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Different types of neural networks have been used to solve the flow sensing problem
in turbulent flows, namely to estimate velocity in wall-parallel planes from wall
measurements. Generative adversarial networks (GANs) are among the most promising
methodologies, due to their more accurate estimations and better perceptual quality. This
work tackles this flow sensing problem in the vicinity of the wall, addressing for the first
time the reconstruction of the entire three-dimensional (3-D) field with a single network,
i.e. a 3-D GAN. With this methodology, a single training and prediction process overcomes
the limitation presented by the former approaches based on the independent estimation
of wall-parallel planes. The network is capable of estimating the 3-D flow field with a
level of error at each wall-normal distance comparable to that reported from wall-parallel
plane estimations and at a lower training cost in terms of computational resources. The
direct full 3-D reconstruction also unveils a direct interpretation in terms of coherent
structures. It is shown that the accuracy of the network depends directly on the wall
footprint of each individual turbulent structure. It is observed that wall-attached structures
are predicted more accurately than wall-detached ones, especially at larger distances from
the wall. Among wall-attached structures, smaller sweeps are reconstructed better than
small ejections, while large ejections are reconstructed better than large sweeps as a
consequence of their more intense footprint.
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1. Introduction

The ubiquitous nature of turbulent flows motivates the need for control to enhance the
performance of a wide variety of devices. However, closed-loop control of turbulent flows
(Choi, Moin & Kim 1994) requires continuous monitoring of their state. It is of utmost
importance to be able to sense the flow state with minimal intrusiveness. Sometimes
non-intrusive sensing is the only option available. This is the case of wall-bounded
flows, making it possible to embed sensors within the wall. Non-intrusive sensing of
turbulent flows has been the subject of several studies in the past decades. Machine
learning has revolutionized the field of fluid mechanics (Brunton, Noack & Koumoutsakos
2020; Mendez et al. 2023), including both experiments (Discetti & Liu 2022; Vinuesa,
Brunton & McKeon 2023) and simulations (Vinuesa & Brunton 2022). As such, the recent
advances in machine learning and the wealth of available computational resources offer
new interesting avenues for flow sensing.

The estimation of flow velocity solely on the basis of wall measurements was first
explored using linear methods, such as linear stochastic estimation (LSE; Adrian 1996).
The use of LSE was successful for the reconstruction of large-scale wall-attached eddies
(Baars, Hutchins & Marusic 2016; Suzuki & Hasegawa 2017; Encinar, Lozano-Durán
& Jiménez 2018; Illingworth, Monty & Marusic 2018; Encinar & Jiménez 2019). This
methodology is capable of reconstructing a certain range of length scales of the structures
populating the vicinity of the wall (i.e. the buffer layer) with reasonable accuracy. In
the region farther from the wall, only large-scale motions are generally captured. These
reconstructions can be more sophisticated by supplementing the methodology with further
instruments in order to manipulate the filtering of scales, retaining and targeting the
reconstruction over a broader spectrum. For example, in the work by Encinar & Jiménez
(2019) with a turbulent channel flow in a large computational domain at a high friction
Reynolds number, the large-scale structures containing about 50 % of the turbulent kinetic
energy and tangential Reynolds stresses are reconstructed successfully up to y/h ≈ 0.2,
while only attached eddies of sizes of the order of y are sensed in the logarithmic layer.

An alternative linear approach is the extended proper orthogonal decomposition
(EPOD) (Borée 2003), which can establish a correlation between input and output
quantities through the projection of their corresponding proper orthogonal decomposition
(POD) modes (Lumley 1967). Despite leveraging only linear correlation, EPOD presents
the advantage of being able to target specific significant features in a space of
reduced dimensionality. A non-exhaustive list of examples of EPOD applications to
the reconstruction of turbulent flows includes the estimation of the low-dimensional
characteristics of a transonic jet (Tinney, Ukeiley & Glauser 2008), wakes behind
wall-mounted objects (Bourgeois, Noack & Martinuzzi 2013; Hosseini, Martinuzzi
& Noack 2016), wing wakes (Chen, Raiola & Discetti 2022), turbulent channel
flows (Discetti, Raiola & Ianiro 2018; Güemes, Discetti & Ianiro 2019) and even
high-Reynolds-number pipe flows (Discetti et al. 2019). The limitations in terms of
reconstruction capabilities and spectrum range found with EPOD are similar to those with
LSE.

Lasagna et al. (2015) studied multiple-time-delay estimation techniques. Although
linear methods provide accurate estimations in the viscous layer, nonlinearities must be
considered to extend the reconstruction into the buffer layer. Also, Chevalier et al. (2006)
and Suzuki & Hasegawa (2017) highlighted the importance of incorporating nonlinear
terms to get a more accurate estimation with a Kalman filter. Following the seminal work
by Milano & Koumoutsakos (2002), neural networks emerge as an alternative able to
cope with nonlinear relations between sensor and flow features. Recently, deep-learning

991 A1-2

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

43
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.432


3-D GANs for turbulent flow estimation from wall measurements

algorithms have been leveraged for flow reconstruction from sensors. For example, the
laminar wake of a cylinder and the flow in a turbulent channel have been reconstructed
successfully in two dimensions from coarse measurements with convolutional neural
networks (CNNs) (Fukami, Fukagata & Taira 2019, 2021). The performances of LSE
and CNNs in estimation from wall measurements in a turbulent channel flow have been
compared by Nakamura, Fukami & Fukagata (2022), reporting that linear models can
provide comparable results at the cost of establishing a nonlinear framework to combine
and provide the inputs to the system. Nevertheless, the use of nonlinearities through
CNNs can be very effective and neural networks seem more robust against noise than
LSE. Burst events in the near-wall region such as ejections and sweeps were studied
by Jagodinski, Zhu & Verma (2023), with a three-dimensional (3-D) CNN capable of
predicting their intensities, and also providing information about the dynamically critical
phenomena without any prior knowledge. For the specific task of estimation of flow
velocity from wall sensors, Güemes et al. (2019) proposed using CNNs to estimate
temporal coefficients of the POD of velocity fields. This approach has shown to be superior
to EPOD, achieving better accuracy at larger distances from the wall. Guastoni et al. (2021)
compared the performances of estimators based on a fully convolutional network (FCN)
to estimate the velocity fluctuations directly, or to estimate the field through POD modes
(FCN-POD), using as input pressure and shear-stress fields at the wall. The FCN and
FCN-POD have shown remarkable accuracy for wall distances up to 50 wall units at a
friction-based Reynolds number Reτ = 550. Recently, Guastoni et al. (2022) explored this
FCN architecture, but using the convective heat flux at the wall, reporting a 50 % error
reduction at 30 wall units.

An additional improvement has been achieved by Güemes et al. (2021) with an
algorithm based on generative adversarial networks (GANs; Goodfellow et al. 2014). This
architecture consists of two agents, a generator and a discriminator, which are trained to
generate data from a statistical distribution and to discriminate real from generated data,
respectively. Generator and discriminator networks compete in a zero-sum game during the
training process, i.e. the loss of one agent corresponds to the gain of the other, and vice
versa. These GANs have been applied for variegated tasks in fluid mechanics in the last
years, including super-resolution (Deng et al. 2019; Güemes, Sanmiguel Vila & Discetti
2022; Yu et al. 2022) and field predictions (Chen et al. 2020; Li et al. 2023).

In the work by Güemes et al. (2021), GANs are used to generate wall-parallel velocity
fields from wall measurements – pressure and wall-shear stresses. This architecture
has shown better performances than the FCN and FCN-POD architectures proposed
earlier (Guastoni et al. 2021); furthermore, it has shown remarkable robustness in the
presence of coarse wall measurements. This aspect is particularly relevant for the practical
implementation in experimental and real applications where the spatial resolution of the
sensors might be a limitation.

