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Fixed point theorems for condensing
multivalued mappings on a locally

convex topological space

E. Tarafdar and R. Vyborny

A general definition for a measure of nonprecompactness for

bounded subsets of a locally convex linear topological space is

given. Fixed point theorems for condensing multivalued mappings

have been proved. These fixed point theorems are further

generalizations of Kakutani 's fixed point theorems.

1 . Introduction

Using the concept of condensing mapping Sadovskii [7 7] and Lifsic and

SadovskiT [9] have obtained respectively the generalizations of Schauder

[7 2] and Tychonoff [74] fixed point theorems. Danes [2] has obtained the

generalization of Kakutani's fixed point theorem [7] by using the concept

of multivalued condensing mapping. Reinermann [70] has also used

condensing mapping defined in terms of a measure of noncompactness (nonpre-

compactness) of bounded sets to obtain generalizations of Schauder Theorem

[72], Using the multivalued condensing mapping defined in terms of a

measure of precompactness Himmelberg, Porter and van Vleck [6] have proved

a fixed point theorem which includes the fixed point theorems of Sadovski i

[17], Tychonoff [74], Gl icksberg [5], Fan [4] and a part of a theorem of

Browder [7].

The aim of this note is to obtain a fixed point theorem which will

contain the above fixed point theorems of [2, 4, 5, 6, 7, 9, 70, 77, 72,

74].
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162 E. Tarafdar and R. Vyborny

In §2 we have introduced a general definition of a measure of nonpre-

compactness of 'bounded sets in a locally convex linear topological space.

In §3 we have given various definitions of condensing multivalued mappings

and have unified them in a single definition. In §4 we have proved our

main fixed point theorem and also obtained corollaries and a theorem which

are similar "but more general than the corresponding corollaries and theorem

of [6].

We follow the notation and terminology as in [6]. A multivalued

mapping F : X -*• Y is a mapping which assigns to each point x € X a

nonempty set F(x) of Y . F is a subset of X x Y whose domain is

F'1^) = X . The set {(x, y) : x € X and y € Fix)) is called the graph

of F or simply F . For ft c X , a multivalued mapping G • ft -* y

having the property that G(x) <= F(x) for each x € ft is called a

submultivalued mapping of F . For ft c X , F(Q) = U F(x) .
xttt

A point x € X is a fixed point of a multivalued mapping F : X •* X

if a; € F{x) . It is obvious that a fixed point of a submultivalued

mapping of F is also a fixed point of F .

A multivalued mapping F : X •* Y of a topological space X into a

topological space Y is called upper semicontinuous if for each closed

subset A of y , F (A) is closed. F has closed graph if Y is

regular and F is upper semicontinuous and has closed values (see [S],

p. 175). A multivalued mapping F : X •+ Y is lower semicontinuous if for

each open subset A of Y , F~ (A) is open.

In the sequel (E, T ) will always denote a locally convex linear

topological space, and \p : a € j] will denote the family of seminorms

which generates the topology x . Any topological concept, such as

closedness, precompactness, compactness, boundedness, and so on, will be

understood as 'with respect to the topology T '. In all other cases, that

is, when a topological concept is not meant with respect to T , the

corresponding topology will precede the concept; for example,

p -precompact to mean that certain subset is precompact with respect to

pa-topology.

https://doi.org/10.1017/S0004972700023789 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700023789


F i x e d p o i n t t h e o r e m s 163

2. Measure of precompactness and nonprecompactness

We denote by C the class of a l l 'bounded subsets of {E, x) .

DEFINITION 2.1 . y = [y : a € l ] wi l l "be said to define a measure

of precompactness on C , where for each a £ I , u i s a set ( interval)

valued mapping of C into R , the set of non-negative rea l numbers,

having properties:

( i ) y (fi) = la, °<>) or (a, OT) , a 2; 0 for each Q £ C ;

( i i ) a1 c a? ( c implies ya(s\) => viafa2)
 tor e v e r v a ? J '

(iii) y (fi) = y (cofi) for each Q ? C where cofl stands for

the convex hull of ft ;

(iv) y a ( n 1 ^ 2 ) = ya(fix) n ya(n2) for s^, fi2 € c ;

(v) y (fl) = fl i f fl i s precompact and fl i s precompact if

y (JJ) ^ (0, °°) , for each a € J .

