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1. Cordes and Labrousse ([2] p. 697), and Kaniel and Schechter ([6] p. 429) 
showed that if S and Tare domain-dense closed linear operators on a Hilbert space 
H into itself, the range of S is closed in H and the codimension of the range of S is 
finite, then, (TS)* = S*T*. With a somewhat different approach and more re­
stricted condition on S, the same assertion was obtained by Holland [5] recently, 
that S is a bounded everywhere-defined linear operator whose range is a closed 
subspace of finite codimension in H. 

The purpose of the present note is to generalize this result to the case of domain-
dense closed linear operators on Banach spaces over the same field of real or 
complex numbers. In particular, if S and T are Fredholm operators on reflexive 
Banach spaces, then, (TS)** = TS. We will also prove these results for adjoint 
operators between normed dual systems of Banach spaces. 

2. We shall denote by D(S) the domain, R(S) the range and N(S) the null space 
of a linear operator S on a Banach space. For convenience we sometimes write 
(S, x) instead of Sx for every x e D(S). 

LEMMA 1. Let X, YandZ be Banach spaces, S and T linear operators (not neces­
sarily closed or bounded) on X into Y with D(S) Ç X and on Y into Z with D(T) £ Y, 
respectively. IfTS is densely defined on X, then (TS)*^S*T*. Furthermore, ifTis 
bounded and defined everywhere on Y, then (TS')* = 5'*r*. 

Proof. L e t / e D(S*T*), t hen /e D(T*) and T*fe D(S*). It follows that for any 
xeD(TS), (f,TSx) = (T*f, Sx) = (S*T*f, x). (TS)* is defined uniquely, because 
TS is densely defined by assumption. Thus, /e D((TS)*), ( rS)*/=5'*r*/and hence 
(TS)*^>S*T*. To prove the second part, let fe D((TS)*) and xeD(S). T is 
bounded and defined everywhere which assures that T* takes every/e Z* = D(r*) 
into 7*. ((TS)*f, x) = (/, TSx) = (T% Sx). Since TS is densely defined, so is S and 
hence S* is defined uniquely. Thus, T*fe D(S*) and fe i)(5*r*). Therefore, 
( r a ) * ç S * r * , and the equality holds. Q.E.D. 

THEOREM 1. Let X, Y and Z be Banach spaces, S and T domain-dense closed linear 
operators on X into Y and on Y into Z, respectively. If 'codim R(S) < oo and there is a 
closed complementary subspace of N(S), then (TS')* = 5'*r*. 

Proof. Let us remark here that codim R(S) < oo implies that R(S) is closed, and 
# ( £ ) is closed since S is closed. According to Lemma 1, (TS)*^S*T* holds if TS 
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is densely defined. However, it is well-known that if S and T are domain-dense 
closed linear operators on X into Y and on Y into Z, respectively, and 
codim R(S) < oo5 then D(TS) is dense in X ([4] p. 103). To show that (TS)* <= S*r*, 
l e t / e D((TS)*) and we shall first prove t h a t / e Z>(r*) (i.e., there is a number c > 0 
such that \(f9 Ty)\<c \\y\ for every y e D(T)). Since codim R(S) = dim Y/R(S) < oo, 
we have y=jR(S)©Af', where M ' is some finite-dimensional subspace of 7. 
Also Y=R(S) © M, where M is some finite-dimensional subspace of D{T) since 
D(r) is dense in Y ([4] p. 103). Hence we have 

(1) D(T) = D(T) n jR(S) © M. 

By assumption, there exists a closed subspace Af " of X such that X=M" © # ( 5 ) . 
Let *S0 = »S | (M" n D(S)), then *S0 is a closed operator which is one-to-one and 
R(S0)=R(S). Accordingly, Sô1 exists and is a closed operator on Banach space 
R(S0) into Banach space X, and thus Sô1 is a bounded operator by the closed-
graph theorem, or equivalently, 

(2) ||JC|| < c0||So*|| = c0\\Sx\\ for every xeM" n Z)(S) with c0 > 0. 