The main shortcoming of the aforementioned studies is that the estimation is carried
out with planar data, i.e. the velocity is estimated on wall-parallel planes. An ad hoc
network must thus be trained for each wall-normal distance. However, turbulent boundary
layers are characterized by the presence of 3-D coherent features (Jiménez 2018), a fact
that was first realized in the visual identification of the near-wall streaks by Kline et al.
(1967). These structures follow a process of lift-up, oscillation and bursting, referred to as
the near-wall energy cycle (Hamilton, Kim & Waleffe 1995), responsible for maintaining
turbulence near the wall (Jiménez & Pinelli 1999). A similar cycle, albeit more complex
and chaotic, was later identified in the logarithmic layer (Flores & Jiménez 2010),
involving a streamwise velocity streak with a width proportional to its height that bursts
quasi-periodically.
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The search for organized motions and coherent structures in wall-bounded turbulent
flows has resulted in several families of structures. The definition of many of these
structures is based on instantaneous velocity fields, like the hairpin packets of Adrian
(2007), or the more disorganized clusters of vortices of Del Álamo et al. (2006). Other
structures, like the very large streaks of the logarithmic and outer region, have been
described in terms of both two-point statistics (Hoyas & Jiménez 2006) and instantaneous
visualizations (Hutchins & Marusic 2007). Of particular interest here are the Q-structures
defined by Lozano-Durán, Flores & Jiménez (2012), which are based on a reinterpretation
of the quadrant analysis of Willmarth & Lu (1972) and Lu & Willmarth (1973) to define
the 3-D structures responsible of the turbulent transfer of momentum. These Q-structures
are divided into wall-detached and wall-attached Qs events, in a sense similar to the
attached eddies of Townsend (1961). As reported by Lozano-Durán et al. (2012), the
detached Qs are background stress fluctuations, typically small and isotropic, without any
net contribution to the mean stress. On the other hand, wall-attached Qs events are larger,
and carry most of the mean Reynolds stress. Sweeps (Q4) and ejections (Q2) are the most
common wall-attached Qs, appearing side by side in the logarithmic and outer regions.

It is reasonable to hypothesize that the nature of such coherent structures might
have a relation with the capability of the GAN to reconstruct them or not. Employing
state-of-the-art neural networks, the estimation of a full 3-D field from wall data requires
the use of multiple networks targeting the reconstruction of wall-parallel planes at different
wall distances. This implies bearing the computational cost of a cumbersome training of
several networks, one for each of the desired wall-normal distances. Furthermore, each
network is designed to reconstruct features at a certain distance from the wall, ignoring
that the wall-shear stresses and pressure distributions depend also on scales located outside
the target plane. The two-dimensional (2-D) reconstruction of an essentially 3-D problem
complicates the interpretation of the actual scales that can be reconstructed in this process,
while the continuity between adjoining layers – in terms of both absence of discontinuities
within the field and mass conservation – is not necessarily preserved. Some recent works
tackle similar problems, also from a 3-D perspective, such as the reconstruction of an
unknown region of the flow through continuous assimilation technique by Wang & Zaki
(2022), the reconstruction of fields from flow measurements by Yousif et al. (2023), and
the reconstruction from surface measurements for free-surface flows through a CNN by
Xuan & Shen (2023).

This work aims to overcome the aforementioned limitations by leveraging for the first
time a full 3-D GAN architecture for 3-D velocity estimation from the wall. We employ a
dataset of 3-D direct numerical simulations (DNS) of a channel flow. The reconstruction
capabilities of a 3-D GAN are assessed. Section 2 describes both the training dataset and
the 3-D GAN networks employed in the present study, while § 3 reports and discusses the
results both in terms of reconstruction error statistics and in terms of structure-specific
reconstruction quality. The physical interpretation of the results is given in terms of the
framework of quadrant analysis in three dimensions (Lozano-Durán et al. 2012). Finally,
§ 4 presents the conclusions of the study.

2. Methodology

2.1. Dataset description
The dataset employed in this work consists of 3-D flow fields and shear and pressure
fields at the wall of a minimal-flow-unit channel flow. Our numerical simulations are
performed with a state-of-the-art pseudo-spectral code that uses a formulation based on the
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Figure 1. Wall-normal profiles of (a) the mean streamwise velocity and (b) standard deviation σ of the three
velocity components. Data are presented in inner units and compared to other databases at a similar Reτ ≈ 180,
including a minimal channel unit (Jiménez 2018) and several bigger channels.

wall-normal vorticity and the Laplacian of the wall-normal velocity, and a semi-implicit
Runge–Kutta for time integration (Vela-Martín et al. 2021). The solver uses a Fourier
discretization in the wall-parallel directions and seventh-order compact finite differences in
the wall-normal direction with spectral-like resolution (Lele 1992). The simulation domain
is a periodic channel with two parallel walls located 2h apart, with sizes πh and πh/2 in the
streamwise and spanwise directions, respectively. This small channel fulfils the conditions
established in the work by Jiménez & Moin (1991), which defines the minimal channel
unit able to sustain turbulence.

In this work, we indicate with x, y and z the streamwise, wall-normal and spanwise
directions, respectively, with their corresponding velocity fluctuations denoted by u, v and
w. Simulations are performed at a friction-based Reynolds number Reτ = uτ h/ν ≈ 200,
where ν refers to the kinematic viscosity, and uτ = √

τw/ρ indicates the friction velocity,
with τw the average wall-shear stress, and ρ the working-fluid density. The superscript
+ is used to express a quantity in wall units. To ensure statistical convergence and to
minimize the correlation between the fields employed, data were sampled every �t+ ≈ 98,
i.e. 0.5 eddy-turnover times. The mean streamwise profile and the standard deviation
of the velocity components are shown in figure 1. Moreover, the mean-squared velocity
fluctuations in inner units are plotted in figure 6, where they can be compared with those
reported for similar channel flows at Reτ ≈ 180 (Abe, Kawamura & Matsuo 2001; Del
Álamo & Jiménez 2003; Vreman & Kuerten 2014; Lee & Moser 2015).

Both the wall pressure pw and the wall-shear stress in the streamwise (τwx) and spanwise
(τwz) directions are used for the flow field estimations. The data are fed into the proposed
network on the same grid as the simulation. The streamwise and spanwise directions are
discretized each with 64 equally spaced points, while the volume is discretized with 128
layers with variable spacing from the wall to the mid-plane. This discretization provides
a set of grid points with a similar spacing to that found at Reτ = 180 in the work by
Del Álamo & Jiménez (2003). The estimation capability of the 3-D fields was tested
for volumes occupying the whole wall-parallel domain, but with different ranges in the
wall-normal direction, giving rise to a set of test cases. These test cases are sketched
in figure 2 and summarized in table 1, with Nx, Ny and Nz indicating the size of the
mesh along each direction, and �y+

min and �y+
max being respectively the minimum and

maximum wall-normal lengths of each grid step within the domain of each of the cases.
Starting from the wall, cases A to C progressively reduce their wall-normal top limit
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Figure 2. Representation of the reconstructed volume of the channel in each case, as defined in table 1.

Case y/h range Ny Nx Nz �y+
min �y+

max

A 0–1 64 64 64 0.48 6.5
B 0–0.52 48 64 64 0.48 5.0
C 0–0.21 32 64 64 0.48 2.6
D 0.21–1 32 64 64 2.8 6.5

Table 1. Details about the domains of the cases, as represented in figure 2.

from y/h < 1 to y/h < 0.21, so as the number of x–z layers. Case D is defined as the
domain complementary to that of case C, i.e. covering wall-normal distances in the range
0.21 < y/h < 1.

2.2. Generative adversarial networks
In this work, a GAN architecture is proposed to estimate 3-D velocity fields from wall
measurements of pressure and shear stresses. The implementation details of the proposed
architecture are presented below, being an extension to the 3-D space of the network
proposed in the work of Güemes et al. (2021).

A schematic view of the generator network G can be found in figure 3. The network is
similar to that proposed by Güemes et al. (2021), although with some modifications. It is
fed with wall measurements and consists of 16 residual blocks, containing convolutional
layers with batch normalization layers and parametric-ReLU. The classic ReLU activation
function provides as output f (x) = x for positive entries and f (x) = 0 (flat) for negative
ones. Parametric-ReLU does the same on the positive input values, while for negative
entries it is defined as f (x) = ax, where a is a parameter (He et al. 2015). In addition,
sub-pixel convolution layers are used at the end for super-resolution purposes, adding
more or fewer layers depending on the resolution of the fed data. To deal with 3-D
data, a third spatial dimension has been added to the kernel of the convolutional layers.
Since the present dataset does not require the network to increase the resolution from
the wall to the flow in the wall-parallel directions, the sub-pixel convolutional layers
present after the residual blocks in Güemes et al. (2021) have been removed. Similarly, the
batch-normalization layers were dropped since they were found to substantially increase
the computational cost without a direct impact on the accuracy (He et al. 2016; Kim, Lee
& Lee 2016).

The increase of the wall-normal thickness up to the desired output volume has been
achieved by using blocks composed of up-sampling layers followed by convolutional layers
with parametric-ReLU activation, which we will refer to as up-sampling blocks throughout
this document. For cases A, B and D, the first block is placed before the residual blocks.
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(a)
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C3

C3 + PR + C3
U C3 PR

C9
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v

u

Residual
block

Up-sampling
block

τwxτwz

Figure 3. (a) Sketch of the generator network. (b) The residual block and (c) the up-sampling block sub-units,
which are repeated recursively through network (a). The filter dimension is represented only in the network
input [pw, τwx , τwz ] and output [u, v, w]. All other layers work over 64 filters, except the last layer, which
only has 3 filters coinciding with the output. The planar panels indicate the different layers of the network:
up-sampling (U), parametric-ReLU (PR), and convolution layers with kernel sizes 3 (C3) and 9 (C9),
respectively. Arrows indicate the flow of data through layers.

