefore,
X is M-injective.

The implication (c) =>• (d) can be proved by [9, Theorem 1.11] and an argument
similar to that in the proof above. The proof of (d) => (a) is obvious.

(e) =>• (b). First we note that every simple module in a[M/Socn3(M)} is M-
singular. To see this, let E be a simple module in a[M/Socnj(M)]. By an argument
similar to that in [16, p.4238], we have an essential submodule N of M with an
epimorphism

0: N —> N/Socn2(M) —> E.

If E is not M-singular, then the maximal submodule Ker(^) of N is not essential in
N, and thus Ker(^) is a direct summandof N. Then N = Ker (<f>)@E' with E' =E.
Therefore, E' is non M-singular and so E' C Socnj(M), implying E' C Ker($) and
Ker (4>) = N. This is a contradiction.

Now let X be a cyclic module in cr[M/Socni(M)}. There is a submodule Y of X
such that Soc{X)nZM(N) <^> X/Y. Then X/Y is in Q{M), and thus Soc{X)nZM(X)
is finitely generated by (i). Therefore, by the note above, Soc(X) = Soc(X) (1 ZM[X)
is finitely generated. Now the implication follows from Lemma 2.

(b) => (e). For a finitely generated module X in G{M), we have X £ cr[M/Socni (M)].
In fact we have X <—* M^'/A for some index set / and a submodule A of M ^ . If
Socn3(M(J)) 2 -^i t n e n [Socn, ( M ^ ) + .A]/.A has a non M-singular simple submod-
ule which is embeddable in X, a contradiction. So Socnj ( M ^ ) C A and hence
X £ o-[M/iSocna(M)]. Then (b) implies that X is Noetherian and hence has finitely
generated socle. U

REMARK. It is true that Proposition 4 still holds when " M-singular M-injective mod-
ules" in statement (d) is replaced by " M-injective modules in Q{M)". But this is not
the case if "cyclic (or finitely generated) modules in Q{M) " in statement (e) is replaced
by "cyclic (or finitely generated) M-modules". The fact is that M satisfies C23 if
and only if M is GCO and every cyclic (or finitely generated) M-singular module has
finitely generated socle (by Proposition 2). We shall give example of a module satisfying
C23 but not C22 later.

A proof analogous to that of Proposition 4 yields the next result, which improves
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[12, Corollary 1.5; Corollary 1.9].

PROPOSITION 5 . The following are equivalent for a module M:

(a) Every singular semisimple module is M-injective;

(b) M/Socni(M) is a locally Noetherian V-module;

(c) M is a GV-module and M/Socni(M) is locally Noetherian;

(d) M is a. GV -module and every direct sum of singular M-injective modules

is M-injective;

(e) M is a GV -module and every cyclic (or finitely generated) Goldie torsion

module in cr[M] has finitely generated socle. D

REMARK. Proposition 5 still holds when "singular M-injective modules" in statement
(d) is replaced by "Goldie torsion M-injective modules". But this is not the case
if "cyclic (or finitely generated) Goldie torsion modules" in statement (e) is replaced
by "cyclic (or finitely generated) singular modules". In fact, we have the following
implications: " M satisfies C12" => " M is GV and every cyclic (or finitely generated)
singular module in <r[M] has finitely generated socle" => "M satisfies C13". In Section
3 we shall construct a module M which satisfies C13 but some cyclic singular module
in cr[M] has infinitely generated socle. We have been unable to find an example of a
GF-module M without C13 but for which every cyclic singular module in cr[M] has
finitely generated socle.

We end this section by giving an example.

EXAMPLE 6: There exists a module TR such that

(a) TR is not a GF-module;
(b) Every TR-singular module is Tfi-injective.

Let KP be an infinite dimensional vector space over a field K and let T be the
subring of End (j<-P) generated by the socle of End(ifP) and the scalar transforma-
tions. Then T is a (two-sided) 57-ring by [2, p.131]. But T is not a right F-ring (see
[1, Example 25, p.234]). Let R be the ring of upper triangular 2 x 2 matrices over T.

The map

is a surjective ring homomorphism whose kernel is an essential right ideal of R. Under
this ring homomorphism, every right T-module can be regarded as a right fl-module
such that, for any module MT, MR is singular. Since T is not a right F-ring, some
simple module MT is not injective as T-module. Then the singular simple module MR

is not Tfi-injective. So TR is not a GF-module. But for any Tfl-singular module NR ,
N can be regarded as a singular module over T. So N? is injective since T is an
S7-ring. Therefore, NR is TR-injective.
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This example implies the following:

(1) There exists a GCO-module which is not a GF-module (see [16]);
(2) There exists a module with C23 but not C13;

(3) There exists a module with C22 but not C12;
(4) There exists a module with C21 but not Cu (see [8]);
(5) There exists a module with C24 but not C14.