For 52 € C , q(n) = [Ca(n) : a ? I ] where Pa(f2) = infVa(n) may

then be regarded as a measure of nonprecompactness of fl . Thus a l l the

entries in the parenthesis of y(fl) are zeros i f and only i f B i s

precompact.

EXAMPLE 2.1 (Kuratowski). For each U Z C , we define

X(fJ) = [\W : a £ f[ where

X (fl) = {e > 0 : 0, can be covered "by a f in i t e number of sets of

p -diameter £ e} .

Then X is indeed a measure of precompactness on C .

(i) \a(Q.) = [Xa(fl), ») or (Xa(fi), «>) . (ii), (iv), and (v) follow

easily. For proof of ( i i i ) we refer to Darbo [3] (the proof given "by Darbo

for a normed space applies also for a seminormed space).

EXAMPLE 2.2. Let ^ = {x i E : p^x) S l} .

For each fi ? C , we define y(ft) = [^C^) : a € l ] where
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V (ft) = {e > 0 : there exists a p -precompact subset 5 with

s + eu => n} .

(i) As before we take a = Y (ft) . The proof of ( i i ) and (iv) is

t r i v i a l .

( i i i ) In view of ( i i ) i t suffices to show that y (ft) c y (coft) .

Let £ € Y (ft) . Then there exists a p -precompact subset S such that

S + W => ft . Since coS + tU => ft and coS + tU is convex,

coS,+ tU ^> coft . Noting that coS is p -precompact, we conclude that

t € Ya(coft) .

(v) Let ft be T-precompact. Then ft is p -precompact for each

a € I . Since ft + tUa => ft for a l l t 2 0 and a € I , Pa(ft) = i?+ for

a l l a € I .

Next, let a € I he arbitrary and u (ft) r> (0, °°) .

Let r > 0 be any real number. Since - ( p (ft) , there exists a

p -precompact set 5 such that S + — U >̂ ft . Since 5 is p -compact,

there exists a finite set F such that F + | - V = 5 . Now

F + rlJ => S + ̂  U =>ft. Thus ft i s p -precompact. Since a is

arbitrary, ft is x-precompact.

EXAMPLE 2.3. Let (E, T) , \p : a € l ] and C be as before. For

ft € C , we define v(«) = [va(ft) : a € ft] where

V (ft) = {e > 0 : there exists a precompact set 5 such that

S + eU => ft} .

The proof that v is a measure of nonprecompactness on C is

similar to that of Example 2.2. We note that for each ft ? C ,

V (Si) <= Y (ft) for each a € J .
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3. Condensing mappings

Himmelberg, Porter and yan Vleck [6] have defined a measure of pre-

compactness for any subset of (E, T) in the following way.

Let B be a base of convex neighbourhoods of 0 . Then for ft c E ,

Q(fi) > the measure of precompactness of ft , i s defined to be the

collection of a l l B £ H such that S + B ^> fl for some preeompact subset

S of E . With th is notion of measure of precompactness they have

introducted a definition of condensing mapping.

Let X be a nonempty subset of a locally convex l inear topological

space (E, t ) . Let [pa : o. € j ] and C he as before. Let F : X •+ X

be a multivalued mapping.

DEFINITION 3 .1 . F i s condensing with respect to Q i f for each

x-bounded but not T-precompact set ft c X with F(&) <= ft we have

«(*•(«)) ^ «(«) •

DEFINITION 3.2. F i s condensing with respect to U if for each

bounded but not precompact set fl c X with F(fl) c n , there exis ts a

a € J such that $a(F(ft)) < 0o(n) where u = [ua : a € / ] is a measure of

precompactness on C .