They increase the size of the domain by a factor of 2 in all cases except for the first
up-sampling block in case B, which increases the size of the domain by a factor of 3.
The rest of the up-sampling blocks are applied after the residual blocks, whose indexes are
specified in table 2, together with the number of trainable parameters of the networks. The
number of residual blocks, which has been increased to 32 with respect to Güemes et al.
(2021), and the criterion to decide when to apply the up-sampling blocks, are analysed
with a parametric study, for which a summary can be found in Appendix A.

A schematic of the discriminator network D is presented in figure 4. This network is
very similar to that proposed by Güemes et al. (2021). The main difference is the change
of the convolutional kernel to the 3-D space, including this new dimension. It consists
mainly of a set of convolutional layers that progressively reduce the size of the domain and
increase the number of filters. Then, with a flatten layer and two fully-connected layers,
the network provides a single output in the range 0–1. Further details can be found in
Appendix A. Additionally, it is important to note that due to the wall-normal dimension of
its input data, one discriminator block was removed from cases C and D, which led to the
counter-effect of increasing the number of trainable parameters reported in table 2. This
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Residual block up-sampling scheme Trainable parameters

Case G D

A 0-6-12-18-24-30 9.0 × 106 18.2 × 106

B 0-5-10-15-20 8.0 × 106 18.2 × 106

C 6-12-18-24-30 8.0 × 106 23.8 × 106

D 0-7-14-21-28 8.0 × 106 23.8 × 106

2-D GAN — 7.3 × 105 8.0 × 107

Table 2. Details on the implementation of the architectures. The column ‘Residual block up-sampling scheme’
indicates the indexes of the residual blocks that are followed by an up-sampling block. The number of trainable
parameters of the generator (G) and discriminator (D) networks are also reported. Cases A–D are compared
with the 2-D GAN from Güemes et al. (2021).

u

w C3 LR
C3

F D D S

(1)

[0 – 1]

LR
LR

v

(×64)

(×512)

(1024)

Figure 4. Sketch of the discriminator network. The network receives as input the velocity-fluctuation fields.
The planar panels indicate the different layers of the network: the data passes through a set of convolutional
(C3) and leaky-ReLU (LR) layers, reducing the dimension of the domain in the x, y and z coordinates as the
number of filters increases progressively from 64 to 512. All these data are reshaped into a single vector with
the flatten (F) layer. The dimensionality is reduced, first with a D fully connected layer with 1024 elements as
output, and then with another D layer providing a single element, which is finally fed to a sigmoid (S) activation
function.

network makes use of the leaky-ReLU activation function (Maas, Hannun & Ng 2013; He
et al. 2015).

The training process has been defined for 20 epochs, although the predictions are
computed with the epoch where the validation loss stops decreasing, and the optimizer
implements the Adam algorithm (Kingma & Ba 2014) with learning rate 10−4. In
total, 24 000 samples have been used, keeping 4000 for validation and 4000 for testing.
A random initial condition is set and evolved during about 100 eddy-turnover times to
eliminate transient effects. Samples of the testing dataset are captured after approximately
100 eddy-turnover times from the last snapshot of the validation dataset to minimize
correlation with the training data.

As mentioned above, the networks operate with the velocity fluctuations [u, v, w]. As
there are significant differences in the mean values of the velocity components at the
centre of the channel and in the vicinity of the wall, the mean values used to compute
the field of fluctuation velocities have been obtained for each particular wall-normal
distance y. In addition, to facilitate the training of the network, each fluctuating velocity
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component has been normalized with its standard deviation at each wall-normal layer (see
figure 1). Similarly, the wall measurements [pw, τwx, τwz] provided to the network have
been normalized with their mean value and standard deviation.

The training loss functions are defined as follows. The fluctuations of the velocity
field can be represented as u = [u, v, w], such that uDNS is the original field, and uGAN
is the field reconstructed by the generator network given its corresponding set of inputs
[pw, τwx, τwz]. With these two definitions, using the normalized velocity fields, the content
loss based on the mean-squared error (MSE) is expressed as

LMSE = 1
3NxNyNz

Nx∑
i=1

Ny∑
j=1

Nz∑
k=1

[
(uDNS(i, j, k) − uGAN(i, j, k))2

+ (vDNS(i, j, k) − vGAN(i, j, k))2 + (wDNS(i, j, k) − wGAN(i, j, k))2
]
, (2.1)

Using the binary cross-entropy, an adversarial loss is defined as

Ladv = −E[log D(uGAN)], (2.2)

to quantify the ability of the generator to mislead the discriminator, with E the
mathematical expectation operator, and D( · ) the output of the discriminator network
when it receives a flow field as input – in this case, a GAN-generated flow field. This
adversarial loss is combined with the content loss to establish the loss function of the
generator network as

LG = LMSE + 10−3Ladv. (2.3)

The loss function for the discriminator network, defined as

LD = −E[log D(uDNS)] − E[log(1 − D(uGAN))], (2.4)

also uses the binary cross-entropy to represent its ability to label correctly the real and
generated fields. To ensure stability during the training process, both the adversarial and
discriminator losses are perturbed by subtracting a random noise in the range 0–0.2. This
technique, referred to as label smoothing, makes it possible to reduce the vulnerability of
the GAN by modifying the ideal targets of the loss functions (Salimans et al. 2016).

3. Results

3.1. Reconstruction accuracy
The reconstruction accuracy is assessed in terms of the MSE of the prediction. The
contribution of each velocity component (u = [u, v, w]) to the metric presented in (2.1) has
been computed along the wall-normal direction, denoted as Lu, Lv and Lw, respectively.
In this case, the error is computed using only one component at a time, and the factor
of 3 in the denominator is eliminated. As discussed in § 2.2, the training data have been
normalized with their standard deviation for each wall-normal distance. This procedure
allows us a straightforward comparison with the results of 2-D GAN architectures
(Güemes et al. 2021). It must be remarked that flow reconstruction by Güemes et al. (2021)
is based on an open-channel simulation; nonetheless, the similar values of Reτ numbers
provide a quite accurate reference.

The MSE for each velocity component is plotted with respect to the wall-normal
distance for the selected network architectures of each case A–D in figure 5, and numerical
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y+ Case Lu Lv Lw

15 A 0.043 0.076 0.088
B 0.038 0.066 0.074
C 0.027 0.044 0.050

2-D GAN 0.013 0.018 0.019
30 A 0.137 0.214 0.205

B 0.118 0.190 0.179
C 0.095 0.152 0.143

2-D GAN 0.061 0.097 0.084
50 A 0.306 0.440 0.429

B 0.277 0.411 0.395
D 0.356 0.505 0.494

2-D GAN 0.185 0.289 0.268
100 A 0.639 0.788 0.782

B 0.619 0.779 0.771
D 0.665 0.815 0.813

2-D GAN 0.524 0.684 0.687

Table 3. The MSE for the three velocity components and for each case, at different wall distances. The
results are compared with the 2-D analysis by Güemes et al. (2021). These quantities correspond to velocity
fluctuations normalized with their standard deviation at each wall-normal coordinate y+.

data of the error at the wall distances used in the 2-D approach are collected in table 3 for
comparison. They have been computed for the velocity fluctuations normalized with their
standard deviation at each wall-normal coordinate y+, allowing us to compare the accuracy
of this network with the analogous 2-D study. Some general comments can be raised at
first sight.

(i) As expected, and also reported in the 2-D analysis (Güemes et al. 2021), the regions
closer to the wall show a lower L. This result is not surprising: at small wall
distances the velocity fields show high correlation with the wall-shear and pressure
distributions, thus simplifying the estimation task for the GAN, independently on
the architecture.

(ii) The streamwise velocity fluctuation u always reports a slightly lower L than v and
w for all the tested cases. This is due to the stronger correlation of the streamwise
velocity field with the streamwise wall-shear stress.

(iii) The 3-D GAN provides a slightly higher L than the 2-D case. This was foreseeable:
the 3-D architecture proposed here is establishing a mapping to a full 3-D domain,
with only a slight increase in the number of parameters in the generator with respect
to the 2-D architecture, as can be seen in table 2. Furthermore, there is a considerable
reduction in the number of trainable parameters in the discriminator. If we consider
Lu = 0.2, then the reconstructed region with an error below this threshold is reduced
from approximately 50 to slightly less than 40 wall units when switching from a 2-D
to a 3-D GAN architecture.