Suppose y e D(T) n R(S), then, there is an xe M" C\ D(S) with &*;=>> and 
||x||<Cob||. Since/e D((TS)*), we have 

(3) M Ty)\ = |(/, T5x)| < d i x ! < Co^lbH, with c± > 0. 

On the other hand, suppose y e M, then, 

(4) |(/, 7»| < I/I ||7>|| < 11/11 ITU ||>i| = c2|b||, with c2 > 0, 

since the operator T on M is bounded due to M being finite-dimensional. By (3) and 
(4) we see that | ( / Ty)\ <c \y\ for every y e D(T) with c>0, and t h u s / e D(T*). 
Now, let us next show that T*fe D(S*) . /e D((TS)*) a n d / e D(r*) imply that 

(5) |(/, T5x)| = |(r*/, 5JC)| < c3\\x\\, for every x e D(TS) with c3 > 0. 

It suffices to prove that (5) holds for every x e D(S) n M". Since D(T) n R(S) is 
dense in ^(5) ([4] p. 103) and R(S) = R(S0), D(T) n ^(^o) is dense in R(S0) which 
means that for any S0x e R(S0) (x e D(S) n M"), there exists a sequence {SQXJ of 
elements in D(T) n R(S0)({xn}^D(TS0)) such that S0xn->S0x, with x n -
x G D(5) n M,r for every n. Therefore, by (2), 

(6) ll*n-*|| < cQ\SQ{xn-x)\ = c0||5'oXn-5,
0x|| ->0 . 

We see that xn->x, and (5) holds for every x e D(S) n M". Q.E.D. 

COROLLARY 1. Let X, Y and Z be reflexive Banach spaces, S and T domain-dense 
closed linear operators on X into Y and on Y into Z, respectively. If codim R(S) < oo, 
codim R(T*) < oo and both N(S) and N(T*) have closed complementary subspaces, 
then,(TS)** = TS. 

The proof follows by applying Theorem 1 and the following wellknown result: 
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if X and Y are reflexive Banach spaces and S is a domain-dense closed linear 
operator on Zinto Y, then, 5* is also a domain-dense closed linear operator on 
7* into X*. Moreover, S** = (S*)* = S. 

As usual, a domain-dense closed linear operator S on Banach space X into 
Banach space 7 is said to be a Fredholm operator if both codim R(S) and dim N(S) 
are finite. Accordingly, for such operator S there is a closed complementary sub-
space of N(S), and hence we have 

THEOREM 2. If X9 YandZ are Banach spaces, S is a Fredholm operator on X into Y 
and T is a domain-dense closed linear operator on Y into Z (T is not necessarily a 
Fredholm operator), then, (TS)* = S*T*. 

THEOREM 3. IfX, Y and Z are reflexive Banach spaces, both S and T are Fredholm 
operators on X into Y and on Y into Z, respectively, then, (TS)** = TS. 

Proof. It is wellknown that T is Fredholm if and only if T* is Fredholm (in this 
case, Y and Z are not necessarily reflexive). This and Corollary 1 imply the desired 
result. 

3. In this section we will prove some properties of the adjoint operator between 
normed dual systems which will be needed in the next section. 

Let Xx and X2 be normed linear spaces and let/be a bounded bilinear form on 
X1xX2, if fis non-degenerate, the pair (Xl9 X2) is said to be the normed dual 
system on/([9] Chap. 2, p. 62). Suppose that X[ and X2 are dense subspaces of 
X1 and X2, respectively, in virtue of/being bounded it is easily seen that the non-
degeneracy of/is equivalent with the following condition 

f{x, y) = 0 for every xe X{ implies that y = 0, and 

f(x, y) = 0 for every yeX2 implies that x = 0. 