DEFINITION 3.3 . F i s condensing with respect to U i f for each

bounded but not precompact set fi <= X with F(fi) c J2 , there exis ts a (. I

such that

DEFINITION 3.4. F i s condensing i f for each Q c X with F(fl) c Q. ,

(a) the condition that fl - clcoF(fl) i s compact implies the

compactness of clfi ; or

(b) the condition that ft - coF(ft) is empty or single point

implies the compactness of clft .

DEFINITION 3.5. F is condensing i f for each ft cr x with F(n) c ft ,

the condition that ft - coF(ft) i s empty or single point implies that ft

i s precompact.

Definition 3.1 i s due to Himmelberg, Porter and van Vleck [6 ] , For a

single valued mapping, Definition 3.2 has been used by Reinermann [10] and

Stallbohm [13] with y = X , and Definition 3.h i s due to Lifsic and
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SadovskiT [9]. Definition 3-5 is a slight variant of the one given by

Danes [2].

(A) It is easy to see that Definition 3.2 implies Definition 3.3 for

each measure y .

(B) Definition 3.1 implies Definition 3.3.for suitable measure y .

Let Definition 3.1 hold. We index the base 8 by B = | B : a € i"| . Let

p be the Minkowski functional on B . Let U = {x 6 E : p {x) 5 l} .

Clearly B = U . We now consider the measure V as defined in Example

2.3. We now show that Definition 3.3 holds with respect to v . Let fi

be any bounded but not precompact subset of X with F(U) c fl . Then we

have Q[F(tt)) 3 S(£2) ; that is, there exists a B f 8 such that

Ba i. Q{F(Q)) but Ba f Q(tt) . Hence it follows that 1 € Va(>(n)) but

1 f \W • Also since F(Q) <= fi , it follows from (ii) of Definition 2.1

that Va(F(n)) i? Va(fi) .

(C) Definition 3.3 with each measure y implies Definition 3.5 if F

has bounded range. Let Definition 3.3 hold with a measure y • Let

U c X , F(Q) c Q 5 and U - coF(Q) = Z where Z = 0 or a single point.

Obviously y (Z) = R for each a € J .

Since fi c Z u co.F(fi) , it follows that Q is bounded and we have for

each a € I , y (fi) ̂  y (Zuco.F(ft)) by (ii) of Definition 2.1 equal to

y (Z) n y (F(Q)) by (iv) and (iii) of Definition 2.1. Again since

fi 3 Z u f(fi) , we have for each a € J , ya(fi) <= y (Z) n y (>(fi)) by ( i i )

and ( iv) of Def in i t ion 2 . 1 . Thus for each a (. I ,

\i (U) = V (Z) n y (F(n)) . From t h i s and t h e fac t t h a t \i (Z) = R for

each a € I , i t follows t h a t u (fi) = y [F(Q)) for each a € I , which in

view of Def in i t i on 3.3 impl ies t h a t fl i s precompact.

(D) Obviously Def in i t ion 3.h implies Def in i t ion 3 . 5 .

4. Fixed point theorems

The proof of the following lemma can be found in [6].
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LEMMA 4.1 . Let X be a topological space. Let F : X •*• X be a

multivalued mapping with closed graph. If there exists a nonempty subset

A of X such that F(A) c A and cL4 is compact, then there exists a

nonempty, closed and compact subset K of X such that K c F(K) .

THEOREM 4.1. Let X be a nonempty complete convex subset of a

Bausdorff locally convex linear topological space E . Let F : X •+ X be

a condensing multivalued mapping in the sense of definition 3.5 with convex

values and closed graph. Then F has a fixed point.

Proof. Unlike [11], [9], and [6], we will not use ordinals. Let

U Fn(x)\ . Then clearly F(A) C A and

n=l '

A - coF{A) c {x} . Since F is condensing, A is precompaet. Also

eld c X and clA is compact as X is complete. Hence by Lemma U.I,

there exists a nonempty compact subset K of X such that F(X) ̂ > K .