In test case A, part of the effort in training is directed to estimating structures located far
from the wall, thus reducing the accuracy of the estimation. For this reason, cases B and C
were proposed to check whether reducing the wall-normal extension of the reconstructed
domain would increase the accuracy of the network. Comparing the L values of cases A,
B and C in table 3, it is observed that there is some progressive improvement with these
volume reductions, although it is only marginal. For example, the error Lu at y+ = 100 is
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(a)

0.8

0.6

0.4

0.2

100 101

y+
102

100 101

y+
102

100 101

y+
102

0

Lu

1.0
(c)

0.8

0.6

0.4

0.2

0

Lw

1.0
(b)

0.8

0.6

0.4

0.2

0

Lv

Figure 5. The MSE of the fluctuation velocity components (a) u, (b) v and (c) w for the 3-D GAN (continuous
lines) and the 2-D GAN at Reτ = 180 (symbols with dashed lines) as implemented by Güemes et al. (2021).
Velocity fluctuations are normalized with their standard deviation at each wall-normal coordinate y+.

2 % lower when switching from case A to case B, i.e. reducing by a factor of 2 the size
of the volume to be estimated. This fact can also be observed in figure 5(a), where the Lu
values for all the cases can be compared directly. Similar conclusions can be drawn from
the other velocity components. The improvement between cases is marginal. The quality
of the reconstruction of one region seems thus to be minimally affected by the inclusion
of other regions within the volume to be estimated. This suggests that the quality of the
reconstruction is driven mainly by the existence of a footprint of the flow in a certain region
of the channel. In Appendix B, we have included a comparison with LSE, EPOD and a
deep neural network that replicates the generator of case A and provides an estimation of
the effect of the discriminator. The accuracy improvement of the 3-D GAN with respect to
the LSE and the EPOD is substantial, while the effect of the adversarial training does not
seem to be very significant. Nevertheless, previous works with 2-D estimations (Güemes
et al. 2021) have shown that the superiority of the adversarial training is more significant
if input data with poorer resolution are fed to the network. We hypothesize that a similar
scenario might occur also for the 3-D estimation; nonetheless, exploring this aspect falls
outside the scope of this work.

Case D, targeting only the outer region, is included to understand the effect of excluding
the layers having a higher correlation with wall quantities from the reconstruction process.
The main hypothesis is that during training, the filters of the convolutional kernels may
focus on filtering small-scale features that populate the near-wall region. Comparing the
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Figure 6. Mean-squared velocity fluctuations and shear-stress, given in wall-inner units.

plots for cases A and D in figure 5, it is found that the L level in case D is even higher
than in case A. While this might be surprising at first glance, a reason for this may reside
in the difficulty of establishing the mapping from the large scale in the outer region to the
footprint at the wall when such footprint is overwhelmingly populated by the imprint of
near-wall small-scale features. Convolution kernels stride all along the domain, and when
the flow field contains wall-attached events with a higher correlation, the performance
far from the wall seems to be slightly enhanced. In case A, the estimator is able to
establish a mapping for such small-scale features to 3-D structures, while for case D, such
information, being uncorrelated with the 3-D flow features in the reconstruction target
domain, is seen as random noise. This result reveals the importance of the wall footprint
of the flow on the reconstruction accuracy.

Moreover, figure 6 shows the evolution of the mean-squared velocity fluctuations and
the u+v+ shear stress of the reconstructed (case A) velocity fields with the wall-normal
distance. As expected, far from the wall, the attenuation becomes more significant, while
the accuracy is reasonable up to approximately 30 wall units, where the losses with respect
to the DNS are equal to 4.0 % for u2, 9.7 % for v2, 12.8 % for w2, and 6.9 % for |uv|.
It is important to remark that the network is not trained to reproduce these quantities,
as the loss function is based on the MSE and the adversarial loss. The losses reported
in these quantities also may explain the MSE trends in figure 5, where the error grows
with the wall-normal distance as the network generates more attenuated velocity fields.
The fact that the kernels in the convolutional layers progressively stride along the domain
implies that although the continuity equation might not be imposed as a penalty to the
training of the network, the 3-D methodology exhibits an advantage with respect to the
2-D estimation. To assess this point, we compared the divergence of the flow fields
obtained with the 3-D GAN with the divergence obtained from the velocity derivatives
of three neighbouring planes estimated with 2-D GANs following Güemes et al. (2021).
The standard deviation of the divergence, computed at both y+ = 20 and y+ = 70, is
approximately 6 times smaller when employing the 3-D GAN.

An additional assessment of the results is made by comparing the instantaneous flow
fields obtained from the predictions with those from the DNS. As an example, figure 7
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shows 2-D planes of u at three different wall-normal distances, of an individual snapshot,
according to case C. This case is selected for this example as it exhibits the best
performance. In this test case, the attenuation of the velocity fluctuations is not significant.
Up to the distances contained within case C, it is indeed possible to establish accurate
correlations. On the contrary, the attenuation of the velocity field close to the centre of the
channel is quite high (see figure 6). At y+ = 10, it is difficult to find significant differences
between the original and the reconstructed fields, with the smallest details of these patterns
also being present. Farther away from the wall, at y+ = 20, the estimation of the network
is still very good, although small differences start to arise. At y+ = 40, the large-scale
turbulent patterns are well preserved, but the small ones are filtered or strongly attenuated.

In general, it can be observed that, regardless of the wall-normal location, the GAN
estimator is able to represent well structures elongated in the streamwise direction (i.e.
near-wall streaks), likely due to their stronger imprint at the wall. On the other hand,
the u fields at y+ = 40 are also populated by smaller structures that do not seem to
extend to planes at smaller wall-normal distances, thus indicating that these structures are
detached. From a qualitative inspection, the detached structures suffer stronger filtering in
the reconstruction process. Analogous considerations can be drawn from observation of
the v and w components.

3.2. Coherent structure reconstruction procedure
Further insight into the relation between reconstruction accuracy and features of the
coherent structures is provided by observing isosurfaces of the product uv (the so-called
uvsters; Lozano-Durán et al. 2012) reported in figure 8. Again, a sample of case C has
been selected to compare the original structures (figure 8a) with the reconstructed ones
(figure 8b). In both representations, structures of different sizes are observed, mainly
aligned with the flow. The larger structures appear to be qualitatively well represented,
while some of the smaller ones are filtered out or not well reproduced. Furthermore, it
can be observed that the structures located farther from the wall are more intensively
attenuated in the reconstruction process. Moreover, the majority of the structures and the
volume identified within a structure are either sweeps or ejections.

The same procedure is followed for an instantaneous field reconstructed under case A,
leading to figures 8(c) and 8(d), respectively. Similar phenomena are observed with some
remarks. With a substantially larger volume, many more structures populate the original
field. However, the reconstructed structures mainly appear close to the wall. Detached
structures are filtered, while attached ones can be partially truncated in their regions farther
away from the wall. Nevertheless, this instantaneous field also reveals that the filtering
does not seem to be a simple function of the wall distance. Some of the attached structures
recovered in the reconstructed field extend up far from the wall, and even up to the middle
of the channel or beyond. This would not be possible if all types of structures were expected
to be reconstructed up to a similar extent at any wall distance. The region far from the
wall is depopulated using the same threshold for the isosurfaces, as the magnitude of the
fluctuation velocities is strongly attenuated in this region.