2. CONDITIONS CU, C I 4 , C2I AND C24

Rings for which every singular module is injective, called 57-rings, were introduced
and studied in [3]. In generalising the concept to modules, two situations arise: 5 / -
modules in the sense of [18], that is, modules with Cu , and SJ-module in the sense
of [8], that is, modules with C21. Cu implies C21, but the converse is not true (see
[8]). For more detail on the study of the two notions, we refer to [18] and [8]. We now
characterise SJ-modules in either sense.

PROPOSITION 7 . The following are equivalent for a module M:

(a) Every M-singular module is M-injective;

(b) Every factor module in Q(M) of M is semisimple;

(c) Every (finitely generated) module in Q(M) is semisimple;
(d) Every (finitely generated) module in Q(M) is M-injective;
(e) Every (finitely generated) module in Q(M) is quasi-continuous;

(f) Every cyclic module in Q(M) is M-injective;

(g) Every M-singular semisimple module is M-injective and Soc(P) ^ 0 for
every factor module P in Q{M) of M.

PROOF: Note that Q{M) is closed under submodules, direct sums, M-injective

hulls, and factor modules. Therefore, applying [19, Theorem 3.5] to Q(M), we have

the equivalences (c) <& (d) «=> (e) -O- (f). The implication (c) + (d) =>• (g) is obvious.

The remaining implications are easy to show. D

EXAMPLE 8: Let R - 7i/{A). Then RR is not a right S7-ring since Z{RR) = 2R

is not injective. But (1) every singular factor module of RR is semisimple; and hence
(2) every singular .R-module is semisimple; and hence (3) every singular iZ-module is
quasi-continuous.

Osofsky [10] showed that R is semisimple if and only if every cyclic module is
injective. Extending this to semisimple modules, we have that M is semisimple if and
only if every cyclic module in er[M] is M-injective (see [6, p.127] or [19, Corollary
3.6]). In [11], it was shown that R is a right 5/-ring if and only if every cyclic singular
module is injective. Therefore, it is natural for one to ask the following questions: Does
C14 imply Cn ? Does C24 imply C2i ?
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We shall give an example in Section 3 which shows that C24 does not imply C21 in
general. But C2i «=> C24 if ZM(M) = 0 as the following shows.

COROLLARY 9 . The following are quivaJent for a module M with ZM(M) = 0:

(a) Every M-singvlai module is M-injective;
(b) M/N is semisimple for every N ^ e M;
(c) Every (finitely generated) M-singulax module is semisimple;
(d) Every (finitely generated) M-singular module is M-injective;
(e) Every (finitely generated) M-singular module is quasi-continuous;
(f) Every cyclic M-singular module is M-injective;
(g) M is a GCO-module, M/Soc(M) is locally Noetherian, and

Soc(M/N) ± 0 for every N <e M.

PROOF: Note that if ZM(M) — 0, then every module in Q(M) is M-singular.
In fact, let X be in Q(M). Then we can write X •—> M^/A for some index set
I and a submodule A of M^. If A is not essential in M^, then A D B — 0 for
some 0 ^ B C AfW. This implies that Z M ( # ) 7̂  0 since ZM(-X") <e X. Therefore,
Z\f(M) 7̂  0, a contradiction. So A $Je M ^ and hence X is M-singular. The proof
follows from this and Proposition 3. D

Analogous arguments yield the following results.

PROPOSITION 10. The following are equivalent fora module M:

(a) Every singular module is M-injective;
(b) Every Goldie torsion factor module of M is semisimple;
(c) Every (finitely generated) Goldie torsion module in a[M] is semisimple;
(d) Every (finitely generated) Goldie torsion module in <r[M] is M-injective;
(e) Every (finitely generated) Goldie torsion module in a[M] is quasi-continuous;
(f) Every cyclic Goldie torsion module in a[M] is M-injective;
(g) M is an S31-module and Soc(P) ^ 0 for any Goldie torsion factor module

P of M;
(h) Every singular module in <r[M] is M-injective. D

COROLLARY 1 1 . Tie following are equivalent for a non-singular module M:

(a) Every singular module is M-injective;
(b) M/N is semisimple for every essential submodule N of M;
(c) Every (finitely generated) singular module in <T\M] is semisimple;
(d) Every (finitely generated) singular module in a[M] is M-injective;
(e) Every (finitely generated) singular module in cr[M) is quasi-continuous;
(f) Every cyclic singular module in tr[M] is M-injective;
(g) M is a GV-module, M/Soc(M) is locally Noetherian, and Soc(M/N) ^

0 for any essential submodule N of M. U
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We have been unable to determine whether or not Cn implies Cu .

It is known that every right 5s/-ring is right non-singular (see [12]). We now give
an example of module M with Cu but 0 ^ Z(M) = ZM{M) = M/N for an essential
submodule N of M.