Let Y± and Y2 be normed linear spaces, g a bounded bilinear form on Yx x Y2, 
the pair (Yl9 Y2) the normed dual system on g, and S a domain dense linear 
operator on X± into Yx. An operator 5* is said to be the adjoint of S if 

(8) Z)(S*) = {w e Y2: 3y e X2 •>. g(Sx, w) = /(*, y), Vx G D{S)}, 

and since y e X2 is uniquely determined by w due to (7), S* is defined by S*w = y. 
Clearly, 5* is a uniquely defined linear operator on Y2 into X2. In other words, a 
linear operator S* is the adjoint of S if 

(9) g(Sx, w) = f(x, S*w) for every x e DiS) and w e JD(S*). 

It may be noted that no matter whether S is a closed operator or not, S* is always 
closed, although it may happen that !>(£*)={0}. If S is not densely defined, 5* is 
in general not unique. 

Let A and B be subsets of Xx and X2, respectively. If Ax={ye X2:fix, y) = 0, 
Vx e A} and xB={x e Xx:fix, y)=0, V^ G B}, then, Ax and xi? are closed subspaces 
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of X2 and Xl9 respectively. Moreover, if A and B are subspaces, then AX = AX
9 

XB=% \AX)=A and C£)X=B, where Â is the closure of A, etc. 
Let us denote by X* the adjoint space of Xl9 and A' the orthogonal complement 

in X* of A^Xl9 etc. As is easily seen, for the normed dual system (Xl9 X2) on / , 
X2 (resp. X±) may be regarded as a linear subspace of X* (resp. X*) due to the 
non-degeneracy off. Consequently, dim A ^ d i m X2, since dim X2<dim X* = 
dim Xx<dim X* = dim Z2. 

Throughout the remainder of this section we shall assume that (Xl9 X2) and 
(Yl9 Y2) are normed dual systems o n / a n d on g, respectively. 

LEMMA 2. If S is a domain-dense linear operator on X± into Y± and S* is the 
adjoint of S in the sense of (9), then 

(a) AT(S*) = R(S)\ 
(b) RÇS*) S N(S)\ 

(c) XN(S*) = R{S). 

We shall omit the proof since it is completely standard. As a simple consequence 
of this lemma, we have 

COROLLARY 2. Notation as in Lemma 2, then 
(a') R(S) is dense if and only if S* is one-to-one. 
(b') That R(S*) is dense implies that S is one-to-one. 

LEMMA 3. If S is a domain-dense closed linear operator on X± into Yl9 then 
(a) The pair (XJN(S)9 N(S)L) is a normed dual system. 

(b) The pair (R(S)9 Y2/R(S)X) is a normed dual system. 
The closedness of S implies the closedness of N(S) in Xl9 and the proof follows 

from Proposition 5 [N. Bourbaki : Espaces vectoriels topologiques, Chap. 4, p. 54] 
and a simple calculation. Indeed, Lemma 3 is true for arbitrary closed subspaces. 

LEMMA 4. If S is a domain-dense closed linear operator on X± into Y1 and S* is 
the adjoint of S in the sense of(9)9 then D(S*) is dense in Y29 and S** = S. 

Proof. Let us first show that if D(S) is dense and for any nonzero element 
y e Yl9 there is a WE D(S*) such thatg(y9 w)^0. In fact, if y^09 then (0,y) is not 
in the graph of S which is closed subspace of X1 x Yl9 since S is closed. By the 
Hahn-Banach theorem, there is a z*e(A r

1xF 1)* such that z*(0, y)¥:0 and 
z*(x, Sx) = 0 for every x e D(S). Due to the non-degeneracy o f / a n d g9 we may 
define x' e X2 and we Y2 byf(x9 x') = z*(x9 0) and g(y9 w) = z*(0,y)9 respectively. 
Then, 0 = z*(x, Sx)=f(x9 x')+g(Sx9 w) for every x e D(S)9 hence w e D(S*) and 
CMz*(0, y)=g(y, w). Now, (Y29 Y2) is the normed dual system on g' ifg' is defined 
by g\F9 w) = Fw. Suppose that D(S*) is not dense in Y29 then there is a nonzero 
element Fe Y2 such that g\F9 w) = Fw=0 for every w e D(S*). This contradicts the 
above claim. That S** = S is, therefore, easy to see by the definition. Q.E.D. 
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Throughout the remainder of this section, we shall assume that Xl9 X29 Yx and Y2 

are Banach spaces. 