Let S = {Y cz X : K <= 1, F(Y) c X and Y is convex} . S is non-

empty as X € 5 . S is a partially ordered set with respect to the

relation 5 where ¥ £ Y if and only if Y => Y with I , Y ? S .

We first prove that every chain in S has an upper bound in S , Let

T "be a chain in S . Then Z = (1 Y is an upper bound. Clearly

Z c x , K c Z , F(Z) c Z , and Z is convex. Hence Z € S . Thus by

Zorn's Lemma there is a maximal element Z £ S .

We next prove that for each Y € S , coF{Y) € S .

(a) coF(Y) <= X as F(Y) c v c X and X is convex.

(b) K <= coF(Y) .

Since K c Y and X c F(x) , we have Z c F(K) c F(Y) . Hence

(c) F{coF(Y)) C

Since P(Y) c Y and Y is convex, coF(Y) c Y . Hence

F(coF(Y)) C F(Y) C COF(Y) .

(d) coF(Y) is convex.

Now since for each Y (. S , F{Y) c Y and Y is convex, we have
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coF(Y) c Y . Thus Y £ coF{Y) for each Y € S . In particular

Z £ coF(z ) . But since Z is a maximal element in S , it follows that

ZQ = coF(ZQ] ; that is, Z - coi7(ZQ) = 0 . Hence by condensing of F ,

Z is precompact. Therefore, clZ <= X and clZ is compact. The rest

of the argument is as given in [61. Let G = F n (clZ xclZ ) . Then G

is closed and compact subset of X x X . Also (7 (clZ ) is a closed sub-

set of clZ containing Z . Thus domain G = G~ (clZ ) = clZ . Hence

G is a multivalued mapping of ° 1 Z
O into clZ , with convex values and

compact graph. {G is also upper semicontinuous.) Hence by the theorem of

Glicksberg [5] or of Fan [41, G has a fixed point in clZ . This fixed

point is also a fixed point of F .

REMARKS 4.1. The same remark as given in {[61, p. 637) applies in

the present situation; that is, the above theorem remains true for non

Hausdorff (nonseparated) E if the further assumption that X is closed

is assumed. For details see [6] as quoted above.

REMARK 4.2. If F is assumed to be condensing with respect to

Definition 3.^, then the above theorem remains true with the completeness

condition on X replaced by the condition that X is closed. The same

proof applies, because in this case clA and clZ appeared in the proof

would be compact directly due to the condensing of F . By Remark k.l we

can then remove the Hausdorff condition on E as the condition that X is

closed is already assumed. The resulting version of the theorem will

include fixed point theorems of Lifsic and SadovskiT [9].

COROLLARY 4.1. Let X be a nonempty complete convex subset of a

Hausdorff locally convex linear tapologieal space E . Let F : X •* X be

a multivalued mapping with convex values, closed graph and bounded range.

If F is condensing in the sense of Definition 3.3, then F has a fixed

point.

Proof. This follows from Theorem 4.X and (C) of §3.

REMARK 4.3. In view of (B), §3, it follows that the fixed point

theorem of Himmelberg, Porter and van Vleck ([6], Theorem 1) is a special
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case of our Corollary U.I.

The following theorem includes the corresponding theorem of ([6],

Theorem 3).

THEOREM 4.2. Let X be a nonempty complete convex subset of a

locally convex linear topologiaal space E . Let F : X •* X be a lower

semicontinuous multivalued mapping with closed convex values. Then F

has a fixed point if either of the following conditions hold:

(a) X is compact and metrizable;

(b) the subspace uniformity on X is metrizable and F is

condensing in the sense of Definition 3.5.

Proof, (a) Same proof as in [6] applies.

(b) We proceed as in the proof of Theorem U.I until the set Z

with cof(z ) = Z is obtained. By Corollary 2a, p. 176 of [8],

P(clZ ) c clf(z ) c clZ . We then apply case (a) to

F n (clZ xclZ ) : clZ -»• clZ . For details see [6].
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