For a quantitative assessment of the relation between coherent-structure features and
reconstruction accuracy, here we follow an approach similar to that used by Lozano-Durán
et al. (2012), based on a 3-D extension of the quadrant analysis (Willmarth & Lu 1972; Lu
& Willmarth 1973), where turbulent structures are classified according to the quadrants
defined in figure 9. A binary matrix on the same grid of the domain is built. The matrix
contains ones in those points corresponding to a spatial position located inside a coherent
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Figure 7. Instantaneous velocity fluctuations: u (left), v (centre) and w (right). From each pair of rows, the
top row is the original field from the DNS, and the bottom row is the field reconstructed with the GAN, for
case C. Different pairs of rows represent 2-D planes at different wall-normal distances, with (a) y+ = 10,
(b) y+ = 20 and (c) y+ = 40. Instantaneous values beyond ±3σ are saturated for flow visualization purposes.
Velocity fluctuations are normalized with their standard deviation at each wall-normal coordinate y+.
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0.2

(a) (b)

(c) (d )

0

π/2

π/2

z/h
0

π

x/h

y/h 0.2
0

z/h
0

π

x/h

1

0

π/2z/h
0

π

x/h

y/h

y/h

y/h

1

0

z/h
0

π

x/h

Figure 8. Instantaneous 3-D representation of the uv field, for (a) original and (b) prediction from case C,
and (c) original and (d) prediction from case A. Isosurfaces correspond to the 1.5 and −1.5 levels of uv,
respectively, in yellow for quadrants Q1 and Q3, and in pink for Q2 and Q4.

structure, and zeros otherwise. Grid points where fluctuation velocities meet the following
condition are within a structure

|τ(x, y, z)| > H u′( y) v′( y), (3.1)

where τ(x, y, z) = −u(x, y, z) v(x, y, z), the prime superscripts (′) indicate root-mean-
squared quantities, and H is the hyperbolic hole size, selected to be equal to 1.75. This
is the same structure-identification threshold as in Lozano-Durán et al. (2012), for which
sweeps and ejections were reported to fill only 8 % of the volume of their channel, although
these structures contained around 60 % of the total Reynolds stress at all wall-normal
distances. Without any sign criterion, this condition is used for the identification of
all types of structures. Moreover, the signs of u( y) and v( y) are to be considered to
make a quantitative distinction between sweeps (Q4) and ejections (Q2) as essential
multi-scale objects of the turbulent cascade model that produce turbulent energy and
transfer momentum.

The cells activated by (3.1) are gathered into structures through a connectivity
procedure. Two cells are considered to be within the same structure if they share a face, a
side or a vertex (26 orthogonal neighbours), or if they are indirectly connected to other
cells. Some of the structures are fragmented by the sides of the periodic domain. To
account for this issue, a replica of the domain based on periodicity has been enforced
on all sides. To avoid repetitions, only those structures whose centroid remains within the
original domain are considered for the statistics. Besides, structures with volume smaller
than 10−5h3 have been removed from our collection, to concentrate the statistical analysis
on structures with a significant volume. Further conditions have been set to remove other
small structures that are not necessarily included in the previous condition. Structures
that are so small that they occupy only one cell – regardless of their position along y
and the cell size �y+ – and those whose centroid falls within the first wall-normal cell
have been removed. Finally, structures that are contained within a bounding box of a size
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Figure 9. Quadrant map with the categorization of the turbulent motions as Qs events.

of one cell in any of the directions have been removed as well. For example, a structure
comprising two adjoint cells delimited within a bounding box with two-cell size in one of
the directions, but only one-cell size in the other two directions, would be discarded for the
statistics. These restrictions still keep small-scale structures in the database, but eliminate
those that are contaminated by the resolution errors of the simulation.

A statistical analysis on test case A has been carried out considering the different
quadrants (see table 4). The figures reported by Lozano-Durán et al. (2012) can be used
as a reference, although it must be remarked that discrepancies arise due to the differences
in the fluid properties, the Reynolds number or the extension of the volume from the wall
considered. The volume of a whole domain of case A is 4.93h3. The structures identified
with (3.1) and the hyperbolic hole size used as threshold occupy only a small fraction of
it, although they contain the most energetic part, able to develop and sustain turbulence.
Note that the criterion established with this equation makes Qs (first row in table 4) not to
be explicitly the sum of all individual Q1s, Q2s, Q3s, Q4s events – when no sign criterion
is being applied over u′ and v′, without any distinction among different type of events. As
seen with the instantaneous snapshots in figure 8, these statistics from 4000 samples tell
us that Q1s and Q3s (see figure 9) are less numerous than negative Qs, both in volume
and in units – these structures account for just 2 % in volume and 7 % in units in the work
by Lozano-Durán et al. (2012). In addition, this analysis reveals that most of the volume
fulfilling (3.1) belongs to Q2 structures, with Q4s occupying significantly less volume,
while in unit terms the population of Q4s is approximately 50 % higher than that of Q2s.
Individual Q2s, although fewer in number, are much bigger than Q4s. Structures have been
considered as attached if ymin/h � 0.1 (figures 10a,d,g), where ymin refers to the location
of the closest point to the wall within a structure, and ymax to the farthest one. All types of
structures are notably attached in more than 60 % of the cases, with Q3s the most prone
structures to be detached, and Q1s to be attached. Table 4 also offers a comparison between
the target data from the DNS and the reconstruction from the 3-D GAN. There are no large
discrepancies between target and prediction, with all the comments already mentioned
applying to both of them. However, statistics are better preserved for Q1s and Q3s than for
Q2s and Q4s. As expected, the GAN tends to generate slightly fewer Q2 and Q4 structures,
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Volume of structures Number of structures

Absolute [h3] Relative % Total Attached %

Qs Target 0.70 14.3 % 14.5 68.9 %
Prediction 0.80 15.9 % 13.3 77.4 %

Q1s Target 0.01 0.3 % 3.85 90.3 %
Prediction 0.01 0.3 % 3.80 90.7 %

Q2s Target 0.46 9.3 % 5.24 81.0 %
Prediction 0.58 11.8 % 4.59 89.4 %

Q3s Target 0.04 0.8 % 3.10 68.4 %
Prediction 0.01 0.2 % 3.12 69.5 %

Q4s Target 0.10 2.0 % 7.41 81.5 %
Prediction 0.16 3.2 % 7.11 85.2 %

Table 4. Information about the structures identified with (3.1), Qs without any sign criterion on u and v, and
Q1s–Q4s for each quadrant. The DNS original data and the 3-D GAN prediction (case A) are compared with
some statistics over the 4000 testing snapshots, considering the average volume occupied by structures per
snapshot, their proportion of volume over the domain, the average number of structures in each snapshot, and
the proportion of structures that are attached.

a difference due mainly to wall-detached structures that are not predicted. However, these
generated structures are bigger and occupy a larger volume than the original ones. As
discussed below, not all the volume in the predicted structures is contained within the
original ones.

3.3. Statistical analysis methodology
A statistical analysis of the reconstruction fidelity of flow structures is carried out, with the
previous condition (3.1) applied to the 4000 samples outside the training set. The structures
found in the DNS- and GAN-generated domain pairs have been compared and matched.
For each ith (or jth) structure, it is possible to compute its true volume vT,i (or predicted
volume vP,i) as

vTi =
∑
x,y,z

T i ◦ V , (3.2)

vPj =
∑
x,y,z

Pj ◦ V , (3.3)

where the matrices T i and Pi represent the target (DNS) and the prediction (GAN)
domains for the ith structure, respectively, containing ones where the structure is present,
and zeros elsewhere. Here, V is a matrix of the same dimensions containing the volume
assigned to each cell. In a similar way, combining these two previous expressions, the
overlap volume of two structures i and j within the true and predicted fields, respectively,
is

vTi,Pj =
∑
x,y,z

T i ◦ Pj ◦ V . (3.4)

It must be considered that during the reconstruction process, the connectivity of
regions is not necessarily preserved. This gives rise to a portfolio of possible scenarios.
For instance, an original structure could be split into two or more structures in the
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Figure 10. Maps of average density per bin of the matching quantities for cases (a,d,g) A, (b,e,h) B and (c, f,i)
C, for the different metrics proposed. Dotted bins represent the top 95 % of the joint p.d.f. of the structures over
that target or prediction set, respectively. Note that the scales in both axes are not uniform.
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3-D GANs for turbulent flow estimation from wall measurements

reconstruction; small structures, on the other hand, could be merged in the estimated flow
fields. Moreover, the threshold in (3.1) is based on the reconstructed velocity fluctuations,
thus it can be lower than in the original fields. Hence all possible contributions from
different structures overlapping with a single structure from the other dataset are gathered
as follows:

v̂Ti,P =
∑

j vTi,Pj

vTi

, (3.5)

v̂T,Pj =
∑

i vTi,Pj

vPj

. (3.6)

With the hat used to indicate the ratio, these metrics give the overlapped volume proportion
of each structure i from the target set, or j from the prediction set, and are defined in such a
way as some structures either split or coalesce. These structures are classified into intervals
according to their domain in the y direction, bounded by ymin and ymax. Given the matching
proportion of all the structures of each target-DNS and prediction-GAN set falling in each
interval (a, b) of ymin and each interval (c, d) of ymax, according to their individual bounds
(respectively, ymin,i and ymax,i, or ymin,j and ymax,j), their average matching proportions Xt
and Xp are computed:

Xt,(a,b−c,d) = v̂Ti,P ∀i such that a < ymin,i/h < b, c < ymax,i/h < d, (3.7)

Xp,(a,b−c,d) = v̂T,Pj ∀j such that a < ymin,j/h < b, c < ymax,j/h < d. (3.8)

Additionally, out of all these categories onto which the structures are classified according
to their minimum and maximum heights, those contained within the top 95 % of the joint
probability density function ( joint p.d.f.) have been identified with black dots in figures 10
and 11 to characterize the predominant structures in the flow.