(F F\ / 0 F\
EXAMPLE 12: Let R= I J , where F is a field. Then SOC(RR) -I I

I' F F\
is the only proper essential right ideal of R. Let Mi = I 1, M2 = R/SOC(RR),

and M = Mi © M2. Note that Mi is non-singular and has a unique composition series
of length 2. It follows that every singular /l-module is Mi-injective. Obviously, every
singular module is M2-injective. Therefore, every singular module is M-injective. Let

N = I I © Mi. Since I ) ^ e ^1 > ̂  ^s essential in M. And we have

EXAMPLES

In this section, we construct the examples promised earlier.
oo

LEMMA 13 . [20, Example 1] Let Q - \[ Fi, where each Fi-Z2, and let T be
t=i

oo

the subring of Q generated by © Fi and 1Q . Then, tor a right ideal S of T,
i=l

oo
(a) SOC(TT) — © Fi is the only proper essential right ideal of T and

«=i

T/Soc(TT) is a two-element field;
(b) T/S is T-injective if Soc(TT)/S is finitely generated;
(c) T/S is T-injective if S g Soc{TT). D

EXAMPLE 14: There exists a module M satisfying C13 but some cyclic singular
module in cr[M] has infinitely generated socle.

(T T\
Let T be as in Lemma 13 and R = I 1 be the formal triangular matrix ring.

The map

/ 0 T \
is a surjective ring homomorphism whose kernel is / = I I which is an essential

right ideal of R. Therefore, for a module MT, MR is singular. It follows that the cyclic
singular module TR has an infinitely generated socle. Note that TR/SOC(TR) is a finite
module and hence Noetherian. Next, we show that every simple singular module in
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<T[TR] is Tfl-injective. Let X be such a module. Then XT is a simple module over T.
Therefore, by Lemma 13, X is Tn-injective. Finally, because any simple module, if not
in <T[TR] , is trivially TR-injective, TR is also a GV-module.

oo / 7 7 \
LEMMA 15 . Let Q = HQi, where each Q{ = f 2 2 ) , be the full product of

i \ 0 L-i)
oo

the upper triangular rings over Z2 , and let T be the subring of Q generated by 0 Q{
t=i

and 1Q . Let To = 0 Pit where P{ = ( 2 ) , and R = T/To. Then

(a) Soc{RR) = ( © g.) / ( 0 P^ (^ 0 (Qi/Pifj is the only proper essential

right ideal of R and R/SOC(RR) is a two-element field;

(b) R/I is R-injective for any right ideal I of R with SOC(RR)/I finitely
generated;

(c) R/I is R-injective for any right ideal I of R with I £ SOC(RR).

PROOF: Similar to the proof of [20, Example 1]. D

EXAMPLE 16: We now construct a module M satisfying C23 and C24 but not C21 •
00 00

Let T be as in Lemma 15, and let C = 0 C; and D = 0D, - , where each
»=1 i = l

fLi Z2\ /0 Z2\
d = I J and £>, = I 1 . Note that both C and £> are ideals of T. Let

/ T T/D \
ii = I I be the formal triangular matrix ring. The map

a b

is a
( 0 T/D \

surjective ring homomorphism whose kernel is 7 = I 1. We can check that

J = ( j is a right ideal of R such that J C Soc(RR), and K = ( ' J

is an essential right ideal of R. Therefore, for a module NT , NR is singular if and
only if NK = 0 if and only if NJ - 0 if and only if ND = 0. We consider the T-
module M - C®{T/D). Soc((T/D)T) is M-singular (see Example 12) and not finitely
generated. It follows that M/Socn3(M) is not locally Noetherian since T/D is cyclic.
Next, we show that every cyclic M-singular module is M-injective. Let X be such a
module. Then XK = 0, and so XR is a factor module of R/K. Since {R/K)I = 0,
XT is a factor module of (R/K)T. Therefore, the isomorphism, (T/D)T = (R/K)T

by x •-> I J + K, shows that XT is a factor module of (T/D)T. To show X
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is M-injective, by [19, Corollary 1.8], it suffices to show that X is both C,--injective

(for each i ) and T/£)-injective. The argument in Example 12 shows that X is Cj-

injective. Lemma 15 will ensure that X is T/D-injective if we can show that XT is

semisimple. Since X is M-singular, there exist an index set J and submodules L and

K of M<J) such that K < e L < e M^ and X S L/JT. Note that Soc(M^) C if

and Af(J)/5oc(Af(J)) ^ [M/Soc(M)]<J) is semisimple. It follows that M^/K is

semisimple, implying that X is semisimple. Therefore, X is M-injective. Finally,

since every M-singular simple module is cyclic, MR is a GCO-module.

Let T be a right 537-ring but not a right 5/-ring. Note that such a ring T exists

since there is a Noetherian V-ring which is not an 57-ring (see [11, p.347]). If R is the

upper triangular matrix ring over T, then, by an argument similar to that in Example

6, the module TR satisfies C22 but not C21.
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