LEMMA 5. If A is a closed subspace of Xl9 then dim ^41=dim A'. 

Proof. It is wellknown that dim 4 ' = dim XJA ([7] Chap. 3, p. 141). But by 
Lemma 3, (XJA, Ax) is the normed dual system on some operator, hence, 

dim Ax=dim X1/A = dimAf. Q.E.D. 

THEOREM 4. (The closed range theorem of Banach). If S is a domain-dense closed 
linear operator on Xx into Y± and S* is the adjoint of S in the sense of (9)9 then the 
following statements are equivalent : 

(a) R(S) is closed. 
(b) R(S*) 2 N(S)\ 
(c) R(S*) is closed. 
(d) R(S) = XN(S*). 

Proof, (a) => (b) : Since S is a domain-dense closed linear operator, the induced 
operator S0 on XJN^S) into Yl9 which is defined by S0(x+N(S)) = Sx9 is one-to-
one and closed with R(SQ) = R(S). Thus, Sô1 is bounded on R(S) since R(S) is 
closed. The operator £* on Y2 into N(S)X

9 by (a) of Lemma 3, is the adjoint of S0 

in the sense of (9), which exists uniquely due to the denseness of D(S0). R(S*)^ 
N(S)X. In fact, due to the non-degeneracy of g9 if y e N(S)X we may define y' e Y2 by 

g(x',y')=fo(Sï1x',y), x'eR(S0)9 

where/o on XJN^S) x N(S)X is defined by f0(x+N(S)9 y)=f(x9 y). 
For every x+N(S) e D(S0)9 fQ(x + N(S), y)=g(S0(x+N(S))9 y')9 hence 

Sî?=y and R(S$)^N(S)\ Now, g(Sx9 y')=g(S0(x + N(S))9 y')=f0(x + N(S)9 

S*y')=f(x, S$y') for every x e D(S). Thus, y = S$y' = S*y'. Since y G N(S)X was 
arbitrary, R(S*)^N(S)X. 

(b) => (c) : By (b) of Lemma 2, R(S*) = N(S)X which is closed. 
(c) => (a): Let 50 = *S be an operator on 2 \ into Banach space R(S)^ Yl9 clearly 

S0 is closed and R(S0) = R(S). The operator S$ on 72/i?(S')x into X29 by (b) of 
Lemma 3, is the adjoint of S0 in the sense of (9), which exists uniquely due to the 
denseness of D(S0). S* is one-to-one by (a') of Corollary 2. Since g(Sx, y) =f(x, xf) 

for every x e D(S)9 if and only if g0(S0x9 y + R(S)x)=f(x9 x') for every x G D(S0), 

where g0 on R(S) x Y2/R(S)X is defined by g0(x9 y+R(S)x)=g(x9 y)9 it is easily seen 
that R(S$) = R(S*) which is closed. Thus, S^ has a bounded inverse. R(S)^R(S0). 

In fact, if y e i?(£) we may define x e Xx by 

/ (* , x') = g0(y9 S* ~ V ) , x' G * ( # ) . 
4—C.M.B. 
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For every y' + R(Sy e D(S*\ g0(y, y' + R(Sy)=f(x9 S*(y'+R(Sy)). x e 2)(S0**) = 

D(S0) and S0x=S$*x=y due to Lemma 4. Therefore, R(S)QR(S0) = R(S)9 i.e., 

R(S) is closed. 
(a) and (d) are equivalent by (c) of Lemma 2. Q.E.D. 
COROLLARY 3. Notation as in Theorem 4. If R(S) is closed, then R(S*) = N(Sy 

and the converse to (b') of Corollary 2 holds. 
A domain-dense closed linear operator S on a Banach space into another one is 

said to be a semi-Fredholm operator if R(S) is closed and at least one of codim R(S) 
and dim N(S) is finite. The index of a Fredholm (semi-Fredholm) operator S is 
defined by ind S= dim N(S)- codim R(S). The following theorem is wellknown 
if S* is the adjoint of S in the usual sense ([4] p. 102; [7] p. 234; [8]). 