3.4. Analysis of the joint p.d.f.s of reconstructed structures
The interpretation of the quantities defined in the previous subsection is as follows: Xt is
the proportion of the volume of the structures from the target set represented within the
reconstructed structures; Xp is the proportion of the volume of reconstructed structures
matching the original ones. These quantities Xt and Xp are represented in figure 10 for
each categorized bin and for cases A, B and C.

In figures 10(a,b,c) (for Xt), the joint p.d.f. is compiled for the target structures, and
in figures 10(d,e, f ) (for Xp), the joint p.d.f. is compiled for the predicted structures. The
joint p.d.f. for the target structures indicates that the family of wall-attached structures (i.e.
ymin � 0.1h) dominates the population, while wall-detached structures with ymin � 0.1h
do not extend far from the wall. Overall, the joint p.d.f.s are qualitatively similar to
those obtained by Lozano-Durán et al. (2012) at higher Reynolds numbers, except for the
wall-detached structures, which in the latter have ymax − ymin approximately independent
of ymin. This difference could be explained as an effect of the low friction Reynolds
number, especially since the detached structures in Lozano-Durán et al. (2012) are
linked to the dissipation process in the logarithmic and outer regions. Note that the bin
highlighted at the top-right corner for the original set of structures is likely linked not
to detached structures, but to tall attached structures rising from the opposite wall and
extending beyond the middle of the channel.

Compared to the joint p.d.f. of the predicted set, the wall-detached structures of the
original set extend farther from the wall. This suggests that the 3-D GAN may be losing the
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Figure 11. Maps of Xt and Xp for case A, considering only ejections-Q2 in (a,b) and only sweeps-Q4 in (c,d),
analogous to those in figures 10(a) and 10(d) containing all structures together. Dotted bins represent the top
95 % of the joint p.d.f. of the structures over that target or prediction set, respectively. Profile (e) of average
matching proportion Xp for case A, for the left column of bins (ymax/h < 0.10), comparing cases considering
all the identified structures (figure 10d), only ejections (figure 11b) and only sweeps (figure 11d).

farthest region from the wall of some of the reconstructed structures, consistent with the
flow visualizations presented in figure 8. The best reconstruction is reported in all cases for
the shortest wall-attached structures. The values of Xt and Xp for wall-attached structures
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reduce progressively as ymax/h increases. This trend is repeated for other columns of bins
with ymin/h � 0.10, although the metrics are lower than for the wall-attached structures.
The wall-detached structures that are contained within the top 95 % of the joint p.d.f.
are reconstructed with modest values of Xt and Xp, approximately 0.5. The structures with
poorer matching between the target and predicted sets (i.e. Xt and Xp smaller than 0.25) are
relatively far from the wall, and do not belong to the 95 % of the joint p.d.f.s – suggesting
that there are very few of them.

Several reasons may justify this performance: we expect a lower prediction ability from
the 3-D GAN for wall-detached structures, for structures extending to higher ymax/h and
for types of structures that are not particularly common, with the computational resources
available in the training process having been used to target other patterns within the flow.

The joint p.d.f.s for figure 10(b,e,h) and figure 10(c, f,i), which do not consider those
regions in case A with few structures and poorer reconstructions, show smaller differences
between the original and predicted sets of structures. In these cases, the top rows of bins
in figure 10(b,c,e, f,h,i) are expected to include structures extending beyond its ymax/h
limit, cutting them and considering their respective reconstruction accuracy only up to
its respective limit. As was also observed in figure 5 with the error trends, these metrics
Xt and Xp also indicate a slightly improved prediction ability with the reductions in the
volume of the domain considered.

With these distributions of average matching proportions Xt and Xp in each interval,
a novel perspective on what the network is capable of reconstructing is given. The
reconstructed volume of wall-attached structures is generally preserved (high Xt) and
undistorted (high Xp) for wall-attached coherent structures. Even though the reconstruction
precision in terms of volume and shape of the coherent structure seems to reduce
progressively for increasing ymax/h, the values of Xt and Xp for wall-attached structures
are still higher than for any other bin with ymin/h > 0.1 if ymax/h < 0.5. It can be argued
that the reduction in reconstruction accuracy for increasing wall-normal distance is due
prevalently to the progressively decreasing number of wall-attached structures, which
should have an impact on the training of the 3-D GAN.

The increase in reconstruction fidelity when reducing the wall-normal thickness of the
volume of the domain (i.e. cases B and C in figure 10) is in line with the hypothesis
that the estimator focuses its effort in reconstructing features extending down to the
wall. A marginal increase in Xt is observed in bins corresponding to the same region for
decreasing wall-normal thickness of the reconstructed volume. It can be hypothesized that
the prevalence of wall-attached over detached – thus poorly correlated with flow quantities
– structures in cases B and C simplifies the training of the network and improves its
accuracy. Structures extending beyond the ymax limit of each case are collected within
the top row of bins of each plot in figure 10, and their reconstruction accuracy is slightly
increased when the volume of the domain is reduced – although they are cut and a part of
them is not being considered.

The Xt and Xp distributions share some similarities, with the ideas mentioned above. The
main difference between them is the fact that the average matching proportions are slightly
higher for Xt than for Xp. From Xt, it is seen that with the behaviour just mentioned, the
structures predicted by the network do not contain the whole volume of the original ones,
denoting some loss of accuracy. Moreover, Xp tells us that the reconstructed structures
contain not only sections within the original structures but also regions out of them. With
both metrics and their physical meaning, the combined effect of these two losses together is
shown as XtXp in figure 10. The superior reconstruction of these wall-attached structures
must be highlighted, with a progressive loss with the wall-normal size �y. The small
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structures lying right over the diagonal report a lower overall score than the attached ones,
but higher than other wall-detached structures.

According to (3.1), turbulent structures are defined independently of the sign of u( y) and
v( y), but imposing signs on them, the structures can be classified following the quadrant
analysis (Lozano-Durán et al. 2012), with sweeps and ejections being of special interest.
The maps shown in figure 11 allow us to compare and establish further conclusions and
differences in the performance of the 3-D GAN when reconstructing sweeps and ejections.
In all the cases, the left column of wall-attached structures is fully contained within the
top 95 % of the joint p.d.f., with their Xt or Xp magnitude decreasing progressively with
increasing ymax/h, as expected. In none of them is the family of wall-detached structures
with small �y lying right above the diagonal a significant proportion of the population
of structures. Hence these numerous structures highlighted in figure 10 may be mainly
Q1 and Q3 structures. Moreover, at this threshold of the joint p.d.f., other structures that
may be considered as attached although they are not in the leftmost column, are included
in this top joint p.d.f. set. In terms of ymin/h, they extend from below 0.21 following this
categorization in bins, while a very similar limit of 0.20 was set as the threshold to classify
structures as attached or detached by (Lozano-Durán et al. 2012). However, in terms of
ymax/h, the joint p.d.f. cut does not extend up to 1 – which is the case for ymin/h < 0.1
bins. For both sweeps and ejections, these numerous structures do not extend beyond the
0.52 limit for Xt or beyond the 0.33 limit for Xp. This indicates that the network can
reconstruct wall-attached sweeps and ejections with reasonable fidelity, although the part
farther from the wall may be partially lost or even generated with poorer accuracy.

One of the main aspects reflected in figure 10 is the fact that more accurate
reconstructions are reported for wall-attached structures, which are the most quantitative
ones. The same is true for the distributions with sweeps and ejections as seen in
figures 11(a)–11(d). For some of the bins right above the diagonal with wall-detached
structures with small �y, the quantities Xt and Xp reported are higher than for those bins
of wall-attached structures with high �y. Nevertheless, these wall-detached structures, as
ejections (figures 11a,b) or sweeps (figures 11c,d), are not a big part of the population of
structures, such that the training process may not focus substantially on them.

The distributions of Xt and Xp shown in figure 11 for ejections and sweeps are
qualitatively similar, although some differences can be established. Considering Xt for
those bins within the region highlighted by the joint p.d.f., the metric is always higher
for ejections than for sweeps, although they follow the same trends. The 3-D GAN
can reconstruct wall-attached structures, generally and statistically preserving ejections
slightly better than sweeps. One possible reason would be that the correlation with the
wall measurements used is stronger with ejections, emerging from the wall, than with
sweeps, which travel towards the wall. This could not be explained with the pressure
measurements, which may be quite antisymmetric for both types of structures, according
to studies assessing this correlation, such as the one by Sanmiguel Vila & Flores (2018).
Nevertheless, this is not the case for the wall-shear stresses, also used as input data.

Regarding Xp, it is difficult to establish such a distinction between Q2 and Q4 structures.
To compare these variations in Xp along the structures with ymin/h < 0.1 more easily,
figure 11(e) provides a different view. Wall-attached sweeps are less distorted than
ejections and all structures overall when structures with short wall-normal heights are
considered (up to ymax/h < 0.3). This trend is inverted for taller wall-attached sweeps
(ymax/h > 0.5), reporting substantially lower Xp, with these sweeps being more distorted
than ejections with similar y size. Although the quantities are very similar and follow the
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same trends, the footprint impact of sweeps over the wall is stronger for the short structures
close to the wall.

In addition to this, the change of trend experienced might also be explained from a
statistical point of view. Ejections are lower in number than sweeps (see table 4), but
occupy a much larger volume, while most sweeps and ejections are wall-attached. If most
sweeps are attached but much smaller than ejections, then there may be less volume far
from the wall occupied by wall-attached sweeps than by wall-attached ejections. There
are some big sweeps extending from near the wall to the mid-plane, but they are not very
frequent in the dataset, or not as much as big wall-attached ejections. Hence the 3-D GAN
may learn better the patterns of those ejections, which are much more common. On the
other side, close to the wall, wall-attached sweeps might be much more common than
wall-attached ejections, so that the opposite happens.

4. Conclusions

A direct 3-D reconstruction from wall quantities with 3-D generative adversarial networks
(GANs) has been proposed and demonstrated. The flow estimator builds on the successful
reconstruction by Güemes et al. (2021) using a mapping from wall-shear stress and
wall-pressure to 2-D wall-parallel velocity fields, and extends it to a full 3-D estimation.
This extension comes with an affordable increase in the number of parameters and
computational cost of the training if compared to the 2-D architecture estimating a single
plane. The main advantage is a direct full reconstruction of the flow topology, without
the need for training multiple networks for planar reconstruction. The argument for the
reduction of the number of network parameters is the concept of parameter sharing,
according to which the filters of the convolutional layers are shared among different
wall-normal distances. Besides, the reconstruction based on this methodology, in which
the main element of the network is the 3-D convolutional layer, ensures continuity within
the reconstructed domains. In contrast, a procedure based on merging independently
reconstructed 2-D planar domains could give rise to discontinuities.

The algorithm is tested on channel flow data at friction Reynolds number 200. The
results in terms of reconstruction accuracy of the velocity fluctuations show a similar trend
to the case of the 2-D single-plane estimators, with lower error on the streamwise velocity
component with respect to the spanwise and wall-normal components. The error is in all
cases slightly larger than in the reference case of the 2-D estimator with a similar Reynolds
number. This was expected due to the comparably lower number of parameters per output
node used in the 3-D estimator.

We also observe that a reduction in the target volume size does not always correspond
to an improvement in accuracy. The estimator trained with test case D, which contained
only the region with y/h > 0.21, performed worse in terms of reconstruction accuracy
than the estimator of case A, whose target was the entire volume. This can be explained
by the difficulty of the network to ignore the parts of the wall fields that were related only
to structures located in y/h < 0.21 when trying to reconstruct the outer region of test case
D. While in case A, a large portion of the network parameters is trained to establish the
mapping between near-wall features and wall quantities, in case D, the estimator should
learn to filter out the portion of wall quantities that is due to near-wall structures and at the
same time is uncorrelated with the structures in the target volume. Due to the modulation
effect of large scales on the near-wall cycle, there is an inevitable loss of accuracy in this
process. While this might be frustrating in view of training neural networks that target
the reconstruction of far-from-the-wall structures – which might be interesting for control
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purposes – the higher performance of 2-D estimation with respect to case D hints at the
possibility of accuracy improvement by increasing the number of parameters for this task.

The estimators for each of the cases, regardless of the reconstruction domain, seem to
target specific features of the flow. In particular, wall-attached structures are reproduced
with high fidelity at least up to y/h = 0.5 (i.e. 100 wall units), while a significant
fraction of detached structures is filtered out in the process. This is a desirable feature
since wall-attached structures carry the bulk of Reynolds stresses, and it was somewhat
foreseeable due to their stronger wall footprint. We thus envision higher difficulty in
predicting detached structures.

Furthermore, there are some differences in the prediction quality depending on the type
of structure in relation to the footprint that they produce. Among wall-attached structures
extending only in the near-wall region, sweeps are estimated slightly better than ejections.
However, the opposite situation is found between wall-attached sweeps and ejections that
extend up to the middle of the channel or close to it. The footprint of the structures to be
reproduced is a key aspect in this process.

Sweeps and ejections dominate other types of structures. Although some of them,
mainly wall-detached ones, are filtered by the GAN, the statistics of the identified
structures in terms of volume and quantity are reasonably well preserved. There are more
sweeps than ejections, but ejections are much bigger and occupy most of the volume
identified as a structure according to the hyperbolic hole size employed.

Supplementary material. Data related to this work and trained models of the neural networks are openly
available at https://doi.org/10.5281/zenodo.11090713. Codes developed in this work are openly available at
https://github.com/erc-nextflow/3D-GAN.
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Appendix A. Criteria for the design of the generator network

The networks proposed in this work have been trained on an NVIDIA RTX-3090 GPU.
In addition to the necessary modifications to unlock mapping 2-D fields to 3-D domains,
some changes to the network architecture were proposed in order to optimize it and obtain
a more accurate flow estimation.

An important degree of freedom in defining the generator network is the position of
the up-sampling layers, a tool commonly used for super-resolution purposes to make it
possible to match the lower-resolution input with the higher-resolution output. Often, these
layers are placed at the beginning, in the first layer or before the bulk of residual blocks
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Figure 12. The MSE of the streamwise fluctuation velocity component u for test cases (a) A and (b) C, with
alternative network architectures.

(Dong et al. 2015; Wang et al. 2015), which would allow the following convolution layers
to operate in a wider domain. Other authors prefer to define a gradual positioning of these
layers (Osendorfer, Soyer & van der Smagt 2014). These two approaches, and in particular
the first one, have the inconvenience that they produce models with 3-D convolutional
layers much heavier than if the up-sampling layers were placed at the end of the network,
which is another alternative (Shi et al. 2016). This latter option is found in the studies by
Ledig et al. (2017) and Güemes et al. (2021). Concerning convolution layers, these become
more complex and computationally demanding, depending not only on the size of the
domain but also on the number of filters included. If the up-sampling layers are gradually
placed with a moderate number of convolution filters, and a large number of filters is used
only at the end for a few convolution operations, then the required computational resources
can be maintained or even substantially reduced.

Case A was first studied with a network comprising 16 residual blocks and all the
up-sampling blocks after them. The convolutions in the residual blocks had 64 filters,
and those in the up-sampling blocks had 256. As alternative architectures, several options
have been tested, placing these up-sampling blocks not at the end, but right after specific
residual blocks (as in figure 3 and table 2), which makes the convolution layers operate
over broader domains in y. However, this change required convolution operations in
up-sampling blocks to have 64 filters instead of 256, simplifying them and reducing the
amount of trainable parameters. Indeed, this simplification is such that with the same
machine and memory limitations, it allows us to increase the number of residual blocks
further, from 16 to 32. This type of architecture is finally selected, as it reports a lower
L error (2.1) even using less trainable parameters and requiring a comparable training
time. This arrangement is a balance between different aspects, placing them progressively
to allow convolutions to operate over wider domains than if they were at the end, while
maintaining an efficient use of the computational resources. Both models can be compared
in figure 12(a) and in table 5.

In view of the results from case A and their physical analysis and interpretation, cases
B and C were proposed. Case B needs a special implementation, as the network needs to
provide output data with 48 layers in the wall-normal direction, which is not a power of
2. Hence the first up-sampling layer increases this size from 1 to 3, and the subsequent
ones continue as powers of 2 up to 48. For the rest of the set-up, the selected architectures
for these two cases follow the same structure, with 32 residual blocks in total. Also, case

991 A1-25

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

43
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.432


A. Cuéllar and others

Residual block
Residual blocks Filters per block up-sampling scheme Trainable parameters

Residual Up-sampling G D

16 64 256 All at the end 13.6 × 106 18.2 × 106

32 64 64 0-6-12-18-24-30 9.0 × 106 18.2 × 106

Table 5. Details on the implementation of alternative architectures for case A. The ‘Residual block
up-sampling scheme’ column indicates the indexes of the residual blocks that are followed by an up-sampling
block.