THEOREM 5. If S is a domain-dense closed linear operator on Xx into Yl9 then, S is 
a Fredholm operator {resp. semi-Fredholm operator) if and only if S*, the adjoint of 
S in the sense of (9)9 is a Fredholm operator (resp. semi-Fredholm operator). In this 
case we have ind S= —ind *S*. 

Proof. By Lemma 5 and Lemma 2, we have 

dim F i / i ^ S ^ d i m 11(5)' = dim R(Sy=dim N(S*). 

On the other hand, dim X*/A' = dim A* for any subspace A^Xl9 since X*/A' and 
A* are isometrically isomorphic. By this, Corollary 3 and Lemma 5, we have 

dim X2/R(S*) = dim X2/N(Sy = dim (N(S)y = dim (N(S)J 

= dim X?/N(Sy = dim N(S)* = dim N(S). 

Hence, the first part of the theorem is proved. Next, we have 

ind S = dim N(S)-dim YJR(S) 
= dim X2/R(S*)-dim N(S*) = - i n d 5*. Q.E.D. 

4. Unless mention is made, we shall assume throughout this section that Xl9 X2, 
Yi, Y29 Zx and Z2 are Banach spaces, (Xl9 X2)9 (Yl9 Y2) and (Z1?Z2) are normed 
dual systems on / , on g and on h9 respectively. We will investigate the adjoint, in 
the sense of (9), of the product of operators for such systems. 

LEMMA 6. Let S and T be linear operators (not necessarily closed or bounded) on 
X1 into Y1 with D(S)^XX and on Yx into Zx with D(T)^ Yl9 respectively. IfTS is 
densely defined on Xl9 then, (TS)*^S*T*. Furthermore, ifTis bounded and defined 
everywhere on Yl9 then (TS)* = S*T*. 

The proof follows from the same argument we employed in Lemma 1. 

LEMMA 7. Let S be a domain-dense linear operator on normed linear space X1 into 
normed linear space Yl9 then, w G D(S*) if and only if there is a number c > 0 and 
yeX2 such that \g(Sx, w)\ < c \x\ || y|| for every x e D(S). 
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Proof. The "only if" part follows from (8) and the boundedness of/. To show 
the "if" part, it is easily seen that there is an Fe X* such that g(Sx9 w)= \\y\\ Fx 
for every x e D(S). (Xl9 X?) is the normed dual system o n / ' if/ '(x, F) = Fx. This 
and the uniqueness of S* imply that w e D(S*). Q.E.D. 

THEOREM 6. Let S and T be domain-dense closed linear operators on Xx into Yx 

and on Yx into Zl9 respectively. If codim R(S) < oo and there is a closed comple­
mentary subspace ofN(S)9 then (TS)* = S*T*. 

By making use of Lemma 6 and 7, the proof may be carried out in a manner 
similar to that of Theorem 1. Also by Lemma 4 and Theorem 6, we have 

COROLLARY 4. Let S and T be domain-dense closed linear operators on Xx into Yx 

and on Yx into Z l 5 respectively. Tfcodim R(S) < oo, codim R(T*) < oo and both N(S) 
and N(T*) have closed complementary subspaces, then (TS)** = TS. 

The next theorem is easy to see. 

THEOREM 7. If S is a Fredholm operator on Xx into Y± and T is a domain-dense 
closed linear operator on Yx into Zx (T is not necessarily a Fredholm operator), then, 
(r5)* = 5'*r*. 

Finally, by Theorem 5 and Corollary 4 we also have 

THEOREM 8. If both S and Tare Fredholm operators on Xx into Yx and on Y± into 
Zl9 respectively, then (TS)** = TS. 

The author would like to thank referees for helpful suggestions and clarification of several 
points regarding this manuscript. 
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