Residual block
Residual blocks Filters per block up-sampling scheme Trainable parameters

Residual Up-sampling G D

32 64 64 6-12-18-24-30 8.0 × 106 23.8 × 106

48 64 64 8-16-24-32-40 11.6 × 106 23.8 × 106

56 64 64 10-20-30-40-50 13.3 × 106 23.8 × 106

Table 6. Details on the implementation of alternative architectures for case C. The ‘Residual block
up-sampling scheme’ column indicates the indexes of the residual blocks that are followed by an up-sampling
block.

D was proposed as the second half of the layers originally in case A not included in case
C, concentrating the resources in this region of the domain. Although the reconstructed
volume in case D is larger than in case C, both have 32 layers in the wall-normal direction
(see table 1).

As for the discriminator, the same structure is followed in all the cases, as
depicted in figure 4. Pairs of 3-D-convolution layers with increasing number of filters
[64, 64, 128, 128, 256, 256, 512, 512] are used. From each pair, the first ones preserve the
dimensions, and the second ones reduce the size of the data domain in the dimensions
assigned to x, y and z, the first time by a factor of 4, and thereafter by a factor of 2.

An additional change was proposed. The depth of the network can be modified easily
by setting more or fewer residual blocks, such as the aforementioned change from 16
to 32 that showed an improvement in reconstruction terms. In this sensitivity analysis,
case C was further trained with 48 and with 56 residual blocks, with up-sampling blocks
gradually placed every 8 and every 10 residual blocks, respectively. These architectures
and their performances can be compared in figure 12(b) and in table 6. They show a very
moderate error reduction with respect to the previous situation with 32 blocks, with the
curves practically overlapping each other, at the cost of using a substantially larger number
of trainable parameters and taking longer to train. Without any remarkable improvements,
these changes are discarded and the networks remain with 32 residual blocks for all cases.

Appendix B. Comparison of the 3-D GAN with other methodologies

In § 1, GANs were set as the baseline for this work among other 2-D estimation techniques.
Along the discussion of the results of this work, the accuracy of the proposed methodology
is compared to that of 2-D GANs in terms of MSE. In this appendix, we provide a
comparison of the performance of this network (refer to case A, from the wall to the
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mid-plane of the channel) with alternative techniques, i.e. LSE and EPOD as linear
techniques, and a deep neural network (DNN) in the machine-learning framework. For the
comparison with the 2-D GAN, it was convenient to compare the MSE of the velocity
fluctuations normalized with their respective standard deviation at each wall-normal
distance, as this normalization process is needed for both processes. For the comparisons
that we are providing here, this normalization is not needed as the performances are
obtained from the same dataset, and the results expressed here in inner units could be
more meaningful and easier to analyse. As well as for the 3-D GAN, 16 000 samples are
used to establish the correlation and 4000 to test the capabilities of each methodology.

B.1. Comparison of 3-D GAN and LSE
One of the techniques that is used most often in the literature for flow estimation from wall
measurements and other flow estimation purposes is LSE. The 3-D GAN convolutional
filters act over multi-dimensional matrices, guaranteeing domain continuity. In LSE, the
estimator works independently for the estimation of different points, and in particular,
must be different for each wall-normal distance and for each velocity component to be
estimated.

In this case, the number of sensors ns is 12 288, as three quantities are measured on
a 64 × 64 grid. Each of the quantities x′ to be estimated can be computed through the
projection of the vector E[ns × 1] containing all the sensor measurements onto the vector
L[1 × ns] containing all the correlation coefficients:

x′ = LE. (B1)

Multiple samples are needed to compute the coefficients of L. To that end, multiple
sensor entries are concatenated, defining a matrix where each column corresponds to a
sample as follows:

E = [E1|E2| · · · |Et] . (B2)

Given the known values of the quantities xi assigned to each set of sensor data Ei, the
coefficients in L are obtained from this linear system:

L(EET) = [x1, x2, . . . , xt] ET. (B3)

Once the coefficients that establish the correlation between the wall measurements and
a velocity component at some point are known, the estimator (B1) can be used with new
sensor inputs. It has been tested with 4000 samples. The output has been compared with
the fields of the DNS to compare its performance with the 3-D GAN. The MSE of the
three velocity fluctuations [u+, v+, w+] is shown in figure 13.

It is evident that the 3-D GAN outperforms the LSE estimator. The errors are very low
close to the wall. The three velocity components experience a peak with a maximum error
at y+ ≈ 80–90 with the 3-D GAN. With the LSE, these error peaks are larger and are
shifted towards the wall, particularly for u+, which has a substantially higher standard
deviation (see figure 1). The errors of both techniques stabilize at approximately similar
values near the mid-plane of the channel.

The use of the 3-D GAN has a clear benefit in the estimation of u+, for which the highest
errors are reported, with a maximum error almost three times lower with respect to the
peak in LSE. The errors for the v+ component, which has the lower standard deviation
distribution along y+, are significantly lower than for u+, and the benefit between the
3-D GAN and the LSE is not so remarkable, although still important. The error of w+
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Figure 13. The MSE of the fluctuation velocity components (a) u+, (b) v+ and (c) w+ of the 3-D GAN case
A (solid line), the LSE (dashed line) and the EPOD (dot-dashed line). Results are given in wall-inner units.

and its error reduction observed between the two methodologies are in an intermediate
position between u+ and v+.

Note that in the present analysis, we are not using the spectral formulation of
LSE (SLES), which explicitly avoids spurious correlations between orthogonal Fourier
modes (Encinar & Jiménez 2019). This choice is motivated by the interest in applying
this technique to real-world applications, where the assumption of periodicity in the
wall-parallel directions would be difficult to justify.

B.2. Comparison of 3-D GAN and EPOD
The results obtained and discussed previously with the 3-D GAN are compared here with
the performance of the EPOD estimator, whose methodology is described here.

The data of the velocity fluctuations, given in a multi-dimensional matrix, are rearranged
in a 2-D matrix XU , with one row for each sample (16 000 in this case), with the
velocity components assigned to each of the points in space along the columns. The same
procedure is done with the data from the wall probes, cast in the matrix Xpr. All this
information is reduced in modes following the singular value decomposition, with the
temporal information of each sample in Ψ and the spatial information in Φ, leading to

XU = ΨUΣUΦT
U,

Xpr = ΨprΣprΦ
T
pr.

}
(B4)

These matrices have been cropped, retaining the most energetic 7200 modes to remove
those modes with low energy content that introduce noise in the problem. This threshold
coincides with 99 % of the energy contained in XU .

The final objective is to obtain the estimated (denoted with ∗) velocity fluctuations X∗
U

for a different set of samples, given those probe measurements. To that end, the temporal
coefficients Ψ ∗

U associated with those samples are estimated and projected onto the spatial
basis ΣUΦU established previously as

X∗
U = Ψ ∗

UΣUΦT
U. (B5)

The temporal modes of the velocity field are obtained by projecting the temporal modes
of the probes of the samples to be estimated onto the temporal correlation matrix Ξ of the
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Figure 14. Difference of the MSEs of the fluctuation velocity components u+, v+ and w+ of the 3-D GAN
and the DNN. Results are given in wall-inner units.

probes and the velocity field:

Ψ ∗
U = Ψ ∗

prΞ = Ψ ∗
prΨ

T
prΨU. (B6)

Again, the estimation of the 3-D GAN seems more faithful than that of the EPOD, as
seen in figure 13. The behaviour of the error curve of the EPOD is very similar to that of
the LSE, with the peak at a very similar y+ and a small increment of error. The 3-D GAN,
which incorporates nonlinearities in the problem, not only is capable of estimating the
flow with a higher accuracy than these two linear techniques but also shifts the peak of
maximum error away from the wall. This comparison shows the importance of performing
the estimation with a nonlinear operator if accuracy farther from the wall is sought.

B.3. Comparison of 3-D GAN and DNN
The performance of the 3-D GAN is also compared with a simpler concept of neural
networks. To that end, this DNN replicates the generator network G while it neglects
the discriminator D. Its loss function is solely based on the MSE, as in (2.1), with zero
contribution from the adversarial loss (2.2).

The difference in the error between these two methodologies is in general moderately
low (figure 14). The main benefit of the 3-D GAN is observed in the estimation of the
streamwise velocity fluctuations. Although in some regions (y+ ≈ [40−110]) the DNN
estimates u+ better than the 3-D GAN, the overall performance of the 3-D GAN is
superior, with a clear advantage in terms of accuracy in the near-wall region and in
the outer region, i.e. the most challenging one. The improvement is much less relevant
for the estimation of v+ and w+. To provide a quantitative comparison of these results,
the integrals of the area enclosed between these curves and the horizontal axis have
been computed in the range y+ = 0−200. The biggest benefit is found for u+, reporting
−0.8027. For v+, there is a small benefit −0.0131, and for w+ a small penalization
+0.1424